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ABSTRACT 
XML is poised to take the World-Wide-Web to the next level of 
innovation. XML data, large or small, with or without associated 
schema, will be exchanged between increasing number of 
applications running on diverse devices. Efficient storage and 
transportation of such data is an important issue. We have 
designed a system called Millau and a series of algorithms for 
efficient encoding and representation of XML structures. In this 
paper we describe some of the newer algorithms and APIs in our 
system for compression of XML structures and data.  Our 
compression algorithms, in addition to separating structure and 
text for compression, take advantage of the associated schema (if 
available) in compressing the structure. We also quantify XML 
documents and their schema with the purpose of defining a 
decision  logic to apply the appropriate compression algorithm for 
a document or a set of documents following a particular schema. 
Our system also defines a programming model corresponding to 
XML DOM and SAX for XML APIs for XML streams and 
documents in compressed form. Our experiments have shown 
significant performance gains of our algorithms and APIs. We 
describe some of these results in this paper. We also describe 
some web applications based on our system. 

Categories and Subject Descriptors 
E.4. [Coding and Information Theory]: Data compression and 
compaction. H.1.1[Systems and Information Theory]: 
Information theory. 

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation, Standardization, Languages, Theory. 

Keywords 
XML, DOM, SAX, Compression, WBXML. 

1. INTRODUCTION 
With the boom of Business-to-Business applications and the need 
to run web applications over a variety of user devices, the Internet 

community is rapidly realizing the power of XML [1] as a 
language for data communication.  The hierarchical structure of 
the language and the facility to label and reference elements 
affords exchanging data while retaining structural relationship 
between entities in the data. The extensible nature of the language 
with a facility to define domain-specific schemas (called 
Document Type Definitions (DTDs) enables customizing the 
element and attribute names and their relationships while 
retaining a common structure. At the same time, the seamless 
dependence on the Internet to find information and conduct 
business has caused the network bandwidths to be tested to their 
limits. One approach to addressing this bandwidth problem is to 
compress data on the network.   

The Wireless Application Protocol (WAP) [4][9] defines a format 
to reduce the transmission size of XML documents with no loss of 
functionality or semantic information. The core of our system, 
called Millau, extends this format while improving on the 
compression algorithm itself. It separates structure compression 
from text compression. In addition it takes advantage of the 
schema and data type information, if present, to achieve better 
compression. To be compliant with the XML standards, it defines 
APIs equivalent to the tree model of DOM (Document Object 
Model) [3] and the event and streaming model of SAX (Simple 
API for XML) [2] to work with encoded XML documents.  

This paper discusses new algorithms for efficiently encoding 
XML documents in our system. It also discusses quantification of 
XML documents and their schema with the purpose of studying 
these algorithms. It also discusses programming models and APIs 
for such efficient representations. The paper is organized as 
follows: In the next section we discuss work in text data 
compression and XML compression. In section 3 we introduce 
our system. In sections 4 and 5 we discuss various improvements 
to the core compression algorithm in Millau [22][23]. In section 
5, specifically, we discuss the Differential DTD Tree Compression 
Algorithm that performs compression based upon the differential 
information between the document and its schema. In section 6 
we study quantification of XML documents and DTDs. In section 
7 we study experimental results. In section 8 we discuss 
Document Object Models that cater to compressed documents. In 
section 9 we introduce a couple of prototypical applications we 
built using our system. In section 10 we draw conclusions and 
chalk out path for future work. 

2. RELATED WORK 
Lossless data compression is a mature field of research [15] 
mainly based on Claude Shannon’s information theory that there 
is a direct correlation between the probability of occurrence of a 
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symbol and the bits needed to encode it.  Huffman coding [17] 
achieves the minimum amount of redundancy possible in a fixed 
set of variable length codes. It uses statistical modeling to encode 
symbols using the probability of the symbol’s occurrence.  A 
dictionary based compression scheme uses a different concept. It 
looks for groups of data that occur in a dictionary. If a match is 
found an index into the dictionary is output instead of the code for 
that symbol. The longer the match, the better the compression 
ratio. In LZ77 compression [16], for example, the dictionary 
consists of all the strings in a window into the previously read 
input stream. The deflate algorithm [6] uses a combination of the 
LZ77 compression and the Huffman coding. It is used in popular 
compression programs like GZIP[7] or ZLIB[5]. 

These text compression algorithms perform compression at the 
character level. In adaptive extensions (like in LZ77) the system 
slowly learns correlations between adjacent pairs, triples, 
quadruples of characters to improve upon the compression. Other 
algorithms [18] use words instead of characters. In [19] a 
complete offline dictionary is inferred to optimize the choice of 
phrases for optimization.   

