XStorM: A Scalable Storage Mapping Scheme for XML Data
(Extended Abstract)

Wen Qiang Wang Mong Li Lee

Beng Chin Ooi Kian-LeeTan

Department of Computer Science, National University of Singapore
{wangwq, leaml, ooibc, tankl} @comp.nus.edu.sg

1. INTRODUCTION

As XML bemmes pervasive, many information sources are
beginning to structure their externa view as a repository of
XML data, regardlessof their internal storage mechanisms. One
highly anticipated applicaion d XML is that XML will turn
the Web into a database system, thereby making it possble to
pose SQL-like queries and get better results than from today's
Web seach engines.

The arrent trend is to leverage the robust and widespread
techndogy by using a relational database system. Relationa
stores are gred at providing multiple distinct logicd views on
the same data with very good scding and transadiona
charaderistics. Even then, there ae many different ways to
store XML data. Orade 8i lets the user or system administrator
dedde how XML elements are stored in relationd tables. [3]
infers from the DTDs of the XML document how the XML
elements oud be mapped into tables. STORED [1] anayzes
the XML data and expeded query workload to oktain a set of
schemas. Any data that cannad be acommodated in these
schemas are stored in overflow graphs. This involves
integration o the relational storage with a semistructured
overflow, raising yet to be resolved system isaues. Furthermore,
if the data instance has a very irregular structure, then the
schema extraded may not cover a large percentage of the data.
A lot of overflow graphs will be generated leading to
performance degradation. [2] takes the graph representation o
an XML document and studies various shemes to map the
edges and noas into relational tables. However, these schemes
perform poarly for complex queriesinvolving joins.

In this paper, we aldress the @ove-mentioned drawbads of
mapping XML data to relational tables. We propose amapping
scheme, XStorM, to store XML data in relational databases.
Our scheme @nsiders the unique irregular feaures of XML,
including missng elements or multi ple occurrences of the same
element, and elements which may have aomic values in some
dataitems and structured values in others.

2. THE XStorM MAPPING SCHEME

In this ®dion, we describe XStorM, a novel mapping scheme
for storing XML data into relationa database. The scheme
comprises 3 phases as detail ed in the foll owing subsedions.

2.1 Object Identification

In XStorM, we represent the XML document using DOM [4].
We observe that element nodes in DOM can be differentiated
into ojed nodes and attribute nodes. The goal of this phase is
to find al the XML objeds in an XML data instance For
example, if we have an XML data instance @ntaining 1000
articles, then we nedl to identify al nodes that represent the
objed article. However, to automaticdly identify nodes that
represent a spedfic objed is a daunting task espedally if we
know nothing about the XML instance

We propcse a threestep approach. First, we determine the
number of paths correspondng to a prefix. We shall refer to this
as the support of the path prefix. Next we identify the minimal
path prefix which is the shortest path prefix whose suppat is
greaer than o equal to a cetain predetermined threshold.
Finally, the node a the lowest level of the minimal path prefix
is the target objed that we ae looking for. It turns out that this
scheme can be implemented efficiently using the well-known
breadth first seach (BFS) agorithm. Note that chocsing an
appropriate minimal suppat vaue is crucia as it may lea to
different objeds being identified.

2.2 Frequent Tree Patterns|dentification
Given the "schema-less' semi-structured XML data, it is
impossble to find a general schemathat covers the whole XML
data instance [3] shows that generating a storage schema for
semistructured data which minimizes cost is NP-hard in the size
of the inpu data. Our approach is to use a data-mining
algorithm to identify frequent tree patterns in the XML graph.
This enables us to generate a schema that covers a major
portion d the data. Our aim is to incorporate & much small
atribute wlledions in an oljed's core relational table &
possble to minimize the number of overflow tables. Query
performance is improved when excessve fragmentation is
avoided, reducing joins. We adapt the data-mining algorithm
for semistructured data described in [4]. We shall first explain
some @ncepts.

A tree-expression is a treelike structure for representing
patterns in the DOM graph. A k-tree-expression is a tree
expresson containing k led nodes. A node N in the DOM
graph supports a treeexpresgon TE if and orly if we can find
TE in the sub-treerooted at N. The support of a tree-expression
TE is defined as the number of nodes that suppat TE.

We observe that ak-tree expresson, k=1, can be wnstructed by
"gluing" a sequence of k 1-tree expressons that are not prefixes
of eat ather. A 1-tree expressonisacualy asimple path from
aroot noce to a led node. Note that if the sequence of the 1-
tree expresson is different, then a different k-tree expresson is
constructed.

Let p; denote 1-treeexpresson, i 21. Then a k-treeexpresson
<p1, P2, ---» P> 1S constructed from two (k-1)-treeexpressons
<P P2s - Pr2s P>and <py, P2, .h Pre2s P>. We cdl these
two (k-1)-treeexpresgons amatching pair.



