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ABSTRACT 
We propose a design for displaying and manipulating HTML forms 
on small PDA screens. The form input widgets are not shown until 
the user is ready to fill them in. At that point, only one widget is 
shown at a time. The form is summarized on the screen by 
displaying just the text labels that prompt the user for each widget’s 
information. The challenge of this design is to automatically find the 
match between each text label in a form, and the input widget for 
which it is the prompt. We developed eight algorithms for 
performing such label-widget matches. Some of the algorithms are 
based on n-gram comparisons, while others are based on common 
form layout conventions. We applied a combination of these 
algorithms to 100 simple HTML forms with an average of four input 
fields per form. These experiments achieved a 95% matching 
accuracy. We developed a scheme that combines all algorithms into 
a matching system. This system did well even on complex forms, 
achieving 80% accuracy in our experiments involving 330 input 
fields spread over 48 complex forms.  
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1. INTRODUCTION 
Web browser designers face special challenges when trying to 
enable users to browse the World-Wide Web from handheld 
devices, such as Palm Pilots. Among these challenges, screen size 
limitations and the inconvenient pen-based input of URLs, 
keywords, and other information stand out. Screen size limitations 
are an issue because most HTML pages are designed to be viewed 
on desktop displays. Their page layout assumes that users can see 
large portions of each page at once. The much smaller page excerpts 
displayed on any one handheld device screen can interfere with 
users’ comprehension, and the resulting scrolling activity is time 
consuming. Similarly, the pen-based input common to most 
handheld devices remains error prone and time consuming, even 
though character recognition has improved over the years. 

One solution to the problem is the creation of special Web pages for 
small devices. Such pages would be laid out for optimal viewing on 
small screens. One example of such an approach is the Wireless 
Access Protocol’s Markup Language (WML). While effective, this 
solution requires information to be prepared separately for display 
on both standard Web browsers, and on handheld devices. Many 

Web site administrators are hard pressed even now to maintain their 
sites for just standard browser viewing, so adding additional 
maintenance load is often infeasible. 

Another approach to presenting information on personal digital 
assistants (PDAs) has been the automatic miniaturization of standard 
HTML pages. One such system is the ProxiWeb browser [6]. It 
adjusts images to work well on PDAs, and otherwise automatically 
formats page displays with small screen requirements in mind. This 
approach works well when every detail on a page is needed. A 
drawback of the approach is the large amount of necessary scrolling 
action. This need for frequent scrolling can seriously degrade the 
navigation phase of Web searches [3]. 

1.1 Our Previous Related Work 
Our Power Browser is a Web browser for handheld devices [3, 4]. 
This browser uses a very different approach to support navigation 
and viewing of pages. Figure 1 shows a screen shot of the system as 
reported in the above references. 

Instead of displaying an entire page, only the link anchors of pages 
are displayed by default. For example, “Concurrent VLSI 
Architecture,” and “Database Group” are links on one of Stanford’s 
Web pages. The user may tap on one of the links. This action will 
display the text of the corresponding page. Alternatively, a left-to-
right swiping pen gesture over the same link description would list 
the target page’s links on the PDA. For example, the lines “Archival 
Repositories” through “Hobbies” in Figure 1 are links on the 
“Arturo Crespo” page. These lines were added to the display in 

Figure 1: Navigation Screenshot of Power Browser Copyright is held by the author/owner. 
WWW10, May 1-5, 2001, Hong Kong. 
ACM 1-58113-348-0/01/0005. 
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response to a user’s left-to-right pen gesture over “Arturo Crespo.” 
Notice that the links on the Crespo page are indented. The resulting 
nested navigation levels are displayed like the folders in many 
graphical file browsers. Successive levels are indented, with thin 
vertical bars indicating the level of browsing depth for each row of 
displayed text. 
In addition to this navigation support, we dynamically create 
inverted indexes of Web sites as users browse the Web from their 
PDAs. The indexes are used for site-specific searching, and to 
provide keyword completion as users write search keywords with 
their pen [4]. User studies in [1, 5], finally, examine different 
techniques for summarizing Web pages for display on PDAs. We 
are using a Web proxy server to prepare the modified PDA views. 
When preparing information for display on a PDA, we can therefore 
afford computational expenses beyond those possible on the PDA 
itself. 
We were able to show that the facilities outlined above are effective 
for searching and browsing. They do not, however, address the 
display and manipulation of HTML forms on small displays. This 
paper focuses on the forms problem. 

1.2 Filling Forms on PDA Screens 
Many HTML pages ask users to provide information that is 
uploaded to a Web server. In many cases, the forms used for this 
purpose are simple, small collections of text input fields. For 
example, search engines often have just one text input field for 
entering search keywords. Web sites for exploring company product 
information might have a pull-down widget from which the user 
chooses products. Other sites use much more complex forms. For 
example, www.garden.com, which offers advice on planting, 
contains extensive forms that include check boxes, radio buttons, 
pull-down lists, and other input mechanisms. 
The problem with forms on PDAs is that the input widgets and 
associated textual explanations consume too much screen real-
estate. It is difficult for users to gain an overview of what the form is 
about, and which information is requested of them. We are therefore 
designing a form filling component for our Power Browser. 
Rather than showing all of the input widgets at once, we want our 
Power Browser initially to just display minimal textual prompts for 
the fields. This approach would allow users to scan and understand 
the form quickly. When the user is ready to fill in information, pen 
gestures over a textual prompt would cause the associated input 
widget to be displayed. All other widgets would remain hidden. 
Figure 2 shows a mock-up example of how the display will work. 
We focus here not on how exactly this interface would look and 
behave, but on the underlying technology that will enable this type 
of user interface approach. 
Figure 2a shows a Web page for finding people’s telephone, 
address, and other information by name, as it would be seen on a 
desktop-size browser. This example is taken from Yahoo!’s site. 
Figure 2b shows the top form, with only the labels being displayed. 
In general, all the text other than the labels will be ignored in this 
view. Consequently, every visible string is the label for some form 
item. Buttons are identified explicitly. Users may tap on the 
corresponding text to activate the button. Links within the form are 
handled as normal hyperlinks. For instance, “State” in the above 
example is a hyperlink to another page. 