As for XML, the Wireless Application Protocol Forum [9] has 
proposed a table-based encoding of element names and attributes 
into what is called a code space. It takes advantage of both the 
offline approach (since the codespaces are built offline) and of the 
word-based approach (since tags and element names are the most 
frequent occurrences in an XML document). However, it does not 
attempt to compress the text data and the attribute value data 
defined outside the DTD that occur in a document. Moreover, it 
does not suggest any method to build efficient code spaces. Our 
system addresses all of these limitations. Further, it introduces 
other compression techniques that are advantageous in certain 
classes of XML documents. We quantify XML documents based 
on various criteria like complexity (number of elements and 
attributes, size of the document), distance from the DTD, and  
statistical measures like frequency of occurrences of elements and 
attributes, size of the text data, tag and text ratios, and entropy 
measures based on well-formedness and validity. We measure 
DTD complexity based on number and frequency of elements, and 
density of the operators, among other measures. We introduce 
novel algorithms to perform compression and relate the 
performances to this quantification. 

Other XML-related compression research work includes Xmill 
[25]. XMill uses binary encoding for structure and for content and 
performs structure and content separation. Additionally, it takes 
user input hints to perform efficient encoding. XMill performs 
well for large documents and not so well for smaller documents. 
XMLZip [24] from XML Solutions provides a facility for the user 
to specify the depth at which compression is to be performed. This 
way the system provides efficient access to top-level nodes. The 
main limitation of XMLZip is that it consumes large memory 
resources and runs out of memory for large documents. 

3. COMPRESSION IN Millau 
Millau starts with an extensive implementation of WBXML, 
extending it with separation of structure and content. By 
separating structure and content it separates the content and 
structure redundancy by encoding the structure part using the 
WAP WBXML encoding and the content using standard text 
compression techniques. Thus the first cut implementation takes 

advantage of the redundancy in the structure part and of the 
content part. The general architecture of Millau compression is 
given in figure 1.   The system takes in as input either an XML 
stream or a DOM tree structure, and as part of compression splits 
it into 2 parts – a structure part containing the encoding for the 
element tags and attributes and the content part containing the 
compressed data form of the text part. The decompression process 
does just the reverse - - reading in two compressed streams 
(structure and content) and producing an XML stream or a DOM 
tree or generating SAX events as required. 

 

Figure 1 Architecture of the Millau Compression -  
Decompression System.  

3.1 Millau Compression File Format 
The Millau encoding format is an extension of the WAP Binary 
XML format. The WBXML (Wireless Application Protocol 
Binary XML) Content Format Specification [4] defines a compact 
binary representation of XML. This format is designed to reduce 
the transmission size of XML documents with no loss of 
functionality or semantic information. For example, WBXML 
preserves the element structure of XML, allowing a browser to 
skip unknown elements or attributes. More specifically, the 
WBXML content encodes the tag names and the attributes names 
and values with tokens (a token is a single byte). 

In WBXML format, tokens are split into a set of overlapping 
“code spaces”. The meaning of a particular token is dependent on 
the context in which it is used. There are two classifications of 
tokens: global tokens and application tokens. Global tokens are 
assigned a fixed set of codes in all contexts and are unambiguous 
in all situations. Global tokens are used to encode inline data (e.g., 
strings, entities, opaque data, etc.) and to encode a variety of 
miscellaneous control functions. Application tokens have a 
context-dependent meaning and are split into two overlapping 
“code spaces”: the “tag code space” and the “attribute code 
space”. 

The tag code space represents specific tag names. Each tag token 
is a single-byte code and represents a specific tag name. Each 
code space is further split into a series of 256 code spaces. Code 
pages allow for future expansion of the well-known codes. A 
single token (SWITCH_PAGE) switches between the code pages.  

The attribute code space is split into two numeric ranges 
representing attribute prefixes and attribute values respectively. 
The Attribute Start token (with a value less than 128) indicates the 
start of an attribute and may optionally specify the beginning of 
the attribute value. The Attribute Value token (with a value of 128 
or greater) represents a well-known string present in an attribute 
value. Unknown attribute values are encoded with string, entity or 
extension codes. All tokenized attributes must begin with a single 
attribute start token and may be followed by zero or more attribute 
value, string, entity or extension tokens. An attribute start token, a 
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LITERAL token or the END token indicates the end of an 
attribute value. 

In Millau format, an Attribute Start token is followed by a single 
Attribute Value token, string, entity, or extension token. So there 
is no need to split the attribute token numeric range into two 
ranges (less than 128 and 128 or greater) because each time the 
parser encounters an Attribute Start token followed by a non-
reserved token, it knows that this non-reserved token is an 
Attribute Value token and that it can be followed only by an END 
token or another Attribute Start token. Thus, instead of two 
overlapping code spaces, we have three overlapping code spaces: 

1. tag code space as defined in the WAP specification; 

2. attribute start code space where each page contains 256 
tokens; 

3. attribute value code space where each page contains 256 
tokens. 

