
XStorM: A Scalable Storage Mapping Scheme for XML Data
(Extended Abstract)

Wen Qiang Wang Mong Li Lee Beng Chin Ooi Kian-Lee Tan

Department of Computer Science, National University of Singapore
{ wangwq, leeml, ooibc, tankl} @comp.nus.edu.sg

1. INTRODUCTION
As XML becomes pervasive, many information sources are
beginning to structure their external view as a repository of
XML data, regardless of their internal storage mechanisms. One
highly anticipated application of XML is that XML will t urn
the Web into a database system, thereby making it possible to
pose SQL-like queries and get better results than from today's
Web search engines.

The current trend is to leverage the robust and widespread
technology by using a relational database system. Relational
stores are great at providing multiple distinct logical views on
the same data with very good scaling and transactional
characteristics. Even then, there are many different ways to
store XML data. Oracle 8i lets the user or system administrator
decide how XML elements are stored in relational tables. [3]
infers from the DTDs of the XML document how the XML
elements should be mapped into tables. STORED [1] analyzes
the XML data and expected query workload to obtain a set of
schemas. Any data that cannot be accommodated in these
schemas are stored in overflow graphs. This involves
integration of the relational storage with a semistructured
overflow, raising yet to be resolved system issues. Furthermore,
if the data instance has a very irregular structure, then the
schema extracted may not cover a large percentage of the data.
A lot of overflow graphs will be generated leading to
performance degradation. [2] takes the graph representation of
an XML document and studies various schemes to map the
edges and nodes into relational tables. However, these schemes
perform poorly for complex queries involving joins.

In this paper, we address the above-mentioned drawbacks of
mapping XML data to relational tables. We propose a mapping
scheme, XStorM, to store XML data in relational databases.
Our scheme considers the unique irregular features of XML,
including missing elements or multiple occurrences of the same
element, and elements which may have atomic values in some
data items and structured values in others.

2. THE XStorM MAPPING SCHEME
In this section, we describe XStorM, a novel mapping scheme
for storing XML data into relational database. The scheme
comprises 3 phases as detailed in the following subsections.

2.1 Object Identification
In XStorM, we represent the XML document using DOM [4].
We observe that element nodes in DOM can be differentiated
into object nodes and attribute nodes. The goal of this phase is
to find all the XML objects in an XML data instance. For
example, if we have an XML data instance containing 1000
articles, then we need to identify all nodes that represent the
object article. However, to automatically identify nodes that
represent a specific object is a daunting task especially if we
know nothing about the XML instance.

We propose a three-step approach. First, we determine the
number of paths corresponding to a prefix. We shall refer to this
as the support of the path prefix. Next we identify the minimal
path prefix which is the shortest path prefix whose support is
greater than or equal to a certain predetermined threshold.
Finally, the node at the lowest level of the minimal path prefix
is the target object that we are looking for. It turns out that this
scheme can be implemented eff iciently using the well -known
breadth first search (BFS) algorithm. Note that choosing an
appropriate minimal support value is crucial as it may lead to
different objects being identified.

2.2 Frequent Tree Patterns Identification
Given the "schema-less" semi-structured XML data, it is
impossible to find a general schema that covers the whole XML
data instance. [3] shows that generating a storage schema for
semistructured data which minimizes cost is NP-hard in the size
of the input data. Our approach is to use a data-mining
algorithm to identify frequent tree patterns in the XML graph.
This enables us to generate a schema that covers a major
portion of the data. Our aim is to incorporate as much small
attribute collections in an object's core relational table as
possible to minimize the number of overflow tables. Query
performance is improved when excessive fragmentation is
avoided, reducing joins. We adapt the data-mining algorithm
for semistructured data described in [4]. We shall first explain
some concepts.

A tree-expression is a tree-like structure for representing
patterns in the DOM graph. A k-tree-expression is a tree-
expression containing k leaf nodes. A node N in the DOM
graph supports a tree-expression TE if and only if we can find
TE in the sub-tree rooted at N. The support of a tree-expression
TE is defined as the number of nodes that support TE.

We observe that a k-tree expression, k≥1, can be constructed by
"gluing" a sequence of k 1-tree expressions that are not prefixes
of each other. A 1-tree expression is actually a simple path from
a root node to a leaf node. Note that if the sequence of the 1-
tree expression is different, then a different k-tree expression is
constructed.

Let pi denote 1-tree-expression, i ≥1. Then a k-tree-expression
<p1, p2, ..., pk> is constructed from two (k-1)-tree-expressions
<p1, p2, ..., pk-2, pk-1>and <p1, p2, ..., pk-2, pk>. We call these
two (k-1)-tree-expressions a matching pair.

The above k-tree expression property is very useful as it prunes
our search. We do not need to consider a k-tree expression if it
has some "sub-tree-expression" that is known to be infrequent.

In order to determine frequent k-tree-expressions, we first use
the depth first search algorithm to discover all the 1-tree-
expressions starting from the object nodes found in phase 1.
The support of these 1-tree-expressions are tracked. Frequent 1-
tree-expressions are used to generate 2-tree-expressions.
Frequent 2-tree-expressions are used to generate 3-tree-
expressions. The algorithm will eventually generate frequent k-
tree-expressions for a given k. A large k should be used to find
a schema with maximal data coverage.

2.3 Generate Core and Overflow Tables
The frequent k-tree-expression obtained in phase 2 creates a
schema for the XML data. Relation tables can now be generated
from it.

Root nodes in the k-tree-expressions represent objects. Each
object node n in the schema is mapped to a core relational table
R. Leaf nodes in the tree rooted at n become attributes of R. In
addition, R has an attribute that stores the object identifiers. The
XML data can now be loaded into these relational tables. Nulls
are used for any missing data.

Since XML is semi-structured, not all the data can fit into the
core tables. In contrast to STORED which uses overflow graphs
in external devices, we store the extraneous data in overflow
tables in the relational database. Overflow table names are
given by ObjectName.collectionName. The overflow table
names embed the XML structural information which is
necessary for pattern matching queries and reconstruction of the
XML document. There is also an additional attribute, objectID,
in the overflow tables that contains the identifier of the object to
which these overflow data belongs to.

3. DISCUSSION
We implemented XStorM, and evaluated its performance
against the Binary approach in [2] and STORED [1]. We
conducted experiments on XML documents whose sizes range
from 1 MB to 100 MB containing 1000 to 100,000 objects. We
also run a large set of queries, ranging from simple ones that
retrieve objects from a single table to complex ones that involve
multiple tables. Due to space constraint, we shall summarize
our findings here. Readers are referred to [6] for details.

Theoretically, schemes which map XML data into relational
tables based on schematic information should work better than
just storing XML data in attribute tables. The most expensive
operation in query processing is the join operation and to
answer most queries, we need information about several
attributes of an object. In the Binary scheme, if we want
information from several attributes, we have to join the
corresponding attribute tables to form the query result. If the
attribute tables are large, then the join operation will be
expensive. On the other hand, storing XML data according to
schema not only saves disk space, but also reduces the number
of join operations needed to answer a query.

For example, let’s consider the query to find objects with
attributes a1 and a2 with certain values. For Binary scheme, to
answer this query we need to join two attribute tables table a1
and table a2. On the other hand, STORED and our proposed
scheme, XStorM, only search one table for tuples that satisfy
the selection condition. While in most cases, selection operation
is much faster than the join operation, there are situations that
involve overflow data. Suppose attribute a2 is not included in
the schema of the table. In this case, we will need to join the
core table with the overflow table that stores a2 to get the
complete answer. The cost of this join operation is tolerable
because overflow tables are typically much smaller than the
core table. In addition, storing overflow data in relational tables
have a better query performance than storing overflow data in
local disk. The reason is today’s RDBMS has very powerful
query optimizer which will find the optimal plan for most
queries. If we store overflow data on local disk, we cannot make
use of this conventional tool and have to find a way to
eff iciently retrieve and update them. Furthermore, if the size of
overflow data is too large to fit the main memory, then we have
to fetch them from hard disk, which is also a time consuming
process.

When the XML data set is small , such as 1 MB, we observe that
there is not much significant difference in the running times for
the three schemes. However, when the data set increase, the
performance gain in XStorM becomes obvious. Among the
three schemes, XStorM gives the best performance for all the
queries. The gain can be as much as 10 times over the Binary
approach, and 4 times over STORED.

4. REFERENCES
[1] A. Deutsch, M. Fernandez and D. Suciu. Storing

Semistructured Data with STORED. Proc. ACM SIGMOD,
pp 431-442, 1999.

[2] D. Florescu and D. Kossman. Storing and Querying XML
Data using an RDBMS. Bulletin of IEEE Computer
Society Technical Committee on Data Engineering, 1999.

[3] J. Shanmugashundaram et al. Relational database for
querying XML documents: Limitations and opportunities.
Proc. VLDB, 1999.

[4] K. Wang and H. Liu. Discovering typical structures of
documents: a road map approach. In ACM SIGIR
Conference on Research and Development in Information
Retrieval, 1998.

[5] Document Object Model Level 1 Specification.
http://www.w3.org/TR/REC-DOM-Level-1.

[6] W.Q. Wang, M.L. Lee, B.C. Ooi, K.L. Tan, “XStorM: A
Scalable Storage Mapping Scheme for XML Data”,
available at http://www.comp.nus.edu.sg/~wangwq.

