XEBRA: The Design and Implementation of
Integrated Programming Environment for
XML Processing and Browsing

Norio Touyama', Yasuyuki Hirakawa', Takashi Hattori, Tatsuya Hagino*
tGraduate School of Media and Governance, Keio University
Faculty of Environmental Information, Keio University
5322 Endoh, Fujisawa, Kanagawa 252-8520, Japan

{next,chibao,hattori,hagino}@tom.sfc.keio.ac.jp

ABSTRACT

We present the design and implementation of XEBRA sys-
tem. XEBRA is an integrated programming environment
for XML processing and browsing on which users can build
their own XML processing applications. XEBRA has a
lisp interpreter as its main control system. The lisp inter-
preter provides programming interface for users. It also
provides XML manipulation routines and data structures
devoted to XML. We designed the XEBRA architecture to
be extensible by modules. We implemented some modules
which have functionalities for XML and web related com-
mon technologies such as XSLT, XSL-FO, HTTP and CSS
to XML conversion. Users may build customized programs
by combining functionalities provided by these modules.
Finally, we show an HTML browser as an example appli-
cation of the system. We demonstrate that this browser
shows potential of our system and its design.

Keywords
browsers and tools; language; XML; XSLT; XSL Format-
ting Object

1. INTRODUCTION

After appearance of XML [1], the world of World Wide
Web is now getting into the second generation based on
XML and XML family technologies like XSLT [2]. Com-
pared with the first generation web computing that is
based on HTML, the second generation web computing
that is based on XML will provide openness, flexibility
and extensibility for users by using XML as a meta lan-
guage for all documents and data. Our main interest of
this paper is how we can bring potential of XML into user’s
processing and browsing environment.

Existing web environment for users consists of HTML
browser and its extension. However, handling of XML
documents is more than just browsing. For example, we
may want to gather XML files from various sites, combine
these files into an XML tree, transform this tree into an
XSL Formating Object [3], and then browse it. In such
cases, we require programmable environment on which we
can build our own XML processing applications.

In order to satisfy our interest, we developed XEBRA (eX-
tensible Environment for BRowser Architecture) system.
We designed this system as integrated programming en-
vironment for XML processing. Users of XEBRA have
ability to create their own customized XML application.

2. DESIGN AND IMPLEMENTATION OF
XEBRA

2.1 Main system as a lisp interpreter

In our system XEBRA, we introduced a lisp interpreter as
its main control system. We employed modular extensible
architecture in the main system. We implemented some
functions of XML family technologies as modules. Figure
1 shows the system overview of XEBRA.

The lisp interpreter provides interactive programming en-
vironment for users. With the lisp interpreter, users can
build and execute their own program in an interactive ses-
sion. Our lisp interpreter has both functions and data
structures devoted to XML processing. Furthermore, users
can freely combine modules for their own applications by
calling modules as lisp functions.

The lisp interpreter and modules are written in C lan-
guage. Because we wanted to make free both lisp users and
module writers from memory management, we introduced
memory allocation system with mark and sweep garbage
collection.

2.2 Modules

We implemented modules described below. In order to
make C functions of modules available to lisp programs,
each module has glue functions for lisp. Users can build
their own applications by combining these modules in their
lisp programs.

1. XML parser module

Our parser has ability to parse well-formed XML
documents [1] and produce XML trees which can
be handled by lisp programs. Our parser also can
process XML namespaces correctly.

2. HTML parser module

Our HTML parser module can parse legacy HTML
[5] documents and simultaneously convert them into
XHTML [4] compatible structure. Its input is an
HTML document and output format is the same as
XML parser’s one.

3. XSLT (XSL Transformation) module

In addition to ability of flexible XML tree process-
ing by writing lisp programs, users can utilize XSLT



C User's Lisp Programs )

Lisp Interpreter System

Ul Module XSLT C)S(tho
XSL-FO Module Module Module

XML | HTML HTTP
Parser | Parser Module
Module | Module

Memory Management System

Figure 1: XEBRA system overview.

stylesheets [2] for general transformations of XML
trees with this module. XSLT stylesheets and lisp
programs are complementary to each other.

4. HTTP module

Lisp programmers can use our HTTP [6] module
for collecting XML documents and data from web
servers.

5. XSL-FO (XSL Formatting Object) rendering
module

XSL-FO is an XML vocabulary for specifying format-
ting semantics [3]. We employ XSL-FO as basis for
rendering and displaying XML data. Our XSL-FO
module converts XML trees described with XSL-FO
vocabulary into device dependent drawables and dis-
plays it directly on screens.

6. CSS to XSL stylesheet conversion module

With this module, users can convert arbitrary CSS
stylesheets into XSLT stylesheets which convert
XHTML trees into XSL-FO trees.

7. User interface module

For implementing basic browsing functionality, XE-
BRA provides GUI interfaces for browsing. This
module is created with GTK+ toolkit. Currently,
XEBRA provides basic window user interface just
enough to implement a simple HTML browser.

3. APPLICATION EXAMPLE
— HTML BROWSER

XEBRA is an integrated environment for XML processing
and it is not intended only for implementing web browsers.
However, in order to show basic ability of the system, we
implemented an HTML browser with XEBRA. Main part
of this simple HTML browser is expressed in 14 lines of
lisp program. It consists of roughly following three steps.

1. It loads an HTML document from a specified URL.

2. Then, it transforms the loaded document tree into
an XSL-FO tree by calling the XSLT module with
an XSLT stylesheet which converts HTML trees into
XSL-FO trees.

3. Finally, it calls the XSL-FO rendering module.

Customizing this browser is relatively easy. For example,
it is easy to insert a lisp program which call the XSLT
module with a stylesheet which summarizes H1 element of
HTML documents and display their summarized versions.

After implementing the basic part of XEBRA system, we
implemented each module independently. Then, we tried
to write the HTML browser as a lisp program. Never-
theless the design of each module was left to implementor
of each module, writing the lisp program of the HTML
browser was far easier than we anticipated. With this ex-
perience, we proved the effectiveness of our basic design of
XEBRA and potential of the system.

4. ACKNOWLEDGMENT

This research was supported by IPA (Information-technol-
ogy Promotion Agency, Japan).

5. REFERENCES
[1] T. Bray, et al. , Extensible Markup Language (XML)
1.0 (Second Edition) , W3C Recommendation 6
October 2000 , http://www.w3.org/TR/REC-xml

[2] James Clark , XSL Transformations (XSLT) Version
1.0 , W3C Recommendation 16 November 1999 |
http://www.w3.org/ TR /xslt

[3] S. Adler, et al. , Extensible Stylesheet Language
(XSL) Version 1.0 , W3C Working Draft 18 October
2000 , http://www.w3.org/TR/xsl/

[4] Steven Pemberton, et al. , XHTML 1.0, The
Extensible HyperText Markup Language - A
Reformulation of HTML 4 in XML 1.0 , W3C
Recommendation 26 January 2000 ,
http://www.w3.org/TR/xhtml1/

[5] Dave Raggett, et al. , HTML 4.01 Specification ,
W3C Recommendation 24 December 1999 ,
http://www.w3.org/TR /htmld/

[6] Fielding, R. et al , RFC 2616 , HyperText Transfer
Protocol, HTTP/1.1 , June, 1999 ,
http://www.ietf.org/rfc/rfc2616.txt