The aove k-tree expresson property is very useful asit prunes
our seach. We do nd nee to consider a k-tree expresson if it
has me "sub-tree-expresson” that is known to be infrequent.

In order to determine frequent k-treeexpresgons, we first use
the depth first seach agorithm to discover al the 1-tree
expressgons darting from the objed nodes foundin phese 1.
The suppat of these 1-tree-expressons are tradked. Frequent 1-
treeexpressons are used to generate 2-treeexpressons.
Frequent 2-treeexpressons are used to generate 3-tree
expresgons. The dgorithm will eventually generate frequent k-
treeexpressons for a given k. A large k shoud be used to find
aschemawith maximal data @wverage.

2.3 Generate Core and Overflow Tables

The frequent k-treeexpresson oliained in phase 2 creaes a
schemafor the XML data. Relation tables can naw be generated
fromit.

Root nodes in the k-treeexpressons represent objeds. Each
objed nocke n in the schemais mapped to a wre relational table
R. Led nodkesin the treerooted at n become dtributes of R. In
addition, R has an attribute that stores the objed identifiers. The
XML data can now be loaded into these relationdl tables. Nulls
are used for any missng data.

Since XML is smi-structured, not all the data can fit into the
coretables. In contrast to STORED which uses overflow graphs
in external devices, we store the extraneous data in overflow
tables in the relational database. Overflow table names are
given by ObjectName.collectionName. The overflow table
names embed the XML structural information which is
necessary for pattern matching queries and reconstruction o the
XML document. There is also an additional attribute, objectID,
in the overflow tables that contains the identifier of the objed to
which these overflow data belongs to.

3. DISCUSSION

We implemented XStorM, and evauated its performance
against the Binary approach in [2] and STORED [1]. We
conducted experiments on XML documents whose sizes range
from 1 MB to 100MB containing 1000to 10Q000 oljeds. We
aso run a large set of queries, ranging from simple ones that
retrieve objeds from a single table to complex ones that involve
multiple tables. Due to space onstraint, we shall summarize
our findings here. Readers are referred to [6] for details.

Theoreticdly, schemes which map XML data into relational
tables based on schematic information shoud work better than
just storing XML data in attribute tables. The most expensive
operation in query processng is the join operation and to
answer most queries, we neel information abou severa
atributes of an olbed. In the Binary scheme, if we want
information from severa attributes, we have to join the
correspondng attribute tables to form the query result. If the
atribute tables are large, then the join operation will be
expensive. On the other hand, storing XML data acording to
schema naot only saves disk space but aso reduces the number
of join operations needed to answer a query.

For example, let's consider the query to find oljeds with
atributes a; and a, with certain values. For Binary scheme, to
answer this query we nee to join two attribute tables table a
and table &. On the other hand, STORED and ou proposed
scheme, XStorM, only seach ore table for tuples that satisfy
the seledion condtion. Whilein most cases, seledion operation
is much faster than the join operation, there ae situations that
involve overflow data. Suppcse dtribute g is not included in
the schema of the table. In this case, we will nedl to join the
core table with the overflow table that stores & to get the
complete axswer. The st of this join operation is tolerable
becaise overflow tables are typicdly much smaller than the
coretable. In addition, storing overflow datain relational tables
have abetter query performance than storing overflow data in
locd disk. The reason is today’s RDBMS has very powerful
query optimizer which will find the optimal plan for most
queries. If we store overflow dataonlocd disk, we caana make
use of this conventional tool and have to find a way to
efficiently retrieve and updite them. Furthermore, if the size of
overflow datais too large to fit the main memory, then we have
to fetch them from hard disk, which is also a time mnsuming
process

When the XML data set is snall, such as1 MB, we observe that
thereis nat much significent differencein the running times for
the three schemes. However, when the data set increese, the
performance gain in XStorM bewmmes obvious. Among the
three schemes, XStorM gives the best performance for al the
gueries. The gain can be @ much as 10 times over the Binary
approad, and 4times over STORED.

4. REFERENCES

[1] A. Deutsch, M. Fernandez ad D. Suciu. Storing
Semistructured Data with STORED. Proc. ACM SSGMOD,
pp 431442 1999

[2] D. Forescu and D. Kosgman. Storing and Querying XML
Data using an RDBMS. Bulletin of IEEE Computer
Society Technical Committee on Data Engineering, 1999

[3] J Shanmugashundaram et a. Relationa database for
querying XML documents: Limitations and oppatunities.
Proc. VLDB, 1999

[4] K. Wang and H. Liu. Discovering typicd structures of
documents: a road map approach. In ACM SGIR
Conference on Research and Development in Information
Retrieval, 1998

[5] Document Objed¢ Model Level 1 Spedficaion.
http://www.w3.org/TR/REC-DOM-L evel-1.

[6] W.Q.Wang, M.L. Lee B.C. Ooi, K.L. Tan, “XStorM: A
Scdable Storage Mapping Scheme for XML Data”,
available & http://www.comp.nus.edu.sg/~wangwg.




