Content Request Markup Language (CRML): a
Distributed Framework for XML-based Content
Publishing

Chi-Huang Chiu, Kai-Chih Liang, Shyan-Ming Yuan
Dept. of Computer & Information Science, National Chiao Tung University
1001 Ta-Hsueh Rd,

HsinChu 300, Taiwan
+886-952-729654

chchiu/kcliang/smyuan@cis.nctu.edu.tw

ABSTRACT

Construct web applicaions to provide dynamic, personalized
web contents with high scdability and performance is a
challenge to the software industry in the new Internet era. In
most available solutions, load balancing and cading
mechanisms are introduced in front of web servers to reduce
workload. In this paper we present Content Request Markup
Language (CRML), an enabling techniques for distributed
XML processng at the content level. CRML is a language
based on emerging XML standards, XSLT and XPATH, to
publish XML-based content over HTTP protocol. It provides
hints to construct a distributed framework to suppat parallel
XML-based content pubishing. In addition, the content from
databases or other sources could be cated before or after
processng in block or page level. With the paraléel content
pubishing and the cating mecdhanism, the CRML could
provide ahigh performance platform for fully customized web
service

Keywords
Load balancing, Caching, Persondli zation, XML

1. INTRODUCTION

The volume of Internet content was getting higher and higher in
the past few yeas. Meawhile, dynamic multimedia mntents
are becoming the emerging demands from users. Content
management, espedally dynamic contents, is the isse that
every serviceproviders must facewith.

The CRML is a content pubdishing framework that enforces
distributed computation kehind the Web server when managing
Internet content. There are threemgjor feaures of the CRML.

Pure XML. CRML is the markup language derived from XML.
Contents are marked by CRML tags, which provides hints for
distributed processng of the mntent.

Parameter-triggered caching mechanism. To increse the
reusability of the cate data, CRML implementation uilize the
query parameter to further reuse cated query result with
different query parameters.

Parallel Processing. The implementation o CRML enforces
the pardl el processbehinds the Web server.

2. TheLanguage Definition

In CRML, the dynamic content shoud be embedded in the
document prepared to return described by a CRB: Content
Request Block. Each CRB shoud represent a block of data and

contain the data source, inter-CRB communication, exception
handling, pardlel processng hint, and cading informtion.

2.1 Content Request Block
<crml:content id="auth"
xmins:crml="http://nctu/CRML">
<crml:concunrrency threadsafe="no"/>
<crml:source type="sql">
<crml:attr name="db" value="jdbc:db2:sample"/>
['CDATA[select name from users where
id="@{id}' and password="@ {PASSWD}1]
</crml:source>
<crml:cache key= " id,password " />
<crml:variable name="name"
catch="RESULT/ROWI[0]/id"/>
<crml:exception code="100" type="page">
<?xml - stylesheet href="error.xsl" type="xsl"?>
<error type="autherror">
The User/Password you inp
<lerror>
</crml:exception>
</crml:content>

utted is not correct !

<crml:content id="secdata"
xmins:crml="http://nctu/CRML">
<crml:concunrrency threadsafe="no"
wait="auth"/>
<crml:source type="file">
<crml:attr name="url"
value="file://c/doc/dept.xml ">
</crml:source>
</crml:content>

The dove example shows two CRB in a document one of them
is contain the data from the database and the other is from a
locd file. In the <aml:source> tag, the inner nodes will be
passed to the procesor of spedfied data source

Current implementation includes DBC, RMI, CORBA, locd
files, HTTP, and Java Source Code. No matter what type of data
sourceis used, the result type of the data source must be XML.
Thefinal result could be processby a X SLT processif need.

2.2 Inter-CRB Communication

The inter-CRB communicationis archived by the data exchange
via page-level variable. Like the <aml:variable> tag in the
previous code fragment, the XPATH string is used to extrad
the information from the data sourceto spedfied variable.

2.3 Exception Handling

If any exception is thrown by the data source the
<crml:exception> tag will cach it. If the type of the exceptionis
page, the inner noce of the tag will replacethe whale result
interrupt al other running or waiting CRB. Otherwise, it will
replacethe result of the CRB.



2.4 Parallel Processing Hint

The <aml:concurrency> tag provide the relationship between
dl CRB. The threadsafe attribute defines that if the CRB is
thread-safe and the wait attribute defines the CRBs which
should be exeauted before this CRB.

