Querying XML data : the DQL language

Emmanuel Bruno
Laboratoire SIS
Université de Toulon et due Var
BP 132, 83 957 La Garde, France
0494 14 22 20

bruno@univ-tin.fr

ABSTRACT

This poster describes the DQL language : a new XML data
manipulation language. DQL is an extension d OQL for the
manipulation o treelike and forest-like data It integrates
XPath locaion paths and provides us with the dasscd SQL
operators and some spedfic tree transformation operators. The
first version of DQL has been implemented in Java using the
DOM andthe SAX API's.

Keywords
Semi-structured data, XML, XPath, Query language.

1. INTRODUCTION

XML can serve @ asimple exchange format, or as a data model.
In bah cases, we need to have amanipulation language & our
disposal. Developing such languages is a hard task, due to the
complexity of the structures which are involved (e.g. trees and
graphs) and the imposshility of relying on a schema. Over the
past yeas, numerous data manipulation languages have been
developed for SGML, HTML, XML or semi-structured data
([11, [21, [3], [41, [5], [6], [7]). Recently, a W3C working group
has darted to spedfy a new XML data query language : the
Xquery language [9]. XQuery is derived from Quilt [2], which
in turn barowed feaures from several other languages cited
above. Despite their intrinsic qudlities, nore of the aove
languages has been urenimously accepted, since nore of them
has been recommended by the W3C.

In this poster, we propcse a new XML data manipulation
language: the DQL language which is an extension d OQL for
the manipulation o treelike and forest-like data. DQL
integrates Xpath locaion peths [8] and provides us with the
classcd SQL operators (seled...from...where, group...by, sort,
etc) and some specific treetransformation operators which give
to DQL the power of XSLT[10].

2. DQL OVERVIEW

DQL works with two types of value: trees and forests. The type
of atree ca be text, number, bodea, attribute or element. A
forest consists of a list of trees. A query is a functiona
expresson which is composed of predefined operators and user-
defined functions. DQL includes four kinds of operators:

1. extradion d fragments from documents. The
locdtion d ead fragment is defined with an
Xpath expresson,

2. construction d elements,

seled...from...where, group...by and sort...by
operators,

Jacques Le Maitre
Laboratoire SIS
Université de Toulon et due Var
BP 132, 83 957 La Garde, France
04 94 14 20 06

lemaitre@univ-tin.fr

Elisabeth Murisasco
Laboratoire SIS
Université de Toulon et due Var
BP 132, 83 957 La Garde, France
0494142621

murisasco@univ-tin.fr

4. transformation d document fragments by adding
or removing sub-comporents.

Moreover, it is posdsble to define locd and global variables.
The use of XPath to extrad fragments from documents and the
transformation operators are the two origina feaures of DQL.
We give examples of DQL queries which are evaluated onthe
document of figure 1, which is boundto the $mybib variable.

<bib>

<book year="1992'>
<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<puhlisher>Addison-Wesley</pubisher><price>65.95</price>

</book>

<book year="2000">
<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<pubisher>Morgan Kaufmann Publishers</pulisher>
<price>39.95</price>

</book>

<book year="1999'>
<title>The Economics of Tech. and Content for Digital TV </title>
<editor><last>Gerbarg</last><first>Darcy</first>

<affiliation>CITI</affiliation></editor>

<pulbisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book>

</bib>

Figurel: A well-formed XML document
(Q1) Catalogue of bodk titles.
<caalog count = court($MyBib//bodk)>$MyBib//bodk/titl e</>
(Q2) Name and first name of authors that have pubdished more
than ore bodk in yea 200Q

seled [$alflast/*, Sallfirst/*]
from $ain dstinct($mybib//bodk] @yea = 200 /author)
where ournt($mybib//bodk[author = $a]) > 1

(Q3) Title of bodks having an author with the name set after
the firstname.

seled $bititle

from $bin $mybib//bod[author/last/preceding-sibling::first]
The predicae last/precading-sibling::first is true if a first
element precedes a last element and if both are siblings. This
kind o query is useful to deted irregularities in XML
documents when they are not valid.

(Q4) Concaenation d the name with the firstname of eah
author or editor.

replace//name & $n by <name>[$n/last/*, " ", $r/first/*]</>
from  $mybib



Withou the replaceoperator, this query would need a complete
reconstruction for ead bodk. Thiswould be acomplex solution
when bodks have irregular structures.

