
Efficient Acquisition of Web Data through Restricted
Query Interfaces

Simon Byers
byers@research.att.com

AT&T Labs-Research

Juliana Freire
juliana@research.bell-labs.com

Bell Laboratories

Cláudio Silva
csilva@research.att.com

AT&T Labs-Research

ABSTRACT
A wealth of information is available on the Web. But often, such
data are hidden behind form interfaces which allow only a restric-
tive set of queries over the underlying databases, greatly hinder-
ing data exploration. The ability to materialize these databases
has endless applications, from allowing the data to be effectively
mined to providing better response times in Web information
integration systems. However, reconstructing database images
through restricted interfaces can be a daunting task, and some-
times infeasible due to network traffic and high latencies from
Web servers. In this paper we introduce the problem of generat-
ing efficient query covers, i.e., given a restricted query interface,
how to efficiently reconstruct a complete image of the underlying
database. We propose a solution to the problem of finding cov-
ers for spatial queries over databases accessible through nearest-
neighbor interfaces. Our algorithm guarantees complete cover-
age and leads to speedups of over 50 when compared against the
naive solution. We use our case-study to illustrate useful guide-
lines to attack the general coverage problem, and we also discuss
practical issues related to materializing Web databases, such as
automation of data retrieval and techniques which make it possi-
ble to circumvent unfriendly sites, while keeping the anonymity
of the person performing the queries.

Keywords
query coverage, dynamic content, restricted query interfaces, spa-
tial queries, wrappers

1. INTRODUCTION
The hidden Web has had an explosive growth as an increasing
number of databases, from product catalogs and census data to
celebrities’ burial sites, go online. This information is often hid-
den, in the sense that it is placed behind form interfaces, and pub-
lished on demand in response to users’ requests. It is estimated
that 80% of all the data in the Web can only be accessed via form
interfaces [3].

There are many reasons for providing such interfaces on the Web.
Transferring a big file with all the information in a database can
unnecessarily overload Web servers (especially if users are in-
terested in a small subset of the data). Furthermore, accessing
a particular record within a big file can be rather cumbersome.
The alternative of giving direct access to the databases through
expressive query languages such as SQL [4] or XML-QL [2] is
not practical, as these languages are too complex for casual Web
users. Form interfaces are thus a good choice as they provide a
very simple way to query (and filter) data.

Simplicity however, comes at a price. Form interfaces can be
quite restrictive, disallowing interesting queries and hindering
data exploration. In some cases, the restrictions are intentionally
imposed by content providers to protect their data (e.g., the book

database and user comments are important IP for amazon.com,
they are key to the business — and it is to Amazon’s benefit that
others are not able to replicate their data). In other instances,
the restrictions are just an annoyance and often the result of bad
design. Take for example the U.S. Census Bureau Tract Street
Locator, 1 which requires a zip code and the first 4 letters of the
street name, not allowing users to get information about all streets
in a given zip code. As a result, there is a great wealth of infor-
mation buried and apparently inaccessible in these Web sites.

For answering queries that are not allowed through a given in-
terface, or simply to get better performance, many applications
can benefit from materializing a view of this hidden data. This
approach is currently used by a number of services, such as for
instance, comparison shopping engines and job search sites. In
general, these services act in cooperation with Web sites, which
may give them a less restrictive back-door interface to the data.
However, when Web sites do not cooperate, an interesting prob-
lem is how reconstruct their databases using the restricted query
interfaces readily available on the Web.

The problem of querying Web sites through restrictive query in-
terfaces has been studied in the context of information mediation
systems (see e.g., [6]). However, to the best of our knowledge, the
problem of generating efficient query covers that retrieve com-
plete images of the databases through restricted query interfaces
has not been considered before.

In this paper we define and study the problem of generating ef-
ficient query covers for non-cooperative Web sites: given a re-
stricted query interface, how to efficiently reconstruct a complete
image of the underlying database. We focus on an important
subset of this problem, namely, finding efficient covers for spa-
tial queries over databases that are accessible through nearest-
neighbor interfaces, and propose an algorithm that guarantees
complete coverage and leads to speedups of over 50 when com-
pared against the naive solution. We also discuss issues involved
in building these database images and propose general guidelines.

2. SPATIAL COVERS THROUGH
NEAREST-NEIGHBOR INTERFACES

Consider the following scenario. A large retail business is work-
ing on expansion plans, and needs to figure out where to place
10 new stores. A good strategy would be to discover where their
competitors are located, and/or how their competitors have ex-
panded over time. Nowadays, these data are often available on
Web sites of the businesses themselves, as most retailers offer
store locators which allow a potential customer to identify a lo-
cation near them. One feature of many such locators is that they
return only the closest k results to the query point, and in practice
k ranges between 5 and 10. Using this restrictive form interface,

�

http://tier2.census.gov/ctsl/ctsl.htm



Figure 1: The top figure shows the location of stores from one
U.S. retailer. The bottom figure shows some typical coverages
queries, and the partial coverages while completing the cover
for the region.

it can be tricky (and costly) to find the location of all the stores
of a particular retailer in the U.S.. A natural solution would be to
get a list of all the zip codes in the U.S., submit one by one, and
merge the results. However, given the high latencies of most Web
sites, executing up to 10,000 queries (1 per zip code) may take a
long time; and this problem is compounded if these queries have
to be executed periodically (for example, to track your competi-
tor’s expansion strategy).

Given a query interface for nearest-neighbor queries of the type
“find the k closest stores to a particular location”, and a region

�
,

our goal is to minimize the number of queries necessary to find
all the stores in

�
. While in principle our coverage algorithm

works for any number of dimensions, we focus our discussion on
the two-dimensional case. A naive technique for finding a cover
of a region

�
is to simply break the region into small pieces,

then perform one query for each piece (say, perform the query
for the centroid of the region). This technique is quite popular on
the Web. For instance, often to find all the stores of a particular
chain, one performs one query per zip code. While this does not
guarantee coverage, since it might happen that more than k stores
belong to a single zip code, in practice, this often produces sat-
isfactory results. Given that there are several thousand zip codes
in the United States, this technique is likely to be very time con-
suming. Also, this technique does not explore the data-sensitive
nature of the k-NN queries being performed, because it does not
take into account the radius2 returned by the query. As can be
clearly seen in Figure 1, the radius returned by a given query
can vary substantially. Our technique explores such variations to
achieve an efficient solution. Our algorithm is quite simple, and
is composed of two parts:
(1) We use a spatial data structure to keep track of which parts of�

have already been covered by previous queries.

(2) At any given point in time, we use the coverage information
obtained thus far to determine where to perform the next query
as to minimize overlaps.
We use a simple greedy scheme for maximizing profit of queries.
We assume the best place to perform a query is the largest empty�

In practice, some sites do not return the radius directly, but given an
address (location), it is possible to find the latitude and longitude, and
compute the radius by performing extra queries (possibly in different Web
sites).

circle in the uncovered region. In practice, we use a quadtree [5]
to mark which regions of

�
have been covered (the unmarked

regions are the regions of space which have not been seen, and for
which no information is available). Given a query point ��� � ,
the output of the query is a list of neighbors � ���	�
�	��� �� of � . We
simply mark on the quadtree the nodes inside a ball centered at � ,
and of radius ������������� ����������� . See Figure 1 for an example.
In effect, we find the largest uncovered quadtree node, and use
its center as the next query point. Note that we use the quadtree
for two purposes: to determine coverages, and decide when we
can stop; and to determine the next query. A nice feature of using
recursive data structures such as the quadtree is that they make it
easier to extend the technique to higher dimensions [5].

Querying for the U.S. locations of one retailer that has about 750
stores using the zip code query (which returns 10 stores, and can
be performed in 1.2 seconds for each query) requires over 10,000
queries (corresponding to the different zip codes) at a total cost of
12,000 seconds, or over three-and-a-half hours. Using our simple
scheme, we need only 191 queries at a total cost of 229 seconds.
This is over 52 times faster (see [1] for more complete experi-
mental results).

3. ACQUIRING WEB DATA
A critical requirement to reconstruct database images is to min-
imize the number of queries required to retrieve the data. In
general, good strategy is to pose queries as general as possible,
and some straightforward quidelines can be followed: leave op-
tional attributes unspecified; for required attributes choose the
most general options; and given a choice between required at-
tributes, the attribute with smallest domain should be selected.
However, for query interfaces that limit the number of returned
answers, this strategy is not effective as one can not guarantee
that all answers are retrieved. In the previous section we dis-
cussed how to address this problem by using spatial constraints
to guarantee complete coverage.

There are a number practical issues involved in the Web data ac-
quisition process: in order to build a warehouse of hidden Web
data, several queries to one or more Web sites may be required
— as a result, these queries must be automated, their execution
optimized, and possibly anonymized; and since the degree of dif-
ficulty of coverage queries is directly related to how data is ac-
cessed and represented, finding alternative means to access the
data, or different representations, may simplify the problem. We
refer the reader to [1] for more details on these issues.

It is worth pointing out that the problem of reconstructing database
images through restricted interfaces is very broad, and in this pa-
per we propose a solution to a small but important subset of the
problem. We are currently investigating a comprehensive frame-
work to address the general reconstruction problem.

4. REFERENCES
[1] S. Byers, J. Freire, and C. Silva. Efficient acquisition of web data

through restricted query interfaces. Technical report, AT&T
Shannon Labs and Bell Laboratories, 2000.

[2] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A
query language for XML. In Proc. of WWW, pages 77–91, 1999.

[3] S. Lawrence and C. Giles. Searching the world wide web. Science,
280(4):98–100, 1998.

[4] J. Melton and A. Simon. Understanding the New SQL: A Complete
Guide. Morgan Kaufmann, 1993.

[5] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, MA, 1990.

[6] R. Yerneni, C. Li, H. Garcia-Molina, and J. Ullman. Computing
capabilities of mediators. In Proc. SIGMOD, pages 443–454, 1999.