Notice that in WBXML format, character data is not compressed. 
It is transmitted as strings inline, or as a reference in a string table 
which is transmitted at the beginning of the document. In Millau 
encoding format, character data can be transmitted on a separate 
stream. This allows separation of the content from the structure so 
that a browser can separately download the structure and the 
content or just a part of each. This further allows compression of 
the character data using traditional compression algorithms like 
deflate[6]. In the structure stream, character data is indicated by a 
special global token (STR or STR_ZIP) which indicates to the 
Millau parser that it must switch from the structure stream to the 
content stream if the user is interested in content and whether the 
content is compressed (STR) or uncompressed (STR_ZIP). 
Optionally, the length of the content is encoded as an integer in 
the structure stream right after the global token (STR_L or 
STR_ZIP_L). If the length is not indicated, the strings contained 
in the structure must terminate with an End Of String character or 
a null character. 

4. NEW CLASS OF Millau ALGORITHMS 

4.1 Improved Code Assignments 
The encoding can be improved and better compression can be 
obtained if the element tags are assigned tokens in such a way that 
the number of page switches are minimized. One of the techniques 
would be to break down the elements in the schema based upon 
proximity of occurrences into clusters whose maximum size is the 
size of a page. 

4.2 Variable Byte Encoding 
An alternative to the code spaces approach is to encode the tags 
with variable length tokens. One or several bytes encode a tag 
according to its occurrence frequency. The 128 most frequent tags 
will be encoded with a single byte. The format of these bytes is 
similar to the byte format of UTF-8 [20].  The frequency of the 
element occurrence can be obtained either by pre-processing the 
document to identify the element frequency and assigning smaller 
tokens for the most frequent ones. Alternatively, since the DTD 
represents the document schema, it is possible to predict the 
probability of occurrence frequency of each element and encode 
based on that. In the most degenerate case, if the DTD has no 
operators of the kind ?, *, +, | or ANY, then there is only one 
single element structure that is valid for this DTD (though there 

may be many documents with different text content, for example). 
Variable byte encoding can also be driven by using user input of 
frequency, or by random assignment of frequencies to each 
element. 

4.3 Example 
Consider the following DTD: 

<!ELEMENT book (title, authors, ISBN?, price)> 
<!ELEMENT title (#PCDATA)> 
<!ELEMENT authors (author)+> 
<!ELEMENT author (firstName, lastName)> 
<!ELEMENT ISBN (#PCDATA)> 
<!ELEMENT firstName (#PCDATA)> 
<!ELEMENT lastName (#PCDATA)> 
<!ELEMENT price (#PCDATA)> 

It can be seen from the DTD that the probability of occurrence of 
the book, title, authors, and price is the same, as they occur 
exactly once. ISBN occurs zero or one time. For every occurrence 
of  author, there is an occurrence of firstName and of lastName. It 
can be obviously noted that the probability of occurrence of 
author is at least as much as that of authors since there is at least 
one, possibly more than one, occurrence of author. By assigning 
an upper limit (of say, 5) to the number of occurrences to author, 
and with the assumption that the number of author occurrences 
happen with some probability distribution, and by similarly 
setting the probability of ISBN being present, we can assign 
probabilities to the occurrence for each element. Then the 
elements with high probability occurrence are assigned smaller 
encodings while the elements with  low probability occurrences 
can be assigned longer encodings in the UTF-8 style variable byte 
encoding scheme. A typical token in this scheme appears as 
follows: 

ABYZZZZZ | YZZZZZZZ | YZZZZZZZ …  

where each of X, Y, Z represent a bit and where A is the default 
flag for content information, B is the default flag for attributes 
information, Y specifies “has more elements” flag and Z is the 
token value bit. The Z bits are right aligned and big endian. The 
following formula is used to determine the number of bytes 
necessary to encode the number: is given by sup((sup(log v) – 
5)/7) + 1; where sup(x) is the smallest integer greater than or 
equal to x. 

4.4 Well-formed Only XML Documents 
If the DTD for an XML document is not available, the encoding 
has to be done on the fly. In this case the correspondence between 
the tags and tokens has to be done during the compression 
mechanism. When a new element tag or attribute is encountered, 
it is sent as plain text with a token assignment, but subsequent 
occurrence of the same tag is done using this token assignment. 

