
Efficient Web Form Entry on PDAs

Oliver Kaljuvee
Digital Libraries

Project (InfoLab),
Stanford University,
Stanford, CA, 94305

kaljuvee@cs.stanford.edu

Orkut Buyukkokten
Digital Libraries

Project (InfoLab),
Stanford University,
Stanford, CA, 94305

orkut@db.stanford.edu

Hector Garcia-Molina
Digital Libraries

Project (InfoLab),
Stanford University,
Stanford, CA, 94305

hector@db.stanford.edu

Andreas Paepcke
Digital Libraries

Project (InfoLab),
Stanford University,
Stanford, CA, 94305

paepcke@db.stanford.edu

ABSTRACT
We propose a design for displaying and manipulating HTML forms
on small PDA screens. The form input widgets are not shown until
the user is ready to fill them in. At that point, only one widget is
shown at a time. The form is summarized on the screen by
displaying just the text labels that prompt the user for each widget’s
information. The challenge of this design is to automatically find the
match between each text label in a form, and the input widget for
which it is the prompt. We developed eight algorithms for
performing such label-widget matches. Some of the algorithms are
based on n-gram comparisons, while others are based on common
form layout conventions. We applied a combination of these
algorithms to 100 simple HTML forms with an average of four input
fields per form. These experiments achieved a 95% matching
accuracy. We developed a scheme that combines all algorithms into
a matching system. This system did well even on complex forms,
achieving 80% accuracy in our experiments involving 330 input
fields spread over 48 complex forms.

Keywords
PDA, Mobile Computing, WAP, Forms, Wireless Access

1. INTRODUCTION
Web browser designers face special challenges when trying to
enable users to browse the World-Wide Web from handheld
devices, such as Palm Pilots. Among these challenges, screen size
limitations and the inconvenient pen-based input of URLs,
keywords, and other information stand out. Screen size limitations
are an issue because most HTML pages are designed to be viewed
on desktop displays. Their page layout assumes that users can see
large portions of each page at once. The much smaller page excerpts
displayed on any one handheld device screen can interfere with
users’ comprehension, and the resulting scrolling activity is time
consuming. Similarly, the pen-based input common to most
handheld devices remains error prone and time consuming, even
though character recognition has improved over the years.

One solution to the problem is the creation of special Web pages for
small devices. Such pages would be laid out for optimal viewing on
small screens. One example of such an approach is the Wireless
Access Protocol’s Markup Language (WML). While effective, this
solution requires information to be prepared separately for display
on both standard Web browsers, and on handheld devices. Many

Web site administrators are hard pressed even now to maintain their
sites for just standard browser viewing, so adding additional
maintenance load is often infeasible.

Another approach to presenting information on personal digital
assistants (PDAs) has been the automatic miniaturization of standard
HTML pages. One such system is the ProxiWeb browser [6]. It
adjusts images to work well on PDAs, and otherwise automatically
formats page displays with small screen requirements in mind. This
approach works well when every detail on a page is needed. A
drawback of the approach is the large amount of necessary scrolling
action. This need for frequent scrolling can seriously degrade the
navigation phase of Web searches [3].

1.1 Our Previous Related Work
Our Power Browser is a Web browser for handheld devices [3, 4].
This browser uses a very different approach to support navigation
and viewing of pages. Figure 1 shows a screen shot of the system as
reported in the above references.

Instead of displaying an entire page, only the link anchors of pages
are displayed by default. For example, “Concurrent VLSI
Architecture,” and “Database Group” are links on one of Stanford’s
Web pages. The user may tap on one of the links. This action will
display the text of the corresponding page. Alternatively, a left-to-
right swiping pen gesture over the same link description would list
the target page’s links on the PDA. For example, the lines “Archival
Repositories” through “Hobbies” in Figure 1 are links on the
“Arturo Crespo” page. These lines were added to the display in

Figure 1: Navigation Screenshot of Power Browser Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

663

response to a user’s left-to-right pen gesture over “Arturo Crespo.”
Notice that the links on the Crespo page are indented. The resulting
nested navigation levels are displayed like the folders in many
graphical file browsers. Successive levels are indented, with thin
vertical bars indicating the level of browsing depth for each row of
displayed text.
In addition to this navigation support, we dynamically create
inverted indexes of Web sites as users browse the Web from their
PDAs. The indexes are used for site-specific searching, and to
provide keyword completion as users write search keywords with
their pen [4]. User studies in [1, 5], finally, examine different
techniques for summarizing Web pages for display on PDAs. We
are using a Web proxy server to prepare the modified PDA views.
When preparing information for display on a PDA, we can therefore
afford computational expenses beyond those possible on the PDA
itself.
We were able to show that the facilities outlined above are effective
for searching and browsing. They do not, however, address the
display and manipulation of HTML forms on small displays. This
paper focuses on the forms problem.