2.5 Page-Level Processing I nstructions

In addtion to the CRBs embedded in the document, some page-
level processng instructions are used to do the page-level
cading, transformation, and error handling.

3. Parameter-triggered Caching Mechanism
The cating medchanism in this framework is easy. The cncept
is that the same parameter will get the same ontent. Each CRB
include a cabe tag to describe the parameter affed the result
like the <aml:cade> tag in previous example. The CRB wiill
not be procesed if the same parameter could be foundin the
cacte (Buffer Pool). Besides, to generate ntent with the
dynamic information, the invaidation is done to remove
expired content in the cade.

3.1 Sef-Invalidation

Some ntent (such as HTTP and files) has the information
abou the modificaion a expiration information, which could
be used to invalidate the cade.

3.2 Event-driven Invalidation
DBMS ,BufferPool

/ ActionListener

Replication hModule
I
! EvantListanarddaptar

Event Gonorator

Event Bus

The above figure is an example of the event-driven invalidation
scenario, which the event source is a DBMS. An event
generator could be set via the replicaion modue onthe DBMS
to pubish the event. The buffer pod with an event listener
adapter could listen the events on the bus to invalidate the out-
of-date information.

3.3 Expression Variable
<crml:cadhe name="userquery" keys="~{#{min}/5}" />

The example shows a notation o Expresson Variable, which
could enclose an expresson as a variable. In such example, the
variable ~{#{min}/5} represent the value of the numbers of
minutes from 1970 dvide 5. The variable has the same value in
the same block of 5 minutes and could reduce the dfort of
processng. Besides, the name of the caded element could let
the CRBs in dfferent CRML document share the same cate
data The scheme is siitable for the CRB, which is accessd
frequently, but the red-time acairacy isnot pretty important.

4. Implementation for Parallel Processing
The CRML doesn't include the detail i nformation abou how to
processa CRML. It only contains sme requirement of partial
sequence ad exclusion and is much depended on the
implementation.

4.1 The CRML Engine

The CRML Engine isthe comporent to processawhole
request. First, the request will be sssciated with a CRML

sourcefile and ke passed to the Engine with request
parameters. Seaond, the compiler will be invoked to compile
the CRML sourcefile and generate the processplan of the
request. Third, the processplan will be sent to the runtime
and exeauted. Finadly, if the result from the runtime contains
another CRBs to process the compil er will try to generate a
processplan for next roundand some page-level cading
will be applied here.

4.2 TheProcess Plan

The process plan generated by the compiler will seperate the
CRBs to several thread. The two CRB in the same threal
represent that the dependence of them. In ather words, it is
usdessif you exeaute the two CRBs concurrently becaise one
CRB may wait the other one.

4.3 TheCRML Runtime

ThreadP ool

Like the above, the acces plan will be dispatched to several
threads to exeaute. The CRB Exeautor is the wre of eat thread
that exeautes the CRBs by the help of CRB Processors and
Buffer Poadls. The Result Colledor could colled and manage
the results and exceptions from ead thread. The semapharesin
the Result Colledor aso do the ncurrency control. Such
runtime ould be implemented on the distributed environment
ealy if the centralized-controll ed Result Colledor isready.

5. Conclusionsand Future Works

In this paper, we have presented the wre of CRML, a
distributed framework for XML-based Content Publishing.
Comparing with ather pubishing framework or tools, CRML: 1)
stresses the distributed architecture which could be used either
to do the load balancing for a heary traffic website or to
perform multithread processng in a single madine to improve
performance 2) provides the block-level and content-
independent cade for the data before processng which is a
grea improvement for full y-customized web service 3) uses the
emerging XML standards to process the XML-based data
withou any sequential programming language.

CRML is a part of WebEngine, a developing projed of Web
Content Management System. The concept of WCMS islike the
DBMS, which bah manage the data and hendle the request. As
the role of SQL in DBMS, the CRML is designed to describe
what user want to request not how to handle the request. Such
spirit could let WebEngine improve the performance using a lot
of techniques withou change the origina CRML source file.
Sincethe CRML is used to request the mntent, the transadion
management is not mentioned in the first version d design,
which may be improved as future works.

6. Acknowledgment
This work was suppated by both the National Science Courcil
grants NSC88-2213E-009-087, and NSC89-2213 E009-069.