5. DIFFERENTIAL DTD COMPRESSION 
As discussed before, a valid XML document refers to its DTD 
schema and follows its rules. In other words the schema is an 
approximation of the document. Thus the schema defines 
knowledge about a document that it knows a-priori. We describe a 
novel method for compression which encodes only the difference 
between the schema and the document. Thus the encoding of an 
XML document is the encoding of the occurrences of its operators 
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like ?, |, +, *.  This algorithm can achieve high efficient storage by 
storing only the minimal structural information.   

Example 
Consider the DTD given in section 4.3.  If we draw the hypothesis 
that both the sides of the codec (sender and receiver) have prior 
knowledge of the DTD the only information needed in order to 
reconstruct the XML document is: 

- To know if the ISBN element is chosen inside the book 
elements. 

- To know the number of occurrences of the author elements. 

- To separate encoding of PCDATA. 

Encoding 
The DTD of an XML document can be represented as a tree 
(similar to the DOM tree), except that that there are specific nodes 
storing the operators. It is possible to go through that tree, with 
recursive methods to explore the tree. Our novel algorithm of 
differential DTD Tree compression (DDT-compression) involves 
parsing the XML document and the DTD tree simultaneously and 
following the path of the XML tree inside the DTD tree. This 
mechanism is similar to a validating parser where the document is 
parsed and navigated in lock step with the DTD and values for the 
operators like ?, *, and + are computed. For example, if there is a 
book document for the DTD in section 4.3 with no ISBN and 3 
authors, the value for the ‘?’ operator attached to the book 
element will be 0 and the value of the ‘+’ operators attached to the 
author element is 3. 

Decoding 
The decoding algorithm requires the compressed data and the 
DTD tree to reconstruct the document. The DTD tree is parsed 
and each time an operator like *, |, +, ? is encountered the value is 
read from the document stream. When an element is encountered, 
it is written to the decompressed XML document. When 
PCDATA information is expected by the DTD, it is read from the 
compressed stream. 

Implementation Considerations 
We use variable byte encoding like UTF-8 to encode element 
names. For the ‘|’ operator a 1 bit indicates the left branch and a  0 
bit indicates the right branch. For ‘*’, and ‘+’ a number is put in 
the stream indicating the number of occurrences. For ‘?’ a 1 bit 
indicates presence, and a 0 bit indicates absence. The content part 
is represented by blocks of data annotated with their respective 
lengths. 

6. QUANTIFICATION OF XML 
DOCUMENTS AND DTDS 
Since XML is the meta-language for all markup documents from 
small signature documents to large web pages and database 
structures, the same compression algorithm will not perform 
uniformly for all types of XML documents. In this section we 
study the different quantifications of XML document structures 
that influence or can be used to relate an XML document or its 
schema to a particular compression algorithm. 

General Quantification 
General parameters include size of the document in terms of 
number of elements and in bytes, and the mean and the maximum 
depth of the XML tree. Statistical measures like distribution of the 
elements in terms of frequency of their occurrence, standard 
deviation of the content size and content ratio to the total size of 
the document, and average number of attributes per element can 
also be used to study compression algorithms and relate their 
performance to document properties. A DTD tree can also be 
quantified using similar measures like number of elements defined 
in the DTD, depth of the DTD tree, recursion factor (a measure of 
loops contained in the content model), number of defined 
attributes, and weighted measure of operators like  +, *, |, ? in the 
DTD. These operators define the flexibility afforded by the DTD 
and the less flexible it is, the more information it contains, and in 
return, better compression is achieved. 

Distance between the Document and  its DTD  
The DTD operators give a measure of  how specific the DTD is to 
the document. For instance, a DTD with no operators like +, |, *, 
or ?, represents unique document structure. The distance between 
the DTD and a document valid against that DTD can be measured 
in terms of its operators by giving measures to each of the 
operators. The distance is the sum of the values assigned to the 
operators in the DTD.  Large DTD distances imply that the DTD 
does not contain sufficient information about the document and 
may not enable efficient compression. A more precise measure is 
obtained using weighted distances. Here the operator values are 
weighted by the distance of their occurrence from the root of the 
DTD tree. The deeper the operator occurrences, the greater the 
weighted distance. 

DTD Patterns 
Characterizing typical DTD structural patterns can add knowledge 
to our compression algorithm and in turn help produce efficient 
encodings. We identify 3 simple patterns which are relevant to the 
discussions in this paper:  

1. The first such structure is the constant structure in which the 
DTD has no operators (| + * ?) except for  ,.  For a DTD following 
this pattern, all corresponding XML documents have exact same 
structure. They differ only in their PCDATA and attribute values. 
It can be easily shown that for a constant structure DTD with no 
PCDATA element, and no attribute, there can be one and only 
one XML document. A constant structure is represented as 
constant in a DTD with the following content models:   

<!ELEMENT root constant> 

Even if the entire DTD is not a constant pattern, a compression 
algorithm can be aided by identifying elements whose content 
models form a constant structure since a fixed few tokens can be 
used to encode the structures.  