1.2 Filling Forms on PDA Screens
Many HTML pages ask users to provide information that is
uploaded to a Web server. In many cases, the forms used for this
purpose are simple, small collections of text input fields. For
example, search engines often have just one text input field for
entering search keywords. Web sites for exploring company product
information might have a pull-down widget from which the user
chooses products. Other sites use much more complex forms. For
example, www.garden.com, which offers advice on planting,
contains extensive forms that include check boxes, radio buttons,
pull-down lists, and other input mechanisms.
The problem with forms on PDAs is that the input widgets and
associated textual explanations consume too much screen real-
estate. It is difficult for users to gain an overview of what the form is
about, and which information is requested of them. We are therefore
designing a form filling component for our Power Browser.
Rather than showing all of the input widgets at once, we want our
Power Browser initially to just display minimal textual prompts for
the fields. This approach would allow users to scan and understand
the form quickly. When the user is ready to fill in information, pen
gestures over a textual prompt would cause the associated input
widget to be displayed. All other widgets would remain hidden.
Figure 2 shows a mock-up example of how the display will work.
We focus here not on how exactly this interface would look and
behave, but on the underlying technology that will enable this type
of user interface approach.
Figure 2a shows a Web page for finding people’s telephone,
address, and other information by name, as it would be seen on a
desktop-size browser. This example is taken from Yahoo!’s site.
Figure 2b shows the top form, with only the labels being displayed.
In general, all the text other than the labels will be ignored in this
view. Consequently, every visible string is the label for some form
item. Buttons are identified explicitly. Users may tap on the
corresponding text to activate the button. Links within the form are
handled as normal hyperlinks. For instance, “State” in the above
example is a hyperlink to another page.

Figure 2a: Original HTML Page

Figure 2b: Form With No Widgets Revealed

Figure 2c: Form With One Widget Revealed

664

Figure 2c shows the top form expanded. The user has performed a
left-to-right pen gesture over the last name of the telephone search.
Now an input widget is available for the user to fill in. A right-to-left
pen gesture would close the form again, returning the display to the
state of Figure 2b.
For the Palm Pilot’s operating system, Palm OS, we need to convert
HTML text and password input fields to the equivalent dotted lines
used on the Palm Pilot. Text areas similarly are converted to
multiple dotted lines. Checkboxes, radio buttons, and selection
widgets also have their Palm OS equivalents, and we need make the
conversion for each input field.

The difficulty in generating the space-efficient display of Figure 2c
from the original Web page is that we need algorithms that find the
proper text labels for each input widget. For example, it is easy for a
human being to recognize that the “First Name” at the top of Figure
2a is the text label for the input widget below it. Making this
association automatically, however, is not always easy.

To illustrate this difficulty, consider the following piece of HTML,
which produces a portion of the screen display in Figure 2a.
...

First Name <input type="text” name="FirstName">

Last Name <input type="text” name="LastName">

City/Town <input type="text” name="City">

...

Each line of HTML will produce one text label and one text input
widget when rendered by a browser. We call the expressions in
angle brackets input elements. Each input element includes the type
of widget the browser is to display (in all these three cases
type=“text”), and a name attribute (e.g. name=“FirstName”). At the
machine level, the matching task is to associate the name attribute
value of each input element with the best of its surrounding strings.

As human observers, we easily recognize the text “First Name”,
“Last Name”, “City/Town” as labels for their respective input
elements. In the HTML snippet’s second line, for example, it is clear
to a human that the input element with the name attribute
‘LastName’ is intended to be matched with the “Last Name” text
label on the left. We make this association because the name
attribute and the text label match well, and because we are used to
reading from left to right. For the above HTML code, an automatic
matching process could perform the string match the same as a
human would, and if the match would not be confused by the extra
space in the label, the result would be successful. A variation of this
approach is indeed one of the mechanisms we tested below.

Unfortunately, HTML designers do not always match name
attributes with corresponding labels as clearly as in the case above.
Instead of using ‘FirstName’ and ‘LastName’ as name attributes
within the input widgets, an HTML designer might have used ‘fld1’
and ‘fld2’. The browser display would then have been identical. But
in that case, the string matching technique would have failed. An
automatic matching algorithm might instead make the match by
blindly using the string on the left of each input element as the
match. This approach sometimes does work. However, consider that
certain labels, especially for the radio buttons and the checkboxes,
may appear to the right of the form item. For example, consider
Figure 3, which is an excerpt of the garden.com Web site.

We see in Figure 3 that the words “early”, “mid”, and “late” are
each placed to the right of the input widgets they are supposed to
label. Using a naive algorithm of left-association, we would
associate the ‘early’ widget with “Spring”, the “mid” label with the
‘early’ widget, etc.

Figure 3 illustrates another problem that often occurs with check
boxes. In many forms, check boxes are grouped, and a common
label describes the entire group. In Figure 3, the “Spring” label
describes the three planting time seasons. In addition, each
checkbox has its own label (“early”, “mid”, etc.). In the Figure, there
are two such groupings, “Spring” and “Summer”, which in turn
have a common label (“Planting times”). Form summarization must
attempt to detect and display such labels.

These challenges are just a sample of the difficulties faced in
rendering forms and their labels on PDAs. We must contend with a
design tradeoff: mismatches can lead to incorrectly transmitted
forms. This danger would encourage us to include more, rather than
less of the original textual information on the PDA page. On the
other hand, the inconvenience and danger of user confusion
associated with long PDA screens would will us towards careful
pruning of the text that surrounds form widgets on the screen. This
design tension can be resolved only by making the selection of text
labels for input widgets as reliable as possible. We call the process
of matching text labels with input widgets “form analysis.”

We examined eight algorithms that can be used together to
accomplish heuristic form analysis. Conceptually, each algorithm
takes one HTML form as input. For each input element within that
form, the algorithms produce as output one string excerpt from the
form to use as an explanatory label. We describe these algorithms in
Section 2. In Section 3 we describe the results of experiments we
conducted to test each algorithm’s performance. A discussion in
Section 4 explains remaining failure modes, and our plans for
addressing them.

2. HEURISTIC MATCHING ALGORITHMS
Each of our matching algorithms proceeds in two steps. The first
step is common to all algorithms:

1. Chunk Partitioning: the entire HTML page is broken into
“chunks.” Chunks are small pieces of HTML code that are
delimited by HTML tags, such as text paragraphs, table
cells, or input elements. The result of this first step is an
ordered list of all the chunks in the HTML page.

2. Label Selection: for each input element chunk within the
chunk list, one text string from neighboring chunks is
selected as the match that best describes the element’s
purpose.

Figure 3: Text Labels Are Not Always Placed
Before Their Input Widgets

665

Our eight algorithms differ in how they accomplish Step 2. We first
describe chunk partitioning and then each of our algorithms in turn.

2.1 Chunk Partitioning
Chunks are identified by finding bounding HTML tags. For
example, a paragraph of text that is delimited by a <p> tag is
considered a chunk. Text strings delimited by table cell tags are also
taken to be chunks, as are text within header tags, images, input
elements, and horizontal rules (i.e. HTML-generated lines across the
page).

A simplified chunk sequence (composed from a commercial
gardening page) might look as follows:

1. [
]
2. ["Welcome to Your"]
3. [
]
4. ["Garden Environment"]
5. [
]
6. []
7. [
]
8. []
9. [<p>]
10. ["Sun Exposure"]
11. [<SELECT name="SQL_LIKE_Optimum_Sun">]
12. [<option value="1">]
13. ["full shade"]
14. [<option value="2">]
15. ["partial shade"]

Each expression within square brackets constitutes one chunk. The
initial string “Welcome to Your” is in a separate chunk from the
string “Garden Environment” because a line break tag (
)
separates the strings. Also, any HTML tag is in a separate chunk.
For example, the “full shade” string in line 13 is a separate chunk
from the ‘option’ chunks that precede and follow it. Incidentally,
notice that chunks 11-15 will show on a browser screen as check
boxes labeled “full shade” and “partial shade”. Label “Sun
Exposure” would describe these two check boxes as a group.

These sequences of chunks allow us to introduce the notion of
distance within forms. For example, the string chunk “Sun
Exposure” is one unit of distance away from the ‘select’ chunk on
line nine. This distance notion is useful when delimiting the scope
of a matching algorithm’s activity. For example, our algorithms do
not consider string chunks as matches, if they are more than n
chunks away from the input element chunk they are examining. All
of our algorithms use n=10, a value obtained empirically.

Each chunk is represented as an 8-tuple [C,T,Fid,LP,GP,M?,TM,
Addl] with the following contents:

• C: Content of the chunk. For a text chunk, the content is the
string itself. For an input element, the content includes the
name attribute.

• T: Chunk type: string, input element, break, etc.
• Fid: Identifier of the form in which the chunk is embedded
• LP: Local position: chunk’s distance from the beginning of

the form
• GP: Global position: chunk’s distance from beginning of

Web page
• M?: Boolean indicating whether the chunk was already

matched, and is therefore unavailable as candidate for
further matches.

• TM: Table membership. If the chunk is embedded in a table,
this field is a pointer into a table list (see below)

• Addl: Additional information, such as the values of input
element attributes.

In addition to the chunk list, a list of HTML table chunk indexes are
maintained (Figure 4).

Each entry in the table list identifies the range of chunks in that
table. Notice that tables can be nested. For instance, in Figure 4,
table 2 is within table 1. All chunks embedded within a table in turn
identify the inner-most table they are in (TM field). For example, in
Figure 4, chunk 3 would point back to table 2. For each table entry,
a two-dimensional array is also maintained to track how chunks are
laid out in the table. (These arrays are not shown in Figure 4.) As the
HTML is scanned, the layout array is filled out, so that each entry in
the array points to the first chunk (in the chunk list) that is located in
that cell. This layout information is important for algorithms that
consider page layout in their matching heuristics (see below).

In setting up the chunk list, the chunk partitioning algorithm
discards some “stop phrases” that are known to make poor input
widget labels, but that are commonly encountered in HTML forms.
These stop phrases include “optional,” “required,” and the asterisk
character, among others, which are often used to mark optional
fields.

We eliminate these terms from the chunk list along with the terms
containing text-formatting HTML tags, although they are still
considered in determining the notion of distance. The final PDA
screen layout manager might still decide to include these stop
phrases on the display. But the phrases are guaranteed not to be the
sole labels for input fields.

Incidentally, notice that the chunking strategy we have described
here is different from the strategy used in [1, 5] to partition Web
pages for display. Here, our chunks are used to determine how “far”
(measured in chunks) potential labels are from input elements. In [1,
5], on the other hand, Web pages are partitioned into “semantic
units” that users would like to see on their screens. Since the goals
are different, the rules for partitioning are different.

2.2 Matching Algorithms
Once the chunk and table lists have been constructed, the first step
of the matching procedure is complete. The lists are passed on to the

Figure 4: Chunk and Table Index Lists

666

matching algorithms, which find each input element chunk in the
chunk list, and attempt to find a good label for it. Our matching
algorithms fall into two main categories. In the first category
(Sections 2.2.1 through 2.2.3), the algorithms try to find labels that
are textually “similar” to the variable name used in the input
element. These algorithms yield a score that measures how similar
the two strings are. In the second category (Sections 2.2.4 and
2.2.5), algorithms look at the form layout and search for labels that
would be displayed close to the input element. These algorithms
yield a score of 1 if a label is found, and 0 if not. Notice that the
algorithms often yield different matching labels, with different
scores. Later on in Section 4 we describe how the “predictions” of
each algorithm may be combined into a more reliable one.

2.2.1 N-Gram
Our N-gram matching algorithm uses an information retrieval
technique, called “n-gram matching.” This technique was originally
conceived to overcome unwanted text comparison mismatches when
two words are compared that differ only by a small typographical
error. In general, when comparing any two words, A and B through
the n-gram technique, both words are divided into overlapping
substrings of length n. This procedure results in two sets of equal-
length substrings. The cardinality of the intersection between these
two sets serves as a similarity score for A and B.

For example, consider the words “ants” and “grants” with n=3. This
technique would generate tri-grams gra/ran/ant/nts from “grants,”
and ant/nts from “ants.” The resulting matching score would be 2,
from the common tri-grams “ant” and “nts.” Notice that we do not
perform any “normalization” to compensate for different string
lengths. (That is, we do not divide the score by the sum of the
number of n-grams, as is typically done.) We found the simple
number of matching n-grams a better predictor for label/input-name
matching, especially if the strings involved are of very different
lengths.

We use n-grams to yield our N-gram algorithm in the following
way.

1. For each input element chunk C, obtain the s chunks that
precede, and the s chunks that follow C. The result of this
step is a set of up to 2s chunks that are C’s neighbors. There
may be fewer than 2s neighbors for input elements that are
closer than distance s from the top or bottom of the page that
contains the element. The optimal span s was empirically
determined to be 10.

2. Obtain the name attribute of chunk C (from its content field).

3. For each neighbor chunk N of Step 1:

a. If N is not a string chunk, discard N.

b. Canonicalize N’s string content by removing all spaces
and non-alpha characters.

c. Perform an n-gram match between C’s name attribute
(from Step 2), and N’s canonicalized string content.

4. Choose (the string content of) the neighbor chunk with the
highest n-gram score as the best match, provided that this
score is greater than or equal to a constant threshold T. This
constant is the lowest score that can still be considered
significant enough to be a match. Empirical methods led us

to set T=2. If no score meets the threshold, then the
algorithm reports failure (score = 0).

The literature suggests that tri-grams (n=3) tend to work well for
successful matching [2], and we use tri-grams for our N-gram
algorithm.

2.2.2 Letter/Word and Word/Letter
The Letter/Word algorithm is a variation of the N-gram algorithm.
The difference lies in the canonicalization Step 3b. Rather than
removing spaces and non-alpha characters, the first two words of
chunk N’s string content are extracted. Any remaining words in the
string are discarded. The first letter of the first word is then
concatenated with the second word. Thus, “First Name” would
become “FName,” and “Work Phone” would become “WPhone.” If
N’s string contains fewer than two words, the Letter/Word algorithm
is not applicable. We developed this algorithm, because we noticed
that such contractions are frequently used by HTML designers.

Word/Letter is the dual of Letter/Word. For example, “Min Height”
would become “MinH,” and ‘Min Width’ would be transformed to
“MinW.”

2.2.3 Substring
The Substring algorithm is another variation on the N-gram
algorithm. It is designed to match words in which one word is a
contraction of the other. For example, the Substring algorithm
would successfully match “password” with ‘pwd’, or “height” with
‘hgt’.

The modification to the N-gram algorithm occurs in Steps 3b and
3c. The canonicalization Step 3b is replaced with the following
procedure. After removing spaces and non-alpha characters from
neighbor N, the lengths of N and the input element chunk’s name
attribute (C) are compared, and their ratio is recorded. For example,
consider a input element’s name attribute ‘pwd’, and a neighbor
string chunk “Password.” Comparing their lengths, the algorithm
would obtain the approximate ratio R=3:1=3.

The modified Step 3c then partitions the longer of N and C into R
substrings of roughly the same length. The shorter word is
partitioned into R letters. For example, “Password” would be
partitioned into “Pas,” “swo,” and “rd.” The shorter string, “pwd,”
would be partitioned into its three component letters.

Finally, the Substring algorithm tests for the presence of each of the
R letters in their corresponding substrings. Continuing with our
example, the presence of “p” in “Pas,” “w” in “swo,” and “d” in
“rd,” leads to three matches, or a raw score of three.

2.2.4 Tables
HTML forms make heavy use of tables as a visual layout tool.
Visual layout of form items on the page are a very strong clue that
human users pay attention to when performing the matching task we
are trying to accomplish automatically. Tables can force elements to
be grouped visually on the page, to be stacked on top of each other,
or to be lined up neatly in a row (Figure 5). HTML pages without
tables are much less predictable in their appearance to the eventual
human user. Our Table algorithm attempts to emulate how human
onlookers tend to match text labels with input widgets on a screen.

Recall that the table and chunk lists enable matching algorithms to
determine where input elements are located within a table. When

667

trying to match an input element chunk C that is located within a
table, the table algorithm first checks whether a string chunk is
located within the same table cell with C. In Figure 5, this condition
is true, for instance, in the case of the ‘E-mail address’ text widget in
Figure 5, but not for the text widget intended for entering a
password. If a string chunk is located within the same cell with C,
that string is chosen to be the label for C.

