
P-Jigsaw: Extending Jigsaw with Rules Assisted Cache
Management

Bin Lan+

Microsoft Corporation
One Microsoft Way

Redmond, WA98052-6399 USA

davelb@microsoft.com

Stéphane Bressan

Department of Computer Science
National University of Singapore

3 Science Drive2, Singapore117543

steph@comp.nus.edu.sg

ABSTRACT
P-Jigsaw is an extension of W3C’s Jigsaw Web-server
implementing a cache management strategy for replacement
and pre-fetching based on association rules mining from the
access-log.

Keywords
Web server, caching, pre-fetching, association rules, Jigsaw.

1. INTRODUCTION
We present our approach to caching documents at the Web-
server’s side [8]. We propose a solution offering original pre-
fetching and replacement policies leveraging knowledge
mined from the access-logs in the form of association rules.

1.1 Web Caching and Pre-fetching
Traditional file system caches do not perform well when
serving Web requests [1]. Nevertheless existing Web-servers
rely on the file system’s cache or implement similar generic
strategies such as Least Recently Used (LRU) for their own
cache. This observation compels the integration into Web
servers of dedicated caching and, possibly, pre-fetching
mechanisms. Several authors have proposed to use access-log
information to learn replacement and pre-fetching strategies.
In [2], Arlitt showed, for instance that a frequency based
strategy outperforms LRU for caching. Similar results for pre-
fetching were presented in [7] by Tatarinov et al.

1.2 Web Mining
The application of data mining techniques to the Web,
referred to as Web-mining [4], has recently received an
increased attention. Of particular interest for us, is a series of
approaches attempting to exploit the specificity of access
patterns to hyper-documents. For instance, in [3], Bestavros
estimates the probability of documents to be requested next
from the information recorded in the access-log. The author
uses this probability to push documents to the client side.
However, so far and to our knowledge, there has been no
other proposal but ours to apply Web mining to caching and
pre-fetching at the server’s side.

2. Rule-Assisted Cache Management, RAC
The technique we propose, called Rule-Assisted Cache
management, RAC, is based on the mining of association
rules from the access-log [5].

+This research was done while the author was a PhD student
at the National University of Singapore

2.1 Mining the Log
Caching and pre-fetching strategies leverage either knowledge
or hypothesis about access patterns. In most Web servers a
comprehensive history of accesses is recorded in the access-
log. We call a transaction the chronological list of entries for a
given user-agent over a given period of time. A transaction is
a projection of a portion of the access log. Looking at all
transactions, we extract rules of the form Di→ Dj where Di and
Dj are document references (urls). The intuitive interpretation
of such rules is that, from past experience, document Dj is
likely to be requested by a user sometimes after he or she
requests Di. These rules are association rules. The quality of a
rule can be measured by its support and confidence. The two
numbers characterize the amount of information supporting
the rule, and the amount of positive evidence gathered,
respectively.

2.2 Rule Assisted Pre-fetching, RAP
If a user-agent requests a document DI then the association
rules of the form Di→ Dj which we have mined from the
access-log, suggests that this user-agent is likely to eventually
request document Dj. In anticipation of this event, the Rule
Assisted Pre-fetching strategy pre-fetches one of the Dj
documents from the disk into the cache. RAP could use the
rules Di→ Dj only. However, considering Di alone ignores
other user-agent requests for other documents. Therefore RAP
maintains a set of active documents, i.e. the documents last
requested by user-agents within a given time window. The
pre-fetched document Dj is then determined by the rule Dk →
Dj with the highest confidence, for which Dk is an active
document, such that Dj is not already in the cache, and whose
support is above a given threshold.

2.3 Rule Assisted Replacement, RAR
Eventually the cache is full. When a request for a document
not in the cache is received or a decision of pre-fetching a
document is made, the documents least likely to be requested
next should be removed from the cache to free the necessary
space. RAR decides the document to be sacrificed. Similarly
to RAP, it uses the rules Dk → Dj where Dk is an active
document and Dj is in the cache. However, it sacrifices the
document(s) Dj for which there is no rule or such that the rule
has the lowest confidence.

2.4 Simulation Results
Using three independent workloads (access-logs): NASA,
ClarkNet [2] and SF100 [5] we compare our strategy with the
most competitive replacement and pre-fetching strategies
available. Our Rule-Assisted Replacement strategy, RAR, was
compared, among others, to LRU, LRU-MIN [9], LFU-MIN
[5], and OPT (theoretical optimal strategy) In the simulation,
our strategy dominates all practical strategies and is near-

optimal in terms of hit-rate (Figure 1). RAP was compared to
STATIC [7], and other strategies leveraging the hyper-link
structure of the hypertext (called Hyper-Link-Random, HLR,
and Hype-Link-All, HLA) (Figure 2). Again our strategy
performs best.

3. P-Jigsaw
Jigsaw is W3C's Web server platform. The Jigsaw Web server
[6] implements full HTTP/1.1. Jigsaw is open-source and its
architecture is modular. It is implemented in Java. Its design is
object-oriented making the system easily extensible. P-Jigsaw
implements RAC as an extension of Jigsaw.

3.1 Cache Management in Jigsaw and P-
Jigsaw
The cache replacement policy of the Jigsaw Web server is
Least Recently Used. The cache management is also
controlled by three parameters: the maximum authorized size
for files to be stored in the cache, the maximum number of
files kept in the cache, the maximum retention time for a
given file. The administrator sets these parameters using
Jigsaw’s administration interfaces. In P-Jigsaw both the
replacement policy and the pre-fetching policy are based on
the rule-assisted framework we are proposing. In P-Jigsaw the
cache management is therefore controlled not only by the
three parameters available to the Jigsaw administrator but also
by several other parameters defining the rule mining, pre-
fetching, and replacement strategies. For example, there are
parameters to control the maximum number of documents that
can be pre-fetched or the support threshold of the rules. The
administrator can set these parameters using P-Jigsaw’s
administration interfaces. For instance, Figure 3 is a screen
shot of the interface for the stetting of the rule mining
parameters: minimum support, minimum confidence, etc.

3.2 P-Jigsaw Implementation
P-Jigsaw is an extension of Jigsaw 2.0. It is relatively easy for
programmers to add new features to the Jigsaw server. The
management of resources, such as files, directories, request, or
the cache can be adapted by writing the corresponding
resource object class. In the Jigsaw terminology, resources
have frames and filters implementing their interaction with
other resources. We have modified the cache filters to
implement the pre-fetching and replacement policies. The
rule- mining module is an additional resource. The
administrator interface was also extended to allow the setting
of the mining, pre-fetching and caching parameters.

3.3 Performance Evaluation
For the evaluation of the performance of the P-Jigsaw
implementation, we use the SF100 workload for which we
have both the access-log and the hypertext documents. We
compare RAC as implemented in P-Jigsaw with Jigsaw both
without a cache and with its replacement policy LRU. The
results on Figure 4 show that RAC yields a 30% improvement
of the average response time of the Web-server compared to
LRU, consistently with the simulation.

4. Conclusion
The P-Jigsaw prototype can be downloaded from
http://www.comp.nus.edu.sg/~icom/P-JIGSAW.

5. REFERENCES
[1] C. Aggarwal, J. L. Wolf and P. Yu. Caching on the

World Wide Web. TKDE,11(1):94-107,99

[2] M. Arlitt. A Performance Study of Internet Web Servers.
Master’s Thesis, Uni. of Saskatchewan, Canada, 96

[3] A. Bestavros. Using speculation to server load and
service time on the WWW. In CIKM, 95

[4] R. Cooley, B. Mobasher and J. Srivastava. Web mining:
Information and pattern discovery on the World Wide
Web. In Proc.of the 9th IEEE Conf. On Tools with AI, 97.

[5] B. Lan, S. Bressan, B. C. Ooi and K. Tan . Rule-assisted
prefetching in Web-server caching. In CIKM, 00

[6] Jigsaw-W3C’s Web server. http://www.w3.org/Jigsaw/.

[7] I. Tatarinov, A. Rousskov, V. Soloviev. Static Caching
in Web servers. In IC3N, 97

[8] J. Wang. A survey of Web caching schemes for the
Internet. ACM SIGCOMM Computer:Communication
Review,29(5), 99

[9] S. Williams, M. Abrams, et al. Removal Policies in
Network Caches for World-Wide-Web Documents.
In Proc. of ACM SIGCOMM, 96.

Figure 3.

0

0.1

0.2

0.3

0.4

0.5

0.6

LRU LRU-M LRU-2 LFU-M RAR OPT

H
it

R
at

e

Figure 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

HLR HLA STATIC RAP

H
it

R
at

e

Figure 2

0

5

10

15

20

25

Without Cache LRU RAC

Ti
m

e(
S

ec
on

d)

Figure 4