Consider the following example: 

<!ELEMENT  root (A,  B)> 
<!ELEMENT A (C*)> 
<!ELEMENT B (D, E)> 
<!ELEMENT C  (F, G)> 
<!ELEMENT D  (#PCDATA)> 
<!ELEMENT E (#PCDATA)> 
<!ELEMENT F (#PCDATA)> 
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Here the elements root, B, and C  have content models that follow 
the constant pattern. Thus, in a content tree, the constant 
structures can be encoded using a single encoding rather than 
encodings for each of the constituents of the structure. 

2. The finite pattern represents a finite collection of constant 
patterns. The finite pattern is one which allows occurrences of 
only the ? and  | operators. Note that a?  indicates presence or 
absence of a  and a| b indicates presence of a or presence of b but 
not both. From a DTD fragment containing only the , ? and  | 
operators it is possible to find all enumerations of possible XML 
structures. 

3. Another type of pattern we identify is a simple list-based 
database where the root element holds many constant entries. We 
define this pattern as a first order list pattern. The model is given 
by: 

<!ELEMENT root (entry)* > 
<!ELEMENT entry constant > 

For example: The DTD fragment 

<!ELEMENT names (name)*> 
<!ELEMENT name (firstName,lastName)> 
<!ELEMENT firstName (#PCDATA)> 
<!ELEMENT lastName (#PCDATA)> 

follows the first order list pattern. 

7. COMPARING THE ALGORITHMS 
We list the different compression algorithms presented above for 
convenience. 

1. Basic Millau (BM). The original implementation of Millau 
encodings.  

2. Variable-length Millau (VLM): Variable length encodings 
in Millau with random assignments of codes. 

3. Variable-length Millau with DTD statistics (VLM-DTD): 
Tokens are assigned based upon apriori chosen statistics taken 
from the DTD. A tag which has the highest probability of 
occurrence will have the smallest length.  

4. Variable length Millau with XML statistics (VLM-XML): 
Same as 3 above except probabilities derived from XML 
documents directly. 

5. DDT Compression (DDT) Differential DTD Tree 
Compression. 

6. ZIP compression (ZIP) (using of standard Java 
compression package methods). 

We compared these algorithms in different dimensions – 
compression rates, and complexity of the algorithm itself. We ran 
our experiments using large log files encoded in XML with 
different number of log structures (Access_log100 with 100 logs 
and Access_log1000 with 1000 logs), and Shakespeare’s play, 
Hamlet, encoded in XML.  

 

 

 

 

Table 1 Performance of different Algorithms for 
Access_log100  with file size = 24528 bytes, content = 41%, 
structure = 59%, DTD distance = 100. DDT Algorithm obtains 
the best structure compression but is the slowest. CR is 
Compression Ratio. 

Algorithm 
Encode 
time 
(msec) 

Decode 
time 
(msec) 

Content 
size 
(bytes) 

Structure 
size 
(bytes) 

CR  

% 

BM 914 250 1222 84 5.3 

VLM 266 140 1222  84 5.3 

VLM-DTD 483 140 1222 84 5.3 

VLM-XML 673 140 1222  84 5.3 

DDT 2556 293 1222 38 5.1 

GZIP 3.33 3.33 1516 - 6.1 

Table 2 Performance of different Algorithms for 
Access_log1000 with file size = 244655 bytes, content = 42%, 
structure = 58%, DTD distance = 1000. DDT Algorithm 
obtains the best structure compression but is the slowest. 

Algorithm 
Encode 
time 
(msec) 

Decode 
time 
(msec) 

Content 
size 
(bytes) 

Structure 
size 
(bytes) 

CR 
% 

BM 1170 1075 8819  153 3.7 

VLM 813 498 8819  153 3.7 

VLM-DTD 1174 510 8819  153 3.7 

VLM-XML 1278 514 8819  153 3.7 

DDT 7924 7934 8819  39 3.6 

GZIP 77 70 10457 - 4.3 

Table 3 Performance of different Algorithms for Hamlet with 
file size = 288735 bytes, content = 60%, structure = 40%, DTD 
distance = 2771. DDT Algorithm performs poorly (exceeds our 
performance threshold), because of the significant difference 
between DTD distance (2771) and weighted DTD distance 
(51140432) 

Algorithm 
Encode 
time 
(msec) 

Decode 
time 
(msec) 

Content 
size 
(bytes) 

Structure 
size 
(bytes) 