If no string is found within the same cell, the Table algorithm checks
whether a string chunk is located in a cell immediately to the left of
the input element it is trying to match. If such a string is present, it is
chosen as the match. If no such string is located to the left of C, the
reason could be that C is the left-most cell of the table, or that the
cell on the left does not contain a string. In this case, the table
algorithm checks first the cell above, then the cell below, and finally
the cell to the right of C, choosing the first string it finds in that
sequence of trials. If a label is found, the algorithm yields a score of
1. Otherwise, if the Table algorithm fails, it reports a score of 0.

2.2.5 Previous and Following
When choosing a text label match for an input element chunk C, the
Previous algorithm examines in order up to s chunks that precede C.
As soon as a string chunk is found, that chunk’s string content is
chosen as the match for C. If no string is found within span s, then
the Previous algorithm reports failure.
The Following algorithm similarly examines up to s chunks that
follow C.
Experimental results made us choose 10 as the value of the
matching span s.

2.2.6 NULL Algorithm
The NULL algorithm simply returns the value of an input
element’s ‘name’ attribute as that input element’s match. (The
algorithm always returns a score of 1.) For example, consider
the task of matching the text input element in the following
chunk sequence:

["Please enter your electronic mail address."]

[
]

[<input type="text” name="email">]

The NULL algorithm would choose “email” as the matching text
label, no matter which strings are found in neighboring chunks.

2.3 Finding Group Labels
As mentioned in Section 1, groups of checkboxes often have one
label for the entire group, and one label for each checkbox. Consider
the following example:

<form ...>

"Which plants do you like?"

<input type="radio” name="plants” value="tul">

Tulips

<input type="radio” name="plants” value="rose">

Roses

<input type="radio” name="plants” value="beg">

Begonias

"What did we forget?"

<input type="text” name="other_plant">

</form>

This HTML snippet would display “Which plants do you like?”,
followed by three radio buttons, labeled “Tulips”, “Roses”, and
“Begonias”, respectively. A text input box labeled “What did we
forget?” would be placed below the radio buttons. The name
attribute “plants” is common to all radio buttons. This property
identifies the three buttons as a group. This grouping ensures that
only one of the radio buttons is checked at any time. When
rendering grouped buttons on a PDA, a screen layout manager
might also wish to place them in close proximity to each other.

Notice that the N-gram algorithm would easily identify the labels for
the radio buttons. But we also need to ensure that the group as a
whole is labeled. If the PDA display were to discard the question
about plant preference, then the radio buttons, even with their labels,
would not make sense to the user.

Before finding individual labels for grouped checkbox and radio
button input elements, our system therefore attempts to identify a
group label for each group. The algorithm for finding group labels is
as follows.

1. We apply the N-gram algorithm to the ‘name’ attribute value
of the first button in the group. In this example, the ‘name’
attribute has the value “plants”. The best matching label in
this case is “Which plants do you like?” with a score of 4.

2. We apply the N-gram algorithm to the first button’s ‘value’
attribute (in this case “tul”). In this case, there is no
matching label nearby, so the score is 0.

3. The highest-scoring match is taken to be the label for the
button group. This example would correctly yield “Which
plants do you like?” as the label for all buttons with ‘name’
attribute “plants”.

Notice that the group label is now “used up.” The respective text
chunk should not subsequently be identified as the label for some
individual input element. For example, the text box at the bottom of
the above HTML snippet contains ‘name’ attribute “other_plant”.
This name would match well with the “Which plants do you like?”
string, but that match would be disallowed. Thus, the N-gram
algorithm would find no match for the bottom text box. However,
the Previous algorithm would find the correct string “What did we
forget?” To register “used up” labels, each chunk record includes a
Boolean (called M? in section 2.1) which is set to TRUE when a
chunk is no longer available for matching.

3. PERFORMANCE EXPERIMENTS
In an initial experiment, we tested the effectiveness of our
algorithms on 100 forms. The forms were selected at random. In
particular, we selected random Web pages from a cache of 40
million pages. If a page did not have a form, it was discarded; else it
was kept. If a page was located at the same site as a previously
selected page, it was discarded, so that HTML design conventions

Figure 5: Positioning Form Elements With Tables

668

on any one site would not bias our performance studies. In the 100
forms we collected, there were an average of four input elements.
We call these forms our “simple” forms, to distinguish them from
the “complex” forms used for our second experiment.

For each of the input fields in the simple forms, a human being
manually matched the correct text label. We then applied all of our
matching algorithms to each input element. As mentioned, we used
a maximum chunk span of 10, and an n-gram matching threshold of
2. That is, we only considered string chunks within a neighborhood
of plus/minus 10 as candidates for input element labels, and we
required a score of at least 2 for algorithms that involve n-gram
matching.

Once all matching scores for a given input element had been
computed, we took the match with the highest score as the “winner.”
In this first set of experiments, we made no attempt to normalize the
scoring mechanism across the algorithms. Thus, for example, a
successful N-gram algorithm (with its score greater than T=2) will
always beat a table algorithm (with maximum score of 1). (A better
scheme to combine algorithms is described in Section 4.)

Finally, we compared the winner with the correct answer. We found
that for this initial large batch of forms, our matching success was
95%. A large number of forms on the Web that one might wish to
fill out on a PDA are as simple as the forms we matched in this first
experiment. Examples are search forms, and simple order forms.

Nevertheless, the high success rate with simple forms encouraged us
to tackle more complex forms. As the base data for two additional
experiments, we therefore manually selected 21 Web sites that
contained 48 fairly complex forms with between two and 30
elements. All forms taken together, this collection included 330
input elements, of which 307 were embedded in HTML tables. Of
all input elements, 40% were one-line text input fields, 2% were
password input fields, 22% were select fields (pull-down lists of
choices), 5% were editable, multi-line text areas, 15% were radio
buttons, and 16% were checkboxes.

For each input element in each form, we again manually found the
correct labels. Then we ran two experiments on these complex
forms. The first experiment aimed at measuring the effectiveness of
each individual algorithm when used by itself. The second

experiment examined the effectiveness of combining the algorithms
with a score maximization scheme. This second experiment is
described in Section 4.1.

For the first experiment, we used 115 of our 330 input elements as
the test set. We ran all of our algorithms on each of the 115 input
elements. We recorded how many times each algorithm believed
that it had generated a successful match, and how often this match
was correct, as compared with the human-generated match.

We also recorded failure reasons when none of the algorithms
succeeded.

3.1 Experimental Results
Table 1 shows the results of our 115 element, individual algorithms
experiment on complex forms.

Each row of Table 1 describes the performance of our algorithms for
the forms on one Web site. The left-most column summarizes each
site’s statistics. The first number in parentheses is the number of
forms on the site. The second number is the total number of input
elements to be matched on these forms. For example, on site 2, we
tested our algorithms on four forms that contained a total of 12 input
fields. We include these numbers to show how the forms were
spread across different sites, and how HTML conventions on any
one site might influence the algorithms.

Each of the remaining eight columns contains the results of one
algorithm. The first of the two numbers in each table cell indicates
the number of times the respective algorithm produced a correct
match. The second number indicates how often the algorithm
concluded that it had a match. For example, within site 3, the N-
gram algorithm “thought” nine times that it had a match, and its
match was correct for seven of these nine matches. Given that site 3
contained a total of 17 input elements, we can see that for eight
input elements the N-gram algorithm decided to pass on matching.
Such a pass condition occurs when an algorithm’s matching score is
below the matching threshold.

The bottom of each column shows four summary results for the
respective algorithm. The first result is the total of the column. In the
N-gram column, for example, we see that when confronted with our
115 input elements to match, the algorithm concluded that it found a

Table 1: Each Algorithm Matching 115 Input Fields
Site (Forms) N-Grams Letter/Word Word/Letter Substring Tables Previous Following Null

1 (1,26) 9/9 1/1 0/0 2/2 17/25 15/26 0/26 6/26

2 (4,12) 5/5 0/0 0/0 3/3 0/3 5/12 0/12 6/12

3 (1,17) 7/9 0/0 0/0 4/4 0/0 11/17 0/17 2/17

4 (3,8) 8/8 2/2 0/0 7/8 6/8 8/8 0/8 8/8

5 (1,21) 11/12 1/1 0/0 11/12 10/13 14/21 5/21 7/21

6 (1,7) 0/0 0/0 0/0 0/0 6/7 3/7 1/7 0/7

7 (1,13) 13/13 0/0 0/0 6/6 0/0 9/13 4/13 10/13

8 (1,11) 4/4 0/0 0/0 4/4 9/9 6/11 0/11 6/11

TOTALS 57/60 4/4 0 37/39 48/65 71/115 10/115 45/115

Success 49% 3% 0% 32% 42% 62% 9% 39%

Failure 3% 0% 0% 2% 15% 38% 91% 61%

Pass 48% 97% 100% 66% 43% 0% 0% 0%

669

match in 60 of the cases. The algorithm produced the correct match
in 57 of these cases.
The second summary is the success rate of the respective algorithm
when measured against the entire collection. The N-gram
algorithm’s 57 successful matches, for example, translate to a
(approximate) 49% success rate over the 115 input elements.
The third total is the failure rate. It shows how often the respective
algorithm produced an incorrect result. For example, when
processing the 115 input elements, the N-gram algorithm produced
3 incorrect results (60-57), amounting to a failure rate of 3%.
The fourth total, finally, is the algorithm’s “pass” rate. It shows how
often the algorithm did not venture a match at all. Notice that the
Previous and Following algorithms can almost always be applied.
The only exceptions occur when an input element has no string
chunk to its left or right, respectively. The NULL algorithm is

always applicable. This near-universal applicability of the three
algorithms is reflected in their pass rate of zero.

4. DISCUSSION
We see from Table 1 that Previous has a high success rate, as one
might expect. Notice, however, that it also features a high failure
rate. The N-gram algorithm, while featuring a lower success rate,
also fails much less. When comparing the success/failure rates, N-
gram stands out with a ratio of 17. The Letter/Word and
Word/Letter algorithms did not make any mistake in this data set,
but most of the time they were not applicable.
Upon conclusion of the experiments, we analyzed the most frequent
failure modes, and thought about how our various algorithms might
be combined to form an optimized matching system. The following
sections discuss these issues.

Table 2: Matching Performance for Algorithm Combination over 330 Input Elements

Site (Forms) N-Grams Letter/Word Word/Letter Substring Tables Previous Following Null Total

1 (1,26) 9/9 0/0 0/0 0/0 12/17 0/0 0/0 0/0 21

2 (4,12) 5/5 0/0 0/0 0/0 0/3 2/3 0/0 1/1 8

3 (1,17) 7/9 0/0 0/0 0/0 0/0 7/8 0/0 0/0 14

4 (3,8) 6/6 2/2 0/0 0/0 0/0 0/0 0/0 0/0 8

5 (1,21) 11/12 1/1 0/0 0/0 3/6 2/2 0/0 0/0 17

6 (1,7) 0/0 0/0 0/0 0/0 6/7 0/0 0/0 0/0 6

7 (1,13) 13/13 0/0 0/0 0/0 0/0 0/0 0/0 0/0 13

8 (1,11) 4/4 0/0 0/0 0/0 7/7 0/0 0/0 0/0 11

9 (2,18) 12/13 0/0 0/0 0/1 0/3 0/0 1/1 0/0 13

10 (1,15) 3/3 0/0 0/0 0/0 0/0 0/1 11/11 0/0 14

11 (8,11) 1/1 0/0 0/0 0/0 0/0 4/8 0/0 2/2 7

12 (7,64) 30/42 2/2 0/0 0/5 0/0 10/12 0/0 2/3 44

13 (3,17) 8/8 0/0 1/1 0/0 2/6 0/0 0/0 0/2 11

14 (1,30) 22/22 0/0 0/0 0/0 4/6 2/2 0/0 0/0 28

15 (4,4) 4/4 0/0 0/0 0/0 0/0 0/0 0/0 0/0 4

16 (1,4) 0/1 0/0 0/0 0/0 3/3 0/0 0/0 0/0 3

17 (2,4) 2/2 0/0 0/0 0/0 1/2 0/0 0/0 0/0 3

18 (2,25) 12/12 0/0 0/0 0/0 8/11 0/0 0/0 0/2 20

19 (2,3) 2/3 0/0 0/0 0/0 0/0 0/0 0/0 0/0 2

20 (1,13) 6/6 0/0 2/2 0/0 3/5 0/0 0/0 0/0 11

21 (1,8) 6/8 0/0 0/0 0/0 0/0 0/0 0/0 0/0 6

TOTALS 163/183 5/5 3/3 0/6 49/76 27/36 12/12 5/10 264/330

Success 49% 2% 1% 0% 15% 8% 4% 1.5% 80%

Failure 6% 0% 0% 2% 8% 3% 0% 1.5%

Not Applied 45% 98% 99% 98% 77% 89% 96% 97%

670

4.1 Common Breakdowns
The three main failure reasons in our matching scheme were overly
limited scope, image faults, and group labels for radio buttons or
check boxes. An example of overly limited scope would occur in the
following case (Figure 6):

The corresponding simplified HTML looks as follows:

<tr>

<td>Full Name
(e.g. John H. Doe)</td>

<td><input type="text” name="fname"></td>

</tr>
Our Table algorithm would note that the input element is in a cell all
by itself. It would therefore retrieve the chunk to the left of the
element. Since “First Name” and “e.g. John H. Doe” are separated
by a break tag (
), our chunk partitioning procedure will separate
the two pieces of text into two chunks. The label chosen for the
input field would thus incorrectly be chosen to be “e.g. John H.
Doe", which is much less desirable than the obviously correct match
“First Name". In our algorithm combination experiment (see below),
about 7% of our matches failed due to a limited scope breakdown.
An image fault occurs when the correct match is text within an
image. We currently do not perform optical character recognition
(OCR) on images. None of our algorithms will therefore find such
text. About 3% of our matches failed due to image faults.
A radio button error occurs when groups of radio buttons do not
have a common label, or when they are missing labels for the
individual buttons. As described, our algorithms process radio
buttons by matching the first button’s ‘name’ and ‘value’ attributes
to surrounding text chunks. This process attempts to find a group
label for all the buttons, as well as an appropriate label for each
individual button. Many radio buttons and checkboxes are indeed
organized in groups with such a group label. However, when there
are no group or individual labels, our system tends to produce
mismatches as it insists on finding these labels. Figure 7 shows an
example for missing individual labels. None of our algorithms finds
a label for the drop-down menus, since there are no labels to choose
from. However, notice that even though we label this instance as a
“failure,” in reality the user will see the menu values in the widget
displayed on the PDA, and will be able to make a selection just as
with a full display.

A dual case occurs when text or select fields are grouped, as might
be the case with an HTML form for inputting postal addresses.
Figure 8 shows an example.
The text “Home Address” is a group label for the following input
fields. Each input field has its own label. A PDA display that filters

out the “Home Address” group label would leave the user
wondering which address is being requested. Unfortunately,
contrary to groups of radio buttons, groups of text fields are not
identified in the HTML code by common input element ‘name’
attribute values. Automatic analysis therefore easily misses such
groupings. We have so far not systematically addressed this problem
of group labels for text fields in our system. In some cases, special
circumstances cause us to produce good results anyway. We will not
go into detail on these cases.
Among these group-related failures, the missing group label for
check box groups is the most common. Our 330 input element test
set included 102 radio buttons and check boxes. Of these, 14 were
missing a group label (14%). Of our 203 text fields, 15 (7%) had
group labels, of which we missed nine. Overall, about 48% of our
matching failures were due to grouping problems.
To conclude our discussion of failure modes, we observe that
failures will not be catastrophic. If a user is confused by the labels
displayed on the PDA (or is puzzled by the results obtained after
filling out the form), he can switch the display to a full HTML
rendering. As an intermediate option, we plan to provide progressive
disclosure of text around the input field. Transmitting the full page
to the PDA, and scrolling through the full page, will be more time
consuming than manipulating our “synthesized” forms, but will be
an option. Of course, keep in mind that even the full HTML
rendering may be error prone on a small display. For example, if the
complete form is not visible on the screen, the user may get
disoriented. In Figure 3, for instance, if all the checkboxes cannot be
seen, the user may not be able to tell if a label corresponds to the
checkboxes on its left or on its right.

4.2 Combining Matching Algorithms
Observe in Table 1 that in many cases, multiple algorithms come up
with the correct answer. For example, the total number of successful
matches in row 1 of Table 1 is 50, significantly more than the 26
input fields to be matched. At the same time, we find cases when
one algorithm performs significantly better than others. For
example, in row 6, the N-gram algorithm features no match at all,
while the Table algorithm successfully matches six of the seven
input elements.
These observations raise the question of how best to combine the
algorithms such that overall matching performance is optimized.
Several strategies for combination are available, and in particular we
empirically developed one that orders the strategies according to
their observed usefulness.
With this simple score maximization strategy, algorithms N-gram,
Letter/Word, Word/Letter, Substring, and Tables are run, one at a
time, for each input element. If any of these algorithms produces a
match for an input element, we select the highest-scoring match as
the winner. If the first five algorithms did not produce a match, we
attempt Previous, Following, and NULL in order, picking the first
match we find. We isolated Previous and Following from the other

Figure 8: Text Field Group With Group Label

Figure 7: Missing Individual Labels

Figure 6: Limited Scope Failure

671

five algorithms in this way, because of their high failure rate. The
NULL algorithm is the last in the application sequence, because it
can always be applied, and therefore does not have a “natural”
ability to be discriminating. Also, recall that the label this last
algorithm produces is the internal HTML input element name
attribute, which is not normally intended for display on the screen.
We therefore gave lowest priority to this algorithm.
Table 2 shows the results of our combined strategy running over the
full 330 input element data set.
Table 2 is organized similarly to Table 1. The differences are as
follows. On the far right, a new column has been added. It lists the
total number of input elements that were successfully matched in
each row. Thus, in row one, 21 of the 26 input elements were
successfully matched by the combined strategy. At the lower right of
Table 2, the total matching result is 264/330, or 80%.
Notice that, in contrast to Table 1, there is no overlap in the success
numbers for each algorithm. For example, in the first row, the N-
gram algorithm’s nine successful matches are distinct from the 12
matches reported for the Table algorithm. For any given input
element, only one of the algorithms is thus ever credited for a
successful match.
We see that the N-gram algorithm provides the lion’s share of all
successful matches (49%). The Table algorithm is the second-most
successful, with a failure rate comparable to N-gram. Letter/Word,
Word/Letter, and Following are “safe” algorithms to try, in that they
did not produce failures, even though their success rate was small as
well.
While this optimization strategy works reasonably well for complex
forms, and quite well for simple ones, it is an open question whether
some other strategies might perform better. We could, for example,
weight the results of each algorithm, depending on the algorithm’s
success/failure ratio. The results of high-ratio algorithms would
carry more votes in the voting process than results from low-ratio
algorithms. We plan to continue our experiments, especially the
development of these strategies for optimizing overall performance.

5. CONCLUSION
Our goal is to automatically and dynamically “summarize and
organize” Web pages for display on small hand-held devices. In this
paper we have focused on how best to display forms on these
devices. In particular, we have shown various strategies for selecting
descriptive labels for the various input elements that appear on the
summarized forms. Our experiments show that in the vast majority
of cases our algorithms find labels that a human would have

selected, thus making summarized form display feasible and
attractive.

Of course, there are still ways to improve on our results. For
example, our syntactic and structural feature analysis can be
improved. In particular, we are extending our approach to take into
account occurrences such as colons at the end of text strings, as well
as parenthetical expressions. We might, for example, favor text
chunks with trailing colons if these chunks immediately precede an
input field. At the same time, we might lower the matching
eligibility of any text chunks that are parenthesized.

As Web page designs grow more elaborate, labels in images will be
more frequent. As reported above, we currently have no facilities for
detecting images that are used as input field labels. As a first step,
we will use ALT tags as substitutes for text in images. An ALT tag
is a word or phrase that is associated with an image link in an
HTML page. This information is displayed to users while the image
is being loaded and is not yet visible on the user’s screen. Beyond
the use of ALT tags, we plan to examine how well we can do when
we perform optical character recognition on the images themselves.
We will focus on images that are in page layout positions often
occupied by labels.

6. REFERENCES
[1] Orkut Buyukkokten, Hector Garcia-Molina, and Andreas

Paepcke. Accordion Summarization for End-Game Browsing
on PDAs and Cellular Phones. In Proceedings of the
Conference on Human Factors in Computing Systems, 2001.

[2] R.C. Angell, G.E. Freund, and P. Willett. Automatic Spelling
Correction Using a Trigram Similarity Measure. Information
Processing and Management, 19(4):255-261, 1983.

[3] Orkut Buyukkokten, Hector Garcia Molina, Andreas Paepcke,
and Terry Winograd. Power Browser: Efficient Web Browsing
for PDAs. In Proceedings of the Conference on Human Factors
in Computing Systems, 2000.

[4] Orkut Buyukkokten, Hector Garcia-Molina, and Andreas
Paepcke. Focused Web Searching with PDAs. In Proceedings
of the Ninth International World Wide Web Conference, 2000.

[5] Orkut Buyukkokten, Hector Garcia-Molina, and Andreas
Paepcke. Seeing the Whole in Parts: Text Summarization for
Web Browsing on Handheld Devices. In Proceedings of the
Tenth International World-Wide Web Conference, 2000.

[6] ProxiNet. ProxiWeb. ProxiNet website:
http://www.proxinet.com/.

672