Figure 2a: Original HTML Page 

Figure 2b: Form With No Widgets Revealed 

Figure 2c: Form With One Widget Revealed 
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Figure 2c shows the top form expanded. The user has performed a 
left-to-right pen gesture over the last name of the telephone search. 
Now an input widget is available for the user to fill in. A right-to-left 
pen gesture would close the form again, returning the display to the 
state of Figure 2b. 
For the Palm Pilot’s operating system, Palm OS, we need to convert 
HTML text and password input fields to the equivalent dotted lines 
used on the Palm Pilot. Text areas similarly are converted to 
multiple dotted lines. Checkboxes, radio buttons, and selection 
widgets also have their Palm OS equivalents, and we need make the 
conversion for each input field. 

The difficulty in generating the space-efficient display of Figure 2c 
from the original Web page is that we need algorithms that find the 
proper text labels for each input widget. For example, it is easy for a 
human being to recognize that the “First Name” at the top of Figure 
2a is the text label for the input widget below it. Making this 
association automatically, however, is not always easy. 

To illustrate this difficulty, consider the following piece of HTML, 
which produces a portion of the screen display in Figure 2a. 
... 

First Name <input type="text” name="FirstName"> 

Last Name <input type="text” name="LastName"> 

City/Town <input type="text” name="City"> 

... 

Each line of HTML will produce one text label and one text input 
widget when rendered by a browser. We call the expressions in 
angle brackets input elements. Each input element includes the type 
of widget the browser is to display (in all these three cases 
type=“text”), and a name attribute (e.g. name=“FirstName”). At the 
machine level, the matching task is to associate the name attribute 
value of each input element with the best of its surrounding strings. 

As human observers, we easily recognize the text “First Name”, 
“Last Name”, “City/Town” as labels for their respective input 
elements. In the HTML snippet’s second line, for example, it is clear 
to a human that the input element with the name attribute 
‘LastName’ is intended to be matched with the “Last Name” text 
label on the left. We make this association because the name 
attribute and the text label match well, and because we are used to 
reading from left to right. For the above HTML code, an automatic 
matching process could perform the string match the same as a 
human would, and if the match would not be confused by the extra 
space in the label, the result would be successful. A variation of this 
approach is indeed one of the mechanisms we tested below. 

Unfortunately, HTML designers do not always match name 
attributes with corresponding labels as clearly as in the case above. 
Instead of using ‘FirstName’ and ‘LastName’ as name attributes 
within the input widgets, an HTML designer might have used ‘fld1’ 
and ‘fld2’. The browser display would then have been identical. But 
in that case, the string matching technique would have failed. An 
automatic matching algorithm might instead make the match by 
blindly using the string on the left of each input element as the 
match. This approach sometimes does work. However, consider that 
certain labels, especially for the radio buttons and the checkboxes, 
may appear to the right of the form item. For example, consider 
Figure 3, which is an excerpt of the garden.com Web site. 

We see in Figure 3 that the words “early”, “mid”, and “late” are 
each placed to the right of the input widgets they are supposed to 
label. Using a naive algorithm of left-association, we would 
associate the ‘early’ widget with “Spring”, the “mid” label with the 
‘early’ widget, etc. 

Figure 3 illustrates another problem that often occurs with check 
boxes. In many forms, check boxes are grouped, and a common 
label describes the entire group. In Figure 3, the “Spring” label 
describes the three planting time seasons. In addition, each 
checkbox has its own label (“early”, “mid”, etc.). In the Figure, there 
are two such groupings, “Spring” and “Summer”, which in turn 
have a common label (“Planting times”). Form summarization must 
attempt to detect and display such labels. 

These challenges are just a sample of the difficulties faced in 
rendering forms and their labels on PDAs. We must contend with a 
design tradeoff: mismatches can lead to incorrectly transmitted 
forms. This danger would encourage us to include more, rather than 
less of the original textual information on the PDA page. On the 
other hand, the inconvenience and danger of user confusion 
associated with long PDA screens would will us towards careful 
pruning of the text that surrounds form widgets on the screen. This 
design tension can be resolved only by making the selection of text 
labels for input widgets as reliable as possible. We call the process 
of matching text labels with input widgets “form analysis.” 

We examined eight algorithms that can be used together to 
accomplish heuristic form analysis. Conceptually, each algorithm 
takes one HTML form as input. For each input element within that 
form, the algorithms produce as output one string excerpt from the 
form to use as an explanatory label. We describe these algorithms in 
Section 2. In Section 3 we describe the results of experiments we 
conducted to test each algorithm’s performance. A discussion in 
Section 4 explains remaining failure modes, and our plans for 
addressing them. 