CR 
% 

BM 1511 861 71349  1292 25.2 

VLM 1127 501 71349 1292 25.2 

VLM-DTD 1625 471 71349  1292 25.2 

VLM-XML 1692 471 71349  1292 25.2 

DDT N/A N/A N/A  N/A N/A 

GZIP 235 201 79931 - 27.6 
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Large Web XML log files are standard Web log files encoded in 
XML. The data is well-formed and valid against its DTD. For this 
DTD the weighted distance is low. Each log entry element follows 
a constant architecture (has no operators like ?,|,*,+). The DTD 
itself follows the first order list pattern. Web log files tend to have 
high redundancy in both content and text. Such files are 
representative of large XML database files like addresses and 
bibliography.  The hamlet.xml DTD has operators like ?, |, *, + 
buried deep, thus making the weighted distance large as compared 
to the DTD distance measure.   

It can be seen that DDT compression achieves significant 
structural compression. In the case of Access_log100.xml (see 
Table 1) and Access_log1000.xml (see Table 2), DDT 
compression achieves over 2.7 times and 4 times better 
compression of structure.  In case of hamlet.xml (see Table 3), 
since the DTD distance is 2771 and the weighted DTD distance 
51140332, the wide difference between the two causes DDT 
compression to be inefficient. Our experiment with DDT 
compression exceeded the default memory and time settings we 
had in the experiment due to extensive recursion. The difference 
in the distance implies the operators being away from the root 
element. DDT compression does not perform well in such cases. 
Thus, for DDT compression to perform well, the DTD distance 
should be large but not the weighted distance, i.e., the operators 
should be close to the root. The optimal case would occur when 
the weighted distance equals the DTD (standard) distance. 

7.1 Content Grouping 
With data redundance at nodes of the same level content grouping 
can help improve compression. Content grouping basically 
reorders the content of a document to group similar element 
structures or elements with the same names together. A similar 
approach is taken in relational databases where column-wise 
compression achieves better compression than row-wise 
compression [25]. Traditional compression algorithms that use 
compression windows can take advantage of this re-organization. 

Consider the example in figure 2.  The document on the left 
shows 2 bibliographical entries in XML form. The document on 
the right shows the extracted structure part of the document on the 
left. The content part is shown in figure 3.  

Content under similar element structures are grouped together. By 
reordering the structure and grouping together content under 
similar structures, traditional text compression algorithms like 
LZ77 can perform better. Content grouping, however, has the 
overhead of multiplexing between different content streams and to 
see the advantage of grouping of similar items requires the 
document size to exceed a threshold. For Web log files of size 
under the threshold of 9K bytes content grouping performs 5 to 10 
percent poorer than standard Millau compression. Studying the 
numbers in the dimension of tag occurrences, as the tag 
occurrences go up (and so do the text content under them), we 
saw up to 20% improvement in the compressed size. The gain of 
using content grouping is described by a logarithmic increase as 
the size of the document increases. Over the threshold of 9K 
elements, content grouping improves compression size in a 
logarithmic way (see Figure 4). 
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Figure 4 Logarithmic trend of the content grouping gain. 
Beyond a threshold (100 element structures) the content 
grouping helps in improving the content compression. 

7.2 Compression Speed 
All of our algorithms are implemented in Java. Due to Java 
performance limitations, they perform slower than known C or 
C++ implementations. Within the variations of the algorithms 
implemented in Java, DDT compression is the slowest. 
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Figure 3 Similar content grouping: By reordering the 
structure and grouping together the content under similar 
structures traditional text compression algorithms like 
LZ77 can perform better. 
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<authors>
<author>Hal Varian</author> 
<author>Theodore

Bergstorm</author>
</authors>
<publisher>W.W.Norton</publisher>
<year>1997</year>

</bibentry>
</biblio>

<biblio>
<bibentry>

<title>#1</title>
<authors>

<author>#2 </author>
</authors>
<publisher>#3 </publisher>
<year>#4</year>

</bibentry>
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</bibentry>
</biblio>
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<title>#5</title>
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</authors>
<publisher>#8</publisher>
<year>#9</year>

</bibentry>
</biblio>

Figure 2 Content and structure separation: The left box shows 
the original document. The right box shows the structure with 
references to the content.  Content part is shown in figure 3. 
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7.3 Composed Algorithm 
Since different algorithms perform differently on different size 
and types of XML documents we came up with a composed 
algorithm that applies some decision logic before picking the 
appropriate encoder. The decision logic works as follows (see 
Figure 5). If the document is not wellformed, standard ZIP 
compression is applied. If it is well formed, then if DTD 
information is not present, then Well-formed Millau is applied. If 
DTD information is available, weighted DTD distance and 
standard DTD distance is computed and compared. If the 
difference between the two is large, variable byte Encoding 
Millau compression is chosen. Otherwise, DDT compression is 
chosen. For documents of size more than 10k content grouping is 
activated. When variable byte encoding Millau is chosen, if the 
number of elements in the DTD is more than 255 then enhanced 
Millau with DTD statistics is chosen, otherwise, enhanced Millau 
with random statistics is chosen. 

We implemented this composed decision algorithm and found that 
on an average the decision process caused an overhead of under 
4% in size over the optimal algorithm (the optimal algorithm is 
chosen a posteriori after trying all the algorithms.) 

8. EFFICIENT DOCUMENT OBJECT 
MODELS 
The XML standard includes a document object model called 
DOM that allows navigating, querying, and updating a parsed 
XML document tree. Typical DOM implementations are in-
memory tree based (which means that the whole XML tree is 
constructed in memory for full processing), though variants like 
Lazy DOM, Persistent DOM [27] have emerged that take load 
documents into memory in a delayed fashion.  In addition to 
DOM, Simple API for XML (SAX) provides a programming 
interface that enables streaming XML and is event-driven.  In this 
section we study how compression and encoding can influence 
this API definition. 

8.1 Document Object Models for Encoded 
Documents 
The DOM model mainly caters to the assumption that the 
underlying document tree has character and not binary encoding. 
Even though most of the DOM API methods can be implemented 
to support compressed encodings some additional methods are 
required to enhance and take advantage of the fact that the 
document is encoded. The DOM API methods use element and 
attribute names as arguments or results. The first generation 
Millau extends these APIs to support BDOM (Binary DOM) by 
allowing lookup and return using tokens, instead. Our SAX parser 
supports event-based parsing in SAX. Further, SAX is extended 
to support encodings instead of string names in the SAX API 
methods. The DOM and SAX support helps avoid conversion 
between binary encoded and compressed XML documents and the 
ASCII form unnecessarily for the sake of supporting DOM and 
SAX. In our experiments, for a sample document of size 3MB, 
standard parsing took 40 seconds; the same document compressed 
using Millau and using our SAX parser took 8 seconds; with our 
binary SAX parser it took 5 seconds. 

8.2 Schema-aware Document Object 
Models 
Validating XML parsers have to parse two documents – the 
content document that is being validated and parsed; and the 
schema document against which this document is validated. DDT 
compression operates in a manner similar to a validating XML 
parser in that it looks for the differential between the document 
and the schema to obtain better encoding. One method to make 
this process efficient is to encode schematic information in the 
nodes of the document itself. Corresponding to DOM we define a 
Schema-driven DOM or SDOM model where the non-constant 
operator information like *, |, ?, +, are stored within the nodes in 
the DOM tree. For example, consider the DTD in section 4.3.  
Consider a DOM tree fragment rooted at the authors element. The 
DOM tree is illustrated by Figure 6. 

From the tree it is not apparent that the schema of the Authors 
element is Author* and not Author, Author, Author or something 
else. By decorating the tree with the schema of Authors we get a 
SDOM tree which looks like Figure 7. 

 

Figure 5  Flowchart of decision algorithm for picking the right 
compression algorithm based upon the characteristics of the 
XML document and its associated DTD (if present) 

In the DOM model, all the programming interfaces corresponding to 
the different entities in XML like Element, Attribute, Comment,  

Figure 6 Document Object Model (DOM) representation of 
a simple XML document 
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Entity, PI, etc. are derived from a base Node interface. We extend the 
NODE interface for SDOM. The base interface for SDOM is called 
the SPNode interface.  There are three derivations of this interface – 
XNode (element Node in SDOM), OPNode (operator node), and 
CLNode (Cluster node denoting a group of nodes separated by a 
‘,’ in the DTD). Correspondingly, new methods are added in 
SDOM to setting and getting the operators associated with a Node 
object and setting and getting the size of a cluster of nodes. We 
describe these methods below. 

XNode Methods: 
 void setElement(Node): set the associated element 
 Node getElement():  get the associated element 
 void setUnderlying(Node) : set the SDOM tree under this node 
 Node getUnderlying(Node) : get the SDOM tree underlying this 
node 

OPNode Methods: 
 void addNode(Node node): add a node in the subtree of this 
operator 
 int getSize(Node node): get the number of SPNodes under this    
OPNode 
SPNode getNode(int index): get the index-th SPNode under this 
OPNode 
int getType(): get the type of the operator (*, +, ? or |) 
void setType(int type): set the type of the operataor (*, +, ? or |) 
 

CLNode Methods: 
void addNode(Node node): add a node to the subtree of the 
cluster node 
int getSize(): get the number of children of this cluster node 
Node getNode(int index): get the index-th node of this cluster 
node 
   

8.2.1 SXML Documents 
Corresponding to the SDOM model there is a textual 
representation of XML. We call this the Schema-driven XML or 
SXML document. An SXML document is an XML document 
with extended markup to represent the DTD structure inside the 
document. We use the XML Processing Instruction (PI) facility to 
embed the  schema information into the document. This way we 
retain the XML validity of the original document against its DTD 
while enhancing it with Processing Instructions about the schema. 
Processing Instructions in XML are like Pragmas in standard 
programming languages. We introduce two types of PIs -- one for 
operators, and the other for clusters. 

