
WebGuard: A System for Web Content Protection

M. Mourad†, J. Munson†, T. Nadeem‡, G. Pacifici†, M. Pistoia†, A. Youssef†
†IBM T.J. Watson Research Center ‡University of Maryland at College Park

{magdam, jpmunson, giovanni, pistoia, ayoussef}@us.ibm.com

ABSTRACT
In this paper, we present WebGuard, a content protection
system for Web documents. WebGuard allows content owners
to exercise control over usage conditions governing access to
their content. We first introduce the concept of transparent
digital rights management, and then show how WebGuard
realizes it, using existing Web browsers.

1. INTRODUCTION
With the advent of digital distribution and the many
mechanisms available for it on the Internet, it is now possible
for a single person to make a perfect copy of a digital content
and distribute it to millions of others. While in most cases
content owners welcome this widespread distribution, in some
cases the content owners may wish to enforce some control over
the distribution and access to high-value digital content. High-
value digital content can be commercially valuable content (e.g.
course material, artwork) or personal and confidential property
(e.g. medical records).

Digital Rights Management (DRM) technology allows content
owners—such as publishers, artists and instructors— to
distribute high-value digital content with the confidence that the
terms and conditions they set for the use of their content will be
respected. For example, the content owners may wish to specify
terms and conditions that prevent the digital content from being
copied or disable the content after it has been accessed a certain
number of times.

These benefits of DRM technology have been available for
some time in the specific industries of music and e-books, and
there are several systems currently available on the market
[1][2][3][4][6]. However, for general multimedia Web
content—HTML, GIF and JPEG images, animations, audio—
DRM technology has been less successful.

The reason for this, to a large measure, lies in the current state
of the art of the DRM technology and the specific requirements
it imposes on the end-user. Typically a DRM system works by
encrypting the content and providing a program capable of
playing (or displaying) the content to the user. This player
ensures that the user does not make unauthorized use of the
digital content. This, however, restricts the number of players
available and requires users to obtain a separate player for each
protection system. This approach is particularly problematic in
the case of Web content. On the one hand, users are not willing
to use a different browser to access protected content, especially
if the user has to use a different web browser to access content
protected by different DRM systems. On the other hand, the
DRM developers would be burdened by the need of providing
and maintaining a fully featured web browser, making the DRM
solution cost effective only for large scale distributions and
commercially viable content.

In this paper we present WebGuard, a content protection system
that allows users to access protected content using existing web
browsers and plug-ins. Our solution centers around three major
components: an application certification process, a DRM-
enabled http protocol handler, and an application-independent
user-interface control module. We show that using these three
components a complete end-to-end content protection system
can be achieved. We have built a prototype of WebGuard using
the Internet Explorer Browser and the Microsoft protocol
handler technology.

2. WEBGUARD COMPONENTS
By “transparent DRM,” we mean that DRM functions are
provided to an application without requiring it to be specially
DRM-enabled. Our approach has three main elements: (1)
browser code verification, (2) a trusted content handler, and (3)
UI control through event blocking. These are shown in Figure 1.

The trusted content handler is a protocol subsystem responsible
for retrieving and decrypting the content according to the terms
and conditions set by the content owner. The browser code
verification mechanism ensures that the decrypted content is
delivered to a known (and trusted) application, e.g. a known
version of the Microsoft Internet Explorer browser. The UI
control subsystem prevents users from performing actions that
are not allowed by the usage terms (e.g., print, save as, etc.)

2.1. Browser Code Verification
Our approach uses a three-step process of establishing the trust
of an application at call-time: (1) the application goes through
an off-line certification process that generates a trust certificate
containing the digital signature of the application, (2) this
signature is checked against the signature of the executable
image of the application at run time, and (3) this validation is
remembered and checked by the Trusted Content Handler
(TCH) upon each request the application makes for content.

Web
Browser

Acquisition Usage
Rights

Access
Content

Client

Trusted
Content
Handler

Ap
pl

ic
at

io
n

ve
rif

ic
at

io
n

sy
st

em

Usage
Rights,
Keys

ContentTrust
Certificates

Verify
Integrity

UI
Control
Module

Tamper-resistant environment

Figure 1. The WebGuard content protection system.

We have developed two variations of the run time verification
process: one that verifies the application at launch time, and
another that verifies the application at content-request time. We
describe only the former below; please see [5] for a description
of the latter.

The Verifying Launcher (VL) is responsible for verifying at
launch time that the viewer application is certified as a trusted
application for safely handling protected content entrusted to it.
As mentioned above, each trusted viewer must undergo an
offline certification process, which results in a trust certificate
that includes the signed digest(s) of the application code
modules. Before launching the viewer, VL verifies the integrity
of the code. If the code installed on the client host is identical to
the one certified, it is safe to handle the content. VL then
instructs the operating system to load the application from the
verified code files. By virtue of its role as the application
launcher, VL obtains OS-specific information, such as the
process ID or the process creation date, which uniquely
identifies the loaded application instance within the system. VL
uses this information to compute a stamp that still uniquely
identifies the application instance but is hard to guess or forge.
The stamp is computed using a hashing function, which is
known to TCH as well. The algorithm used by the hashing
function must be deterministic (always generating the same
result given the same input, for reasons described later. One
such algorithm may be a common encryption algorithm using a
predetermined key.

When an application makes a call on the Trusted Content
Handler (TCH) to access a protected resource, the TCH first
verifies that the application was launched and verified by the
VL. It does this by computing the stamp for the application
using the same uniquely identifying information and scrambling
information that the VL did, and then contacting the VL for
comparison. If the TCH-computed stamp and the VL-computed
stamp are the same, then the TCH was called by the same
application instance that the VL verified and launched. The
TCH may then cache its stamp so that no further
communication with the VL is necessary, for this session with
the application. The TCH and the VL communicate through a
secure connection.

2.2. Trusted Content Handler
WebGuard use Internet Explorer’s protocol handler extension
mechanism to implement a trusted content handler. URLs for
WebGuard-protected content use the protocol names rmfile
(for local content) and rmhttp (for remote content). When the
browser receives URLs with these method names, the
WebGuard Trusted Content Handler is invoked. The TCH
invokes the necessary DRM functions, decrypts the content, and
passes it back to the browser.

The interface that the DRMC offers to the IE protocol handler is
similar to a file system interface in following an “open-read-
close” pattern. The content identifier received from the protocol
handler is a URL with a hierarchical path name identifying the
content item. From this path name we identify the name of the
package the item belongs to. Given the package name, we can
locate the set of rights associated with the package.

The WebGuard rights specification mechanism allows content
publishers to specify rights at an arbitrarily fine level of
granularity. This is important for protected packages that
contain large numbers of individual content items—e.g.,
courseware, photography collections, literature anthologies, to
which publishers may wish to allow different levels of access.
For example, they may wish to offer the first section of a course
at no charge, but require users to purchase access to the

remaining sections. The rights specification mechanism we
developed for WebGuard allows fine-grained specification, but
is space-efficient and has a rights-lookup time of O(lg n).

2.3. User interface control module
An application handling protected content must prevent the user
from invoking unauthorized operations on the content. To
provide this function for an application in a transparent manner
proved to be one of the more challenging tasks in the project.
We developed a mechanism that allows us to control the user-
interface operations of Microsoft Windows™-based
applications. We rely on the event-handler structure of
Windows programs and the ability of other program modules to
register themselves as listeners of the events and to receive
them before the application does. In this way, if the received
event represents an operation that should be blocked, according
to the rights in effect for the subject content, the application can
be prevented from receiving the event.

WebGuard’s User Interface Control Module (UICM) operates
on an application-specific event-to-action map, which tells it
which application events represent which controllable actions
(such as Print, Save, and Copy). This map is generated through
a manual process of inspecting the execution of an application
using a tool such as Microsoft Spy++ to determine which events
are generated by certain user actions, and which windows they
occur in. The information yielded by the inspection is used to
create the event-to-action map.

Because users may acquire different sets of rights to content,
the policy of the UICM is dynamic. Upon each request for
content, the DRMC sets the control policy of the UICM. If, for
example, the rights to a particular web page included
“View:Yes, Print:No,” the DRMC would return the content to
the protocol handler but would set the UICM’s control policy
such that if the user chose the “Print…” command from the
application’s menu, a dialog box would pop up and inform the
user that they had not acquire the “Print” right.

Using the same method of window subclassing that we have
described here, an intruder could attempt to disable our security
model by re-subclassing the windows which we had already
subclassed. This way, the intruding program could intercept the
window messages before our UICM receives them. Then the
intruder could pass these messages to the original handler. In
order to prevent this, we detect any such additional subclassing
and terminate the application immediately.

3. CONCLUSIONS
We have presented WebGuard, a system that provides digital
rights management to off-the-shelf Web browsers and browser
plug-ins. WebGuard pioneers the concept of transparent DRM,
and we are currently developing techniques to extend
transparency to general applications, beyond Web browsers.

REFERENCES
[1] ContentGuard, http://www.contentguard.com.
[2] IBM’s Electronic Media Management System,

http://www.ibm.com/software/emms.
[3] Intertrust’s Metatrust system, http://www.intertrust.com.
[4] Microsoft’s Windows Media Rights Manager,

http://www.microsoft.com/windows/windowsmedia/en/
wm7/drm.asp.

[5] M. Mourad, J. Munson, T. Nadeem, G. Pacifici, M.
Pistoia, A. Youssef, WebGuard: a system for web content
protection, IBM Research Report RC21944.

[6] WebBuy, http://www.adobe.com/products/acrobat/
webbuy/main.html.

	ABSTRACT
	INTRODUCTION
	WebGuard COMPONENTS
	Browser Code Verification
	Trusted Content Handler
	User interface control module

	CONCLUSIONS
	REFERENCES