2. HEURISTIC MATCHING ALGORITHMS 
Each of our matching algorithms proceeds in two steps. The first 
step is common to all algorithms: 

1. Chunk Partitioning: the entire HTML page is broken into 
“chunks.” Chunks are small pieces of HTML code that are 
delimited by HTML tags, such as text paragraphs, table 
cells, or input elements. The result of this first step is an 
ordered list of all the chunks in the HTML page. 

2. Label Selection: for each input element chunk within the 
chunk list, one text string from neighboring chunks is 
selected as the match that best describes the element’s 
purpose. 

Figure 3: Text Labels Are Not Always Placed 
Before Their Input Widgets 
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Our eight algorithms differ in how they accomplish Step 2. We first 
describe chunk partitioning and then each of our algorithms in turn. 

2.1 Chunk Partitioning 
Chunks are identified by finding bounding HTML tags. For 
example, a paragraph of text that is delimited by a <p> tag is 
considered a chunk. Text strings delimited by table cell tags are also 
taken to be chunks, as are text within header tags, images, input 
elements, and horizontal rules (i.e. HTML-generated lines across the 
page). 

A simplified chunk sequence (composed from a commercial 
gardening page) might look as follows: 

1. [<br>] 
2. ["Welcome to Your"] 
3. [<br>] 
4. ["Garden Environment"] 
5. [<br>] 
6. [<font SIZE="1” face="Arial,Helvetica">] 
7. [<br>] 
8. [<img src="flwr.jpg” alt="Flower">] 
9. [<p>] 
10. ["Sun Exposure"] 
11. [<SELECT name="SQL_LIKE_Optimum_Sun">] 
12. [<option value="1">] 
13. ["full shade"] 
14. [<option value="2">] 
15. ["partial shade"] 

Each expression within square brackets constitutes one chunk. The 
initial string “Welcome to Your” is in a separate chunk from the 
string “Garden Environment” because a line break tag (<br>) 
separates the strings. Also, any HTML tag is in a separate chunk. 
For example, the “full shade” string in line 13 is a separate chunk 
from the ‘option’ chunks that precede and follow it. Incidentally, 
notice that chunks 11-15 will show on a browser screen as check 
boxes labeled “full shade” and “partial shade”. Label “Sun 
Exposure” would describe these two check boxes as a group. 

These sequences of chunks allow us to introduce the notion of 
distance within forms. For example, the string chunk “Sun 
Exposure” is one unit of distance away from the ‘select’ chunk on 
line nine. This distance notion is useful when delimiting the scope 
of a matching algorithm’s activity. For example, our algorithms do 
not consider string chunks as matches, if they are more than n 
chunks away from the input element chunk they are examining. All 
of our algorithms use n=10, a value obtained empirically. 

Each chunk is represented as an 8-tuple [C,T,Fid,LP,GP,M?,TM, 
Addl] with the following contents: 

• C: Content of the chunk. For a text chunk, the content is the 
string itself. For an input element, the content includes the 
name attribute.  

• T: Chunk type: string, input element, break, etc.  
• Fid: Identifier of the form in which the chunk is embedded  
• LP: Local position: chunk’s distance from the beginning of 

the form  
• GP: Global position: chunk’s distance from beginning of 

Web page  
• M?: Boolean indicating whether the chunk was already 

matched, and is therefore unavailable as candidate for 
further matches.  

• TM: Table membership. If the chunk is embedded in a table, 
this field is a pointer into a table list (see below)  

• Addl: Additional information, such as the values of input 
element attributes. 

In addition to the chunk list, a list of HTML table chunk indexes are 
maintained (Figure 4). 

 

Each entry in the table list identifies the range of chunks in that 
table. Notice that tables can be nested. For instance, in Figure 4, 
table 2 is within table 1. All chunks embedded within a table in turn 
identify the inner-most table they are in (TM field). For example, in 
Figure 4, chunk 3 would point back to table 2. For each table entry, 
a two-dimensional array is also maintained to track how chunks are 
laid out in the table. (These arrays are not shown in Figure 4.) As the 
HTML is scanned, the layout array is filled out, so that each entry in 
the array points to the first chunk (in the chunk list) that is located in 
that cell. This layout information is important for algorithms that 
consider page layout in their matching heuristics (see below). 

In setting up the chunk list, the chunk partitioning algorithm 
discards some “stop phrases” that are known to make poor input 
widget labels, but that are commonly encountered in HTML forms. 
These stop phrases include “optional,” “required,” and the asterisk 
character, among others, which are often used to mark optional 
fields.  

We eliminate these terms from the chunk list along with the terms 
containing text-formatting HTML tags, although they are still 
considered in determining the notion of distance. The final PDA 
screen layout manager might still decide to include these stop 
phrases on the display. But the phrases are guaranteed not to be the 
sole labels for input fields. 

Incidentally, notice that the chunking strategy we have described 
here is different from the strategy used in [1, 5] to partition Web 
pages for display. Here, our chunks are used to determine how “far” 
(measured in chunks) potential labels are from input elements. In [1, 
5], on the other hand, Web pages are partitioned into “semantic 
units” that users would like to see on their screens. Since the goals 
are different, the rules for partitioning are different. 

2.2 Matching Algorithms 
Once the chunk and table lists have been constructed, the first step 
of the matching procedure is complete. The lists are passed on to the 

Figure 4: Chunk and Table Index Lists 
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matching algorithms, which find each input element chunk in the 
chunk list, and attempt to find a good label for it. Our matching 
algorithms fall into two main categories. In the first category 
(Sections 2.2.1 through 2.2.3), the algorithms try to find labels that 
are textually “similar” to the variable name used in the input 
element. These algorithms yield a score that measures how similar 
the two strings are. In the second category (Sections 2.2.4 and 
2.2.5), algorithms look at the form layout and search for labels that 
would be displayed close to the input element. These algorithms 
yield a score of 1 if a label is found, and 0 if not. Notice that the 
algorithms often yield different matching labels, with different 
scores. Later on in Section 4 we describe how the “predictions” of 
each algorithm may be combined into a more reliable one. 