PI for Operators 
Operators have the following format: 

<?SXML “start-operator” “operator” [“count”]> 
… 
<?SXML “end-operator”> 
where “operator” can be one of  - *, +, ?, or | . “count” 
represents the  number of occurrences for that operator 
(applicable to only * and +). For example, 
<?SXML “start-operator”  “*” “3”> 
 <x/> 
<?SXML “end-operator”> 

   denotes the 3 repeated occurrences of the element x 
corresponding to the content model  x*.   

PI for Clusters 
<?SXML “start-cluster” “count”> 
 … 
<?SXML “end-cluster”> 

 where count is the number of Elements inside the cluster node. 

The schema for SXML itself can be expressed as an extension to 
that of the underlying XML using the following production rules: 

SXML  => (XML|Cluster)* 
Cluster =>  (XML|Cluster|Operator)* 
Operator => (XML|Cluster)* 

The SXML fragment corresponding to the SDOM tree discussed 
in section 8.2 Error! Reference source not found. is illustrated 
by the following. 

<authors> 
   <?SXML “start-operator” “*’ “3”> 
       <author> 
            <firstName>Alfred</firstName> 
            <lastName>Aho</lastName> 
      </author> 
       <author> 
            <firstName>Alfred</firstName> 
            <lastName>Aho</lastName> 
      </author> 
       <author> 
            <firstName>Alfred</firstName> 
            <lastName>Aho</lastName> 
      </author> 
  <?SXML “end-operator”> 
</authors> 

8.3 Programming Interface for  SXML 
Analogous to the DOM and SAX programming models for 
standard XML, for the SXML document structure, we have 
Schema-driven DOM (SDOM) and Schema-driven SAX (SAS). 
Figure 8 shows the conceptual relationship between the XML, 
DTD, DOM, SAX, SDOM, and SAS.  Given an XML document 
and its DTD, our parser can create an SDOM tree or create an 
SXML document as output. On this SXML document a DOM 
parser can produce a DOM tree, a SAX parser can generate SAX 
events, an SDOM parser can produce an SDOM tree, and a SAS 
parser can produce SAS events. 

8.4 Use of SDOM and SXML 
As we have already seen, SDOM and SXML can be used for the 
purposes of achieving better XML compression using the 

SXML Processing 

Instruction
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*
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Figure 7  The Schema-driven DOM (SDOM) tree 
corresponding to the DOM tree in figure 6. The original 
DOMtree is decorated with the ‘*’ operator indicating 
that the  content model for Authors is Author*. The rest 
of the tree is not decorated since the content model 
model follows the constant pattern. 
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Differential DTD Tree algorithm. Compression using the SDOM 
tree is faster than the one using the DOM tree because we do not 
need to parse the DTD separately. We performed experiments 
with the SDOM-based DDT compression (called the SDDT 
compression algorithm) and found that over 80% faster than our 
original DDT compression. This compensates for the slowness of 
DDT algorithm as seen in tables 1, 2, and 3. Figure 9  shows a 
graph of the time taken for parsing log files in XML syntax of 
varying sizes. From the figure it can be seen that as the size of the 
file increases, SDDT performs increasingly better as compared to 
DDT. 

In addition, SXML documents enable faster validating parsers 
than typical XML documents as the schema is closely associated 
with the content.  SDOM can also be used for better and faster 
application processing of XML data. SDOM data is more 
structured and allow easy measurement of content than regular 
XML. This allows faster parsing, validation and analysis of XML 
data.  

We can think of further ameliorations to SDOM and SXML 
implementations. The first improvement is the use of compression 
inside the SDOM tree to reduce memory usage. Another 
improvement is to use tokens instead of tags inside the SDOM 
tree as well as using caching for content to disk instead of 
memory.

 

Figure 9  SDDT compression performs much better than DDT 
compression for the Access log files of different sizes. As the 
file size increases, SDDT performs increasingly better. 

In summary, SDOM and SXML provide a new way of associating 
schema with XML content. This improvement opens doors for 
faster compression and content processing. The SDOM structure 

as we have designed and implemented it is backward compatible 
with the standard DOM model. Similarly, SