
Querying XML data : the DQL language

Emmanuel Bruno
Laboratoire SIS

Université de Toulon et due Var
BP 132, 83 957 La Garde, France

04 94 14 22 20

bruno@univ-tln.fr

Jacques Le Maitre

Laboratoire SIS
Université de Toulon et due Var

BP 132, 83 957 La Garde, France
04 94 14 20 06

lemaitre@univ-tln.fr

Elisabeth Murisasco

Laboratoire SIS
Université de Toulon et due Var

BP 132, 83 957 La Garde, France
04 94 14 26 21

murisasco@univ-tln.fr

ABSTRACT
This poster describes the DQL language : a new XML data
manipulation language. DQL is an extension of OQL for the
manipulation of tree-like and forest-li ke data. It integrates
XPath location paths and provides us with the classical SQL
operators and some specific tree transformation operators. The
first version of DQL has been implemented in Java using the
DOM and the SAX API’ s.

Keywords
Semi-structured data, XML, XPath, Query language.

1. INTRODUCTION
XML can serve as a simple exchange format, or as a data model.
In both cases, we need to have a manipulation language at our
disposal. Developing such languages is a hard task, due to the
complexity of the structures which are involved (e.g. trees and
graphs) and the impossibilit y of relying on a schema. Over the
past years, numerous data manipulation languages have been
developed for SGML, HTML, XML or semi-structured data
([1], [2], [3], [4], [5], [6], [7]). Recently, a W3C working group
has started to specify a new XML data query language : the
Xquery language [9]. XQuery is derived from Quilt [2], which
in turn borrowed features from several other languages cited
above. Despite their intrinsic qualiti es, none of the above
languages has been unanimously accepted, since none of them
has been recommended by the W3C.

In this poster, we propose a new XML data manipulation
language: the DQL language which is an extension of OQL for
the manipulation of tree-like and forest-li ke data. DQL
integrates Xpath location paths [8] and provides us with the
classical SQL operators (select…from…where, group…by, sort,
etc) and some specific tree transformation operators which give
to DQL the power of XSLT[10].

2. DQL OVERVIEW
DQL works with two types of value: trees and forests. The type
of a tree can be text, number, boolean, attribute or element. A
forest consists of a li st of trees. A query is a functional
expression which is composed of predefined operators and user-
defined functions. DQL includes four kinds of operators :

1. extraction of fragments from documents. The
location of each fragment is defined with an
Xpath expression,

2. construction of elements,

3. select…from…where, group…by and sort…by
operators,

4. transformation of document fragments by adding
or removing sub-components.

Moreover, it is possible to define local and global variables.
The use of XPath to extract fragments from documents and the
transformation operators are the two original features of DQL.
We give examples of DQL queries which are evaluated on the
document of figure 1, which is bound to the $mybib variable.

Figure 1 : A well-formed XML document

(Q1) Catalogue of book titles.

<catalog count = count($MyBib//book)>$MyBib//book/title</>

(Q2) Name and first name of authors that have published more
than one book in year 2000.

select [$a//last/*, $a//first/*]
from $a in distinct($mybib//book[@year = 2000]/author)
where count($mybib//book[author = $a]) > 1

(Q3) Title of books having an author with the name set after
the firstname.

select $b/title
from $b in $mybib//book[author/last/preceding-sibling::first]

The predicate last/preceding-sibling::first is true if a first
element precedes a last element and if both are siblings. This
kind of query is useful to detect irregularities in XML
documents when they are not valid.

(Q4) Concatenation of the name with the firstname of each
author or editor.

replace //name as $n by <name>[$n/last/*, " ", $n/first/*]</>
from $mybib

<bib>
 <book year="1992">
 <title>Advanced Programming in the Unix environment</title>
 <author><last>Stevens</last><first>W.</first></author>
 <publisher>Addison-Wesley</publisher><price>65.95</price>
 </book>
 <book year="2000">
 <title>Data on the Web</title>
 <author><last>Abiteboul</last><first>Serge</first></author>
 <author><last>Buneman</last><first>Peter</first></author>
 <author><last>Suciu</last><first>Dan</first></author>
 <publisher>Morgan Kaufmann Publishers</publisher>
 <price>39.95</price>
 </book>
 <book year="1999">
 <title>The Economics of Tech. and Content for Digital TV</title>
 <editor><last>Gerbarg</last><first>Darcy</first>
 <aff iliation>CITI</aff iliation></editor>
 <publisher>Kluwer Academic Publishers</publisher>
 <price>129.95</price>
 </book>
</bib>

Without the replace operator, this query would need a complete
reconstruction for each book. This would be a complex solution
when books have irregular structures.

(Q5) Removing editor aff ili ations.

remove //aff ili ation from $mybib

(Q6) Transformation of the “year” attribute into a year element.

replace //book as $b
by <book> <year>$b/@year</> content($b) </>
from $mybib

(Q7) Simultaneous transformations (Q4 + Q5 + Q6).

replace
 //name as $n by <name>[$n/first, $n/last]</>
 //aff ili ation by void
 //book as $b by <book><year>$b/@year</> content($b)</>
from $mybib

(Q8) Statistics.

let $bks_MK = $mybib//book[publisher="Morgan Kaufmann"]
in <stat count=count($bks_MK)
 average_price = avg($bks_MK//price) />

3. RELATED WORKS
Over the past years, numerous query languages for semi-
structured or XML data have been proposed. Four of these
languages have emerged : Lorel [1] ; XML-QL [5] ; YATL [4]
and XQuery [9]. They are very complete and powerful. They
have a functional semantics and they use tree or path pattern-
matching to locate fragments from documents. In this poster, we
compare DQL with these languages, highlighting its originality.

We consider, for this comparison, the following features : (1)
the select…from…where operator, (2) the pattern-matching of
fragments of documents, (3) the preservation of reading order
and (4) the transformation operators.

1. Lorel and DQL have the select…from…where
operator including path patterns in the from
clause. The other three languages propose a
specific construct which has nevertheless a
similar semantics. In XML-QL, it is the
where…construct operator; in XQuery, it is the
for…let…where…return operator; in YATL, it is
the make…match…where operator. The reason
why they adopt a specific syntax is not very
obvious. We think that it is better to respect the
syntax of operators imported from SQL or OQL;
many programmers are famili ar with it.

2. XML-QL and YATL use tree patterns. XML-QL
expresses them with the same syntax as XML
elements. Moreover, XML-QL enables regular
expressions in order to constrain the nesting of
matched subtrees. Lorel uses path patterns,
issued from the POQL language [3]. These
patterns are first class citizen’s. Therefore it is
possible to compare paths or to associate some
constrains with them. However it is not very easy
to express sibling relations. XQuery and DQL
use XPath locations paths. While DQL
implements them in their whole, XQuery
implements only a subset of them. In particular,
sibling relations, in XQuery, are expressed by
two operators borrowed from XQL : before and

after when preceding-sibling and following-
sibling are axis of XPath.

3. Document querying is not only based on
structural hierarchy but also on the reading order
of elements. XQuery, YATL and DQL preserve
reading order while Lorel and XML-QL do not
preserve it (even if they propose an ad-hoc
mechanism).

4. As far as we know, transformation operators like
DQL replace or remove are not included in Lorel,
XML-QL, YATL or XQuery. Consequently, for
any transformation, the user has to explicitl y
define the structure of the result document and
he needs to have a complete knowledge of the
source structure. We think that these operators
are one of the originaliti es and strength of DQL.

4. CONCLUSION
DQL is a SQL-like functional language which integrates (1)
Xpath location paths, (2) traditional SQL operators and (3)
powerful tree transformation operator. The first version of DQL
has been implemented in Java using the DOM and the SAX
API’ s. In the future, we will focus on the two following points :
(i) making DQL fully compliant with XML query requirements
[8] and (ii) working on the query optimisation issue.

5. REFERENCES
[1] Abiteboul, S, Quass, D, McHugh J., Widow, A., Wiener J.

(1997). The Lorel query language for semi-structured data.
In Int. Journal on Digital Libraries, 1(1),pp. 68-88.

[2] D. Chamberlin, J. Robie, D. Florescu, Quiult : An XML
query language for heterogenous Data sources, WebDB
(Informal Proceedings) 2000, pp 53-62.

[3] V. Christophides, S. Abiteboul, S. Cluet, M. Scholl , “From
structured Documents to Novel Query Faciliti es” , in Proc.
of SIGMOD ' 94, Minneapolis, US, 1994, pp. 313-324.

[4] S. Cluet, C. Delobel, J. Siméon and K. Smaga, Your
Mediators Need Data Conversion!, ACM SIGMOD' 98
International Conference on Management of Data, Seattle,
Washington, June 1998.

[5] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu:
XML-QL: A Query Language for XML. Proc. of the
Eighth Int. World Wide Web Conference (WWW' 8),
Toronto, Canada, 1999.

[6] J. Le Maitre, E. Murisasco, M. Rolbert, "SgmlQL, un
langage d’ interrogation de documents SGML ", Actes des
Xièmes journées Bases de Données avancées (BDA ' 95),
Nancy, 1995, pp. 431-446.

[7] J. Robie, J. Lapp, D. Schach, XML query language (XQL).
Online : http://www.w3.org/TandS/QL/QL98/xql.html

[8] XPath XML Path Language (1999), W3C Rec.
http://www.w3.org/TR/XPath

[9] XQuery, a Query language for XML (2001), W3C WD.
http://www.w3.org/TR/xquery

[10] XSL Transformations (1999), W3C Rec.
http://www.w3.org/TR/XSL