2.2.1 N-Gram 
Our N-gram matching algorithm uses an information retrieval 
technique, called “n-gram matching.” This technique was originally 
conceived to overcome unwanted text comparison mismatches when 
two words are compared that differ only by a small typographical 
error. In general, when comparing any two words, A and B through 
the n-gram technique, both words are divided into overlapping 
substrings of length n. This procedure results in two sets of equal-
length substrings. The cardinality of the intersection between these 
two sets serves as a similarity score for A and B. 

For example, consider the words “ants” and “grants” with n=3. This 
technique would generate tri-grams gra/ran/ant/nts from “grants,” 
and ant/nts from “ants.” The resulting matching score would be 2, 
from the common tri-grams “ant” and “nts.” Notice that we do not 
perform any “normalization” to compensate for different string 
lengths. (That is, we do not divide the score by the sum of the 
number of n-grams, as is typically done.) We found the simple 
number of matching n-grams a better predictor for label/input-name 
matching, especially if the strings involved are of very different 
lengths. 

We use n-grams to yield our N-gram algorithm in the following 
way. 

1. For each input element chunk C, obtain the s chunks that 
precede, and the s chunks that follow C. The result of this 
step is a set of up to 2s chunks that are C’s neighbors. There 
may be fewer than 2s neighbors for input elements that are 
closer than distance s from the top or bottom of the page that 
contains the element. The optimal span s was empirically 
determined to be 10. 

2. Obtain the name attribute of chunk C (from its content field). 

3. For each neighbor chunk N of Step 1: 

a. If N is not a string chunk, discard N. 

b. Canonicalize N’s string content by removing all spaces 
and non-alpha characters. 

c. Perform an n-gram match between C’s name attribute 
(from Step 2), and N’s canonicalized string content. 

4. Choose (the string content of) the neighbor chunk with the 
highest n-gram score as the best match, provided that this 
score is greater than or equal to a constant threshold T. This 
constant is the lowest score that can still be considered 
significant enough to be a match. Empirical methods led us 

to set T=2. If no score meets the threshold, then the 
algorithm reports failure (score = 0). 

The literature suggests that tri-grams (n=3) tend to work well for 
successful matching [2], and we use tri-grams for our N-gram 
algorithm. 

2.2.2 Letter/Word and Word/Letter 
The Letter/Word algorithm is a variation of the N-gram algorithm. 
The difference lies in the canonicalization Step 3b. Rather than 
removing spaces and non-alpha characters, the first two words of 
chunk N’s string content are extracted. Any remaining words in the 
string are discarded. The first letter of the first word is then 
concatenated with the second word. Thus, “First Name” would 
become “FName,” and “Work Phone” would become “WPhone.” If 
N’s string contains fewer than two words, the Letter/Word algorithm 
is not applicable. We developed this algorithm, because we noticed 
that such contractions are frequently used by HTML designers. 

Word/Letter is the dual of Letter/Word. For example, “Min Height” 
would become “MinH,” and ‘Min Width’ would be transformed to 
“MinW.” 

2.2.3 Substring 
The Substring algorithm is another variation on the N-gram 
algorithm. It is designed to match words in which one word is a 
contraction of the other. For example, the Substring algorithm 
would successfully match “password” with ‘pwd’, or “height” with 
‘hgt’. 

The modification to the N-gram algorithm occurs in Steps 3b and 
3c. The canonicalization Step 3b is replaced with the following 
procedure. After removing spaces and non-alpha characters from 
neighbor N, the lengths of N and the input element chunk’s name 
attribute (C) are compared, and their ratio is recorded. For example, 
consider a input element’s name attribute ‘pwd’, and a neighbor 
string chunk “Password.” Comparing their lengths, the algorithm 
would obtain the approximate ratio R=3:1=3. 

The modified Step 3c then partitions the longer of N and C into R 
substrings of roughly the same length. The shorter word is 
partitioned into R letters. For example, “Password” would be 
partitioned into “Pas,” “swo,” and “rd.” The shorter string, “pwd,” 
would be partitioned into its three component letters. 

Finally, the Substring algorithm tests for the presence of each of the 
R letters in their corresponding substrings. Continuing with our 
example, the presence of “p” in “Pas,” “w” in “swo,” and “d” in 
“rd,” leads to three matches, or a raw score of three. 

2.2.4 Tables 
HTML forms make heavy use of tables as a visual layout tool. 
Visual layout of form items on the page are a very strong clue that 
human users pay attention to when performing the matching task we 
are trying to accomplish automatically. Tables can force elements to 
be grouped visually on the page, to be stacked on top of each other, 
or to be lined up neatly in a row (Figure 5). HTML pages without 
tables are much less predictable in their appearance to the eventual 
human user. Our Table algorithm attempts to emulate how human 
onlookers tend to match text labels with input widgets on a screen. 

Recall that the table and chunk lists enable matching algorithms to 
determine where input elements are located within a table. When 
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trying to match an input element chunk C that is located within a 
table, the table algorithm first checks whether a string chunk is 
located within the same table cell with C. In Figure 5, this condition 
is true, for instance, in the case of the ‘E-mail address’ text widget in 
Figure 5, but not for the text widget intended for entering a 
password. If a string chunk is located within the same cell with C, 
that string is chosen to be the label for C. 