(Q5) Removing editor affili ations.
remove //&ffili ation from $mybib
(Q6) Transformation d the “yea” attribute into ayea element.

replace//bodk as $b
by <bodk> <yea>$h/@yea</> content($b) </>
from $mybib

(Q7) Simultaneous transformations (Q4 + Q5 + Q6).

replace

/Iname & $n by <name>{$n/first, $rvlast]</>

[[effili ation by void

//Ibodk as $b by <bodk><yea>$h/@yea</> content($h)</>
from $mybib

(Q8) Statistics.

let $bks MK = $mybib//bodk[pubisher="Morgan Kaufmann']
in <stat court=court($bks_MK)
average_price = ag($bks_MK//price) />

3. RELATED WORKS

Over the past yeas, numerous query languages for semi-
structured or XML data have been proposed. Four of these
languages have emerged : Lorel [1] ; XML-QL [5] ; YATL [4]
and XQuery [9]. They are very complete and paverful. They
have afunctional semantics and they use tree or path pattern-
matching to locae fragments from documents. In this poster, we
compare DQL with these languages, highlighting its originality.

We @nsider, for this comparison, the following feaures : (1)
the seled...from...where operator, (2) the pattern-matching of
fragments of documents, (3) the preservation d realing order
and (4) the transformation operators.

1. Lorel and DQL have the sdled...from...where
operator including path patterns in the from
clause. The other three languages propcse a
spedfic oonstruct which has nevertheless a
similar semantics. In XML-QL, it is the
where...construct operator; in XQuery, it is the
for...let...where...return operator; in YATL, it is
the make...match...where operator. The reason
why they adopt a spedfic syntax is nat very
obvious. We think that it is better to resped the
syntax of operators imported from SQL or OQL;
many programmers are famili ar with it.

2. XML-QL and YATL use treepatterns. XML-QL
expresses them with the same syntax as XML
elements. Moreover, XML-QL enables regular
expressons in order to constrain the nesting of
matched subtrees. Lorel uses path patterns,
issied from the POQL language [3]. These
patterns are first class citizen's. Therefore it is
possble to compare paths or to associate some
constrains with them. However it isnot very easy
to express sbling relations. XQuery and DQL
use XPath locaions paths. While DQL
implements them in their whoe, XQuery
implements only a subset of them. In particular,
sibling relations, in XQuery, are epressd by
two operators borrowed from XQL : before and

after when precaling-sibling and following-
sibling are ais of XPath.

3. Document querying is not only based on
structural hierarchy but also onthe reading order
of elements. XQuery, YATL and DQL preserve
reading order while Lorel and XML-QL do nd
preserve it (even if they propose an ad-hoc
medhanism).

4. Asfar aswe know, transformation operators like
DQL replaceor remove ae not included in Lorel,
XML-QL, YATL or XQuery. Consequently, for
any transformation, the user has to explicitly
define the structure of the result document and
he neals to have acomplete knowledge of the
source structure. We think that these operators
are one of the originaliti es and strength of DQL.

4. CONCLUSION

DQL is a SQL-like functional language which integrates (1)
Xpath locaion peths, (2) traditiona SQL operators and (3)
powerful treetransformation operator. The first version o DQL
has been implemented in Java using the DOM and the SAX
API's. In the future, we will focus on the two foll owing points :
(i) making DQL fully compliant with XML query requirements
[8] and (ii) working onthe query optimisationisale.

5. REFERENCES

[1] Abitebod, S, Quass D, McHugh J., Widow, A., Wiener J.
(1997. The Lorel query language for semi-structured data.
In Int. Journal on Digita Libraries, 1(1),pp. 68-88.

[2] D.Chamberlin, J. Robig, D. Florescu, Quiult : An XML
query language for heterogenous Data sources, WebDB
(Informal Proceadings) 2000 pp 5362

[3] V. Christophides, S. Abitebou, S. Cluet, M. Schall, “From
structured Documents to Novel Query Fadliti es’, in Proc.
of SSGMOD" 94, Minnegpadlis, S, 1994 pp. 313-324

[4] S. Cluet, C. Delobel, J. Siméon and K. Smaga, Y our
Mediators Need Data Cornversion!, ACM SIGMOD' 98
International Conference on Management of Data, Sedtle,
Washington, June 1998

[5] A. Deutsch, M. Fernandez D. Florescu, A. Levy, D. Suciu:
XML-QL: A Query Language for XML. Proc. of the
Eighth Int. World Wide Web Conference (WWW' 8),
Toronto, Canada, 1999

[6] J. LeMaitre, E. Murisasco, M. Rolbert, "SgmlQL, un
langage d’interrogation de documents SGML ", Actes des
Xiémes journées Bases de Donrées avancées (BDA ' 95),
Nancy, 1995 pp. 431-446.

[7] J. Robie, J. Lapp, D. Schadch, XML query language (XQL).
Online: http://www.w3.0rg/TandS/QL/QL 98/xql.html

[8] XPath XML Path Language (1999, W3C Rec
http://www.w3.0rg/ TR/X Path

[9] XQuery, aQuery language for XML (2001), W3C WD.
http://mww.w3.org/TR/xquery

[10] XSL Transformations (1999, W3C Rec
http://Amww.w3.0rg/ TR/X SL