If no string is found within the same cell, the Table algorithm checks 
whether a string chunk is located in a cell immediately to the left of 
the input element it is trying to match. If such a string is present, it is 
chosen as the match. If no such string is located to the left of C, the 
reason could be that C is the left-most cell of the table, or that the 
cell on the left does not contain a string. In this case, the table 
algorithm checks first the cell above, then the cell below, and finally 
the cell to the right of C, choosing the first string it finds in that 
sequence of trials. If a label is found, the algorithm yields a score of 
1. Otherwise, if the Table algorithm fails, it reports a score of 0. 

2.2.5 Previous and Following 
When choosing a text label match for an input element chunk C, the 
Previous algorithm examines in order up to s chunks that precede C. 
As soon as a string chunk is found, that chunk’s string content is 
chosen as the match for C. If no string is found within span s, then 
the Previous algorithm reports failure. 
The Following algorithm similarly examines up to s chunks that 
follow C. 
Experimental results made us choose 10 as the value of the 
matching span s. 

2.2.6 NULL Algorithm 
The NULL algorithm simply returns the value of an input 
element’s ‘name’ attribute as that input element’s match. (The 
algorithm always returns a score of 1.) For example, consider 
the task of matching the text input element in the following 
chunk sequence: 

["Please enter your electronic mail address."] 

[<br>] 

[<input type="text” name="email">] 

The NULL algorithm would choose “email” as the matching text 
label, no matter which strings are found in neighboring chunks. 

2.3 Finding Group Labels 
As mentioned in Section 1, groups of checkboxes often have one 
label for the entire group, and one label for each checkbox. Consider 
the following example: 

<form ...> 

"Which plants do you like?"<br> 

<input type="radio” name="plants” value="tul"> 

Tulips<br> 

<input type="radio” name="plants” value="rose"> 

Roses<br> 

<input type="radio” name="plants” value="beg"> 

Begonias<br> 

"What did we forget?"<br> 

<input type="text” name="other_plant"> 

</form> 

This HTML snippet would display “Which plants do you like?”, 
followed by three radio buttons, labeled “Tulips”, “Roses”, and 
“Begonias”, respectively. A text input box labeled “What did we 
forget?” would be placed below the radio buttons. The name 
attribute “plants” is common to all radio buttons. This property 
identifies the three buttons as a group. This grouping ensures that 
only one of the radio buttons is checked at any time. When 
rendering grouped buttons on a PDA, a screen layout manager 
might also wish to place them in close proximity to each other. 

Notice that the N-gram algorithm would easily identify the labels for 
the radio buttons. But we also need to ensure that the group as a 
whole is labeled. If the PDA display were to discard the question 
about plant preference, then the radio buttons, even with their labels, 
would not make sense to the user. 

Before finding individual labels for grouped checkbox and radio 
button input elements, our system therefore attempts to identify a 
group label for each group. The algorithm for finding group labels is 
as follows. 

1. We apply the N-gram algorithm to the ‘name’ attribute value 
of the first button in the group. In this example, the ‘name’ 
attribute has the value “plants”. The best matching label in 
this case is “Which plants do you like?” with a score of 4. 

2. We apply the N-gram algorithm to the first button’s ‘value’ 
attribute (in this case “tul”). In this case, there is no 
matching label nearby, so the score is 0. 

3. The highest-scoring match is taken to be the label for the 
button group. This example would correctly yield “Which 
plants do you like?” as the label for all buttons with ‘name’ 
attribute “plants”. 

Notice that the group label is now “used up.” The respective text 
chunk should not subsequently be identified as the label for some 
individual input element. For example, the text box at the bottom of 
the above HTML snippet contains ‘name’ attribute “other_plant”. 
This name would match well with the “Which plants do you like?” 
string, but that match would be disallowed. Thus, the N-gram 
algorithm would find no match for the bottom text box. However, 
the Previous algorithm would find the correct string “What did we 
forget?” To register “used up” labels, each chunk record includes a 
Boolean (called M? in section 2.1) which is set to TRUE when a 
chunk is no longer available for matching. 

3. PERFORMANCE EXPERIMENTS 
In an initial experiment, we tested the effectiveness of our 
algorithms on 100 forms. The forms were selected at random. In 
particular, we selected random Web pages from a cache of 40 
million pages. If a page did not have a form, it was discarded; else it 
was kept. If a page was located at the same site as a previously 
selected page, it was discarded, so that HTML design conventions 

Figure 5: Positioning Form Elements With Tables 
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on any one site would not bias our performance studies. In the 100 
forms we collected, there were an average of four input elements. 
We call these forms our “simple” forms, to distinguish them from 
the “complex” forms used for our second experiment. 

For each of the input fields in the simple forms, a human being 
manually matched the correct text label. We then applied all of our 
matching algorithms to each input element. As mentioned, we used 
a maximum chunk span of 10, and an n-gram matching threshold of 
2. That is, we only considered string chunks within a neighborhood 
of plus/minus 10 as candidates for input element labels, and we 
required a score of at least 2 for algorithms that involve n-gram 
matching. 

Once all matching scores for a given input element had been 
computed, we took the match with the highest score as the “winner.” 
In this first set of experiments, we made no attempt to normalize the 
scoring mechanism across the algorithms. Thus, for example, a 
successful N-gram algorithm (with its score greater than T=2) will 
always beat a table algorithm (with maximum score of 1). (A better 
scheme to combine algorithms is described in Section 4.) 

Finally, we compared the winner with the correct answer. We found 
that for this initial large batch of forms, our matching success was 
95%. A large number of forms on the Web that one might wish to 
fill out on a PDA are as simple as the forms we matched in this first 
experiment. Examples are search forms, and simple order forms. 

Nevertheless, the high success rate with simple forms encouraged us 
to tackle more complex forms. As the base data for two additional 
experiments, we therefore manually selected 21 Web sites that 
contained 48 fairly complex forms with between two and 30 
elements. All forms taken together, this collection included 330 
input elements, of which 307 were embedded in HTML tables. Of 
all input elements, 40% were one-line text input fields, 2% were 
password input fields, 22% were select fields (pull-down lists of 
choices), 5% were editable, multi-line text areas, 15% were radio 
buttons, and 16% were checkboxes. 

For each input element in each form, we again manually found the 
correct labels. Then we ran two experiments on these complex 
forms. The first experiment aimed at measuring the effectiveness of 
each individual algorithm when used by itself. The second 

experiment examined the effectiveness of combining the algorithms 
with a score maximization scheme. This second experiment is 
described in Section 4.1. 

For the first experiment, we used 115 of our 330 input elements as 
the test set. We ran all of our algorithms on each of the 115 input 
elements. We recorded how many times each algorithm believed 
that it had generated a successful match, and how often this match 
was correct, as compared with the human-generated match. 

We also recorded failure reasons when none of the algorithms 
succeeded. 

3.1 Experimental Results 
Table 1 shows the results of our 115 element, individual algorithms 
experiment on complex forms. 

Each row of Table 1 describes the performance of our algorithms for 
the forms on one Web site. The left-most column summarizes each 
site’s statistics. The first number in parentheses is the number of 
forms on the site. The second number is the total number of input 
elements to be matched on these forms. For example, on site 2, we 
tested our algorithms on four forms that contained a total of 12 input 
fields. We include these numbers to show how the forms were 
spread across different sites, and how HTML conventions on any 
one site might influence the algorithms. 

Each of the remaining eight columns contains the results of one 
algorithm. The first of the two numbers in each table cell indicates 
the number of times the respective algorithm produced a correct 
match. The second number indicates how often the algorithm 
concluded that it had a match. For example, within site 3, the N-
gram algorithm “thought” nine times that it had a match, and its 
match was correct for seven of these nine matches. Given that site 3 
contained a total of 17 input elements, we can see that for eight 
input elements the N-gram algorithm decided to pass on matching. 
Such a pass condition occurs when an algorithm’s matching score is 
below the matching threshold. 

The bottom of each column shows four summary results for the 
respective algorithm. The first result is the total of the column. In the 
N-gram column, for example, we see that when confronted with our 
115 input elements to match, the algorithm concluded that it found a 

Table 1: Each Algorithm Matching 115 Input Fields
Site (Forms) N-Grams Letter/Word Word/Letter Substring Tables Previous Following Null 

1 (1,26) 9/9 1/1 0/0 2/2 17/25 15/26 0/26 6/26 

2 (4,12) 5/5 0/0 0/0 3/3 0/3 5/12 0/12 6/12 

3 (1,17) 7/9 0/0 0/0 4/4 0/0 11/17 0/17 2/17 

4 (3,8) 8/8 2/2 0/0 7/8 6/8 8/8 0/8 8/8 

5 (1,21) 11/12 1/1 0/0 11/12 10/13 14/21 5/21 7/21 

6 (1,7) 0/0 0/0 0/0 0/0 6/7 3/7 1/7 0/7 

7 (1,13) 13/13 0/0 0/0 6/6 0/0 9/13 4/13 10/13 

8 (1,11) 4/4 0/0 0/0 4/4 9/9 6/11 0/11 6/11 

TOTALS 57/60 4/4 0 37/39 48/65 71/115 10/115 45/115 

Success 49% 3% 0% 32% 42% 62% 9% 39% 

Failure 3% 0% 0% 2% 15% 38% 91% 61% 

Pass 48% 97% 100% 66% 43% 0% 0% 0% 
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match in 60 of the cases. The algorithm produced the correct match 
in 57 of these cases. 
The second summary is the success rate of the respective algorithm 
when measured against the entire collection. The N-gram 
algorithm’s 57 successful matches, for example, translate to a 
(approximate) 49% success rate over the 115 input elements. 
The third total is the failure rate. It shows how often the respective 
algorithm produced an incorrect result. For example, when 
processing the 115 input elements, the N-gram algorithm produced 
3 incorrect results (60-57), amounting to a failure rate of 3%. 
The fourth total, finally, is the algorithm’s “pass” rate. It shows how 
often the algorithm did not venture a match at all. Notice that the 
Previous and Following algorithms can almost always be applied. 
The only exceptions occur when an input element has no string 
chunk to its left or right, respectively. The NULL algorithm is 

always applicable. This near-universal applicability of the three 
algorithms is reflected in their pass rate of zero. 

4. DISCUSSION 
We see from Table 1 that Previous has a high success rate, as one 
might expect. Notice, however, that it also features a high failure 
rate. The N-gram algorithm, while featuring a lower success rate, 
also fails much less. When comparing the success/failure rates, N-
gram stands out with a ratio of 17. The Letter/Word and 
Word/Letter algorithms did not make any mistake in this data set, 
but most of the time they were not applicable. 
Upon conclusion of the experiments, we analyzed the most frequent 
failure modes, and thought about how our various algorithms might 
be combined to form an optimized matching system. The following 
sections discuss these issues. 

Table 2: Matching Performance for Algorithm Combination over 330 Input Elements 

Site (Forms) N-Grams Letter/Word Word/Letter Substring Tables Previous Following Null Total 

1 (1,26) 9/9 0/0 0/0 0/0 12/17 0/0 0/0 0/0 21 

2 (4,12) 5/5 0/0 0/0 0/0 0/3 2/3 0/0 1/1 8 

3 (1,17) 7/9 0/0 0/0 0/0 0/0 7/8 0/0 0/0 14 

4 (3,8) 6/6 2/2 0/0 0/0 0/0 0/0 0/0 0/0 8 

5 (1,21) 11/12 1/1 0/0 0/0 3/6 2/2 0/0 0/0 17 

6 (1,7) 0/0 0/0 0/0 0/0 6/7 0/0 0/0 0/0 6 

7 (1,13) 13/13 0/0 0/0 0/0 0/0 0/0 0/0 0/0 13 

8 (1,11) 4/4 0/0 0/0 0/0 7/7 0/0 0/0 0/0 11 

9 (2,18) 12/13 0/0 0/0 0/1 0/3 0/0 1/1 0/0 13 

10 (1,15) 3/3 0/0 0/0 0/0 0/0 0/1 11/11 0/0 14 

11 (8,11) 1/1 0/0 0/0 0/0 0/0 4/8 0/0 2/2 7 

12 (7,64) 30/42 2/2 0/0 0/5 0/0 10/12 0/0 2/3 44 

13 (3,17) 8/8 0/0 1/1 0/0 2/6 0/0 0/0 0/2 11 

14 (1,30) 22/22 0/0 0/0 0/0 4/6 2/2 0/0 0/0 28 

15 (4,4) 4/4 0/0 0/0 0/0 0/0 0/0 0/0 0/0 4 

16 (1,4) 0/1 0/0 0/0 0/0 3/3 0/0 0/0 0/0 3 

17 (2,4) 2/2 0/0 0/0 0/0 1/2 0/0 0/0 0/0 3 

18 (2,25) 12/12 0/0 0/0 0/0 8/11 0/0 0/0 0/2 20 

19 (2,3) 2/3 0/0 0/0 0/0 0/0 0/0 0/0 0/0 2 

20 (1,13) 6/6 0/0 2/2 0/0 3/5 0/0 0/0 0/0 11 

21 (1,8) 6/8 0/0 0/0 0/0 0/0 0/0 0/0 0/0 6 

TOTALS 163/183 5/5 3/3 0/6 49/76 27/36 12/12 5/10 264/330 

Success 49% 2% 1% 0% 15% 8% 4% 1.5% 80% 

Failure 6% 0% 0% 2% 8% 3% 0% 1.5%  

Not Applied 45% 98% 99% 98% 77% 89% 96% 97%  
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4.1 Common Breakdowns 
The three main failure reasons in our matching scheme were overly 
limited scope, image faults, and group labels for radio buttons or 
check boxes. An example of overly limited scope would occur in the 
following case (Figure 6): 

 
The corresponding simplified HTML looks as follows: 

<tr> 

<td>Full Name <br>(e.g. John H. Doe)</td> 

<td><input type="text” name="fname"></td> 

</tr> 
Our Table algorithm would note that the input element is in a cell all 
by itself. It would therefore retrieve the chunk to the left of the 
element. Since “First Name” and “e.g. John H. Doe” are separated 
by a break tag (<br>), our chunk partitioning procedure will separate 
the two pieces of text into two chunks. The label chosen for the 
input field would thus incorrectly be chosen to be “e.g. John H. 
Doe", which is much less desirable than the obviously correct match 
“First Name". In our algorithm combination experiment (see below), 
about 7% of our matches failed due to a limited scope breakdown. 
An image fault occurs when the correct match is text within an 
image. We currently do not perform optical character recognition 
(OCR) on images. None of our algorithms will therefore find such 
text. About 3% of our matches failed due to image faults. 
A radio button error occurs when groups of radio buttons do not 
have a common label, or when they are missing labels for the 
individual buttons. As described, our algorithms process radio 
buttons by matching the first button’s ‘name’ and ‘value’ attributes 
to surrounding text chunks. This process attempts to find a group 
label for all the buttons, as well as an appropriate label for each 
individual button. Many radio buttons and checkboxes are indeed 
organized in groups with such a group label. However, when there 
are no group or individual labels, our system tends to produce 
mismatches as it insists on finding these labels. Figure 7 shows an 
example for missing individual labels. None of our algorithms finds 
a label for the drop-down menus, since there are no labels to choose 
from. However, notice that even though we label this instance as a 
“failure,” in reality the user will see the menu values in the widget 
displayed on the PDA, and will be able to make a selection just as 
with a full display. 

 
A dual case occurs when text or select fields are grouped, as might 
be the case with an HTML form for inputting postal addresses. 
Figure 8 shows an example. 
The text “Home Address” is a group label for the following input 
fields. Each input field has its own label. A PDA display that filters 

out the “Home Address” group label would leave the user 
wondering which address is being requested. Unfortunately, 
contrary to groups of radio buttons, groups of text fields are not 
identified in the HTML code by common input element ‘name’ 
attribute values. Automatic analysis therefore easily misses such 
groupings. We have so far not systematically addressed this problem 
of group labels for text fields in our system. In some cases, special 
circumstances cause us to produce good results anyway. We will not 
go into detail on these cases. 
Among these group-related failures, the missing group label for 
check box groups is the most common. Our 330 input element test 
set included 102 radio buttons and check boxes. Of these, 14 were 
missing a group label (14%). Of our 203 text fields, 15 (7%) had 
group labels, of which we missed nine. Overall, about 48% of our 
matching failures were due to grouping problems. 
To conclude our discussion of failure modes, we observe that 
failures will not be catastrophic. If a user is confused by the labels 
displayed on the PDA (or is puzzled by the results obtained after 
filling out the form), he can switch the display to a full HTML 
rendering. As an intermediate option, we plan to provide progressive 
disclosure of text around the input field. Transmitting the full page 
to the PDA, and scrolling through the full page, will be more time 
consuming than manipulating our “synthesized” forms, but will be 
an option. Of course, keep in mind that even the full HTML 
rendering may be error prone on a small display. For example, if the 
complete form is not visible on the screen, the user may get 
disoriented. In Figure 3, for instance, if all the checkboxes cannot be 
seen, the user may not be able to tell if a label corresponds to the 
checkboxes on its left or on its right. 

4.2 Combining Matching Algorithms 
Observe in Table 1 that in many cases, multiple algorithms come up 
with the correct answer. For example, the total number of successful 
matches in row 1 of Table 1 is 50, significantly more than the 26 
input fields to be matched. At the same time, we find cases when 
one algorithm performs significantly better than others. For 
example, in row 6, the N-gram algorithm features no match at all, 
while the Table algorithm successfully matches six of the seven 
input elements. 
These observations raise the question of how best to combine the 
algorithms such that overall matching performance is optimized. 
Several strategies for combination are available, and in particular we 
empirically developed one that orders the strategies according to 
their observed usefulness. 
With this simple score maximization strategy, algorithms N-gram, 
Letter/Word, Word/Letter, Substring, and Tables are run, one at a 
time, for each input element. If any of these algorithms produces a 
match for an input element, we select the highest-scoring match as 
the winner. If the first five algorithms did not produce a match, we 
attempt Previous, Following, and NULL in order, picking the first 
match we find. We isolated Previous and Following from the other 

Figure 8: Text Field Group With Group Label 

Figure 7: Missing Individual Labels 

Figure 6: Limited Scope Failure 
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five algorithms in this way, because of their high failure rate. The 
NULL algorithm is the last in the application sequence, because it 
can always be applied, and therefore does not have a “natural” 
ability to be discriminating. Also, recall that the label this last 
algorithm produces is the internal HTML input element name 
attribute, which is not normally intended for display on the screen. 
We therefore gave lowest priority to this algorithm. 
Table 2 shows the results of our combined strategy running over the 
full 330 input element data set. 
Table 2 is organized similarly to Table 1. The differences are as 
follows. On the far right, a new column has been added. It lists the 
total number of input elements that were successfully matched in 
each row. Thus, in row one, 21 of the 26 input elements were 
successfully matched by the combined strategy. At the lower right of 
Table 2, the total matching result is 264/330, or 80%. 
Notice that, in contrast to Table 1, there is no overlap in the success 
numbers for each algorithm. For example, in the first row, the N-
gram algorithm’s nine successful matches are distinct from the 12 
matches reported for the Table algorithm. For any given input 
element, only one of the algorithms is thus ever credited for a 
successful match. 
We see that the N-gram algorithm provides the lion’s share of all 
successful matches (49%). The Table algorithm is the second-most 
successful, with a failure rate comparable to N-gram. Letter/Word, 
Word/Letter, and Following are “safe” algorithms to try, in that they 
did not produce failures, even though their success rate was small as 
well. 
While this optimization strategy works reasonably well for complex 
forms, and quite well for simple ones, it is an open question whether 
some other strategies might perform better. We could, for example, 
weight the results of each algorithm, depending on the algorithm’s 
success/failure ratio. The results of high-ratio algorithms would 
carry more votes in the voting process than results from low-ratio 
algorithms. We plan to continue our experiments, especially the 
development of these strategies for optimizing overall performance. 

5. CONCLUSION 
Our goal is to automatically and dynamically “summarize and 
organize” Web pages for display on small hand-held devices. In this 
paper we have focused on how best to display forms on these 
devices. In particular, we have shown various strategies for selecting 
descriptive labels for the various input elements that appear on the 
summarized forms. Our experiments show that in the vast majority 
of cases our algorithms find labels that a human would have 

selected, thus making summarized form display feasible and 
attractive. 

Of course, there are still ways to improve on our results. For 
example, our syntactic and structural feature analysis can be 
improved. In particular, we are extending our approach to take into 
account occurrences such as colons at the end of text strings, as well 
as parenthetical expressions. We might, for example, favor text 
chunks with trailing colons if these chunks immediately precede an 
input field. At the same time, we might lower the matching 
eligibility of any text chunks that are parenthesized. 

As Web page designs grow more elaborate, labels in images will be 
more frequent. As reported above, we currently have no facilities for 
detecting images that are used as input field labels. As a first step, 
we will use ALT tags as substitutes for text in images. An ALT tag 
is a word or phrase that is associated with an image link in an 
HTML page. This information is displayed to users while the image 
is being loaded and is not yet visible on the user’s screen. Beyond 
the use of ALT tags, we plan to examine how well we can do when 
we perform optical character recognition on the images themselves. 
We will focus on images that are in page layout positions often 
occupied by labels. 
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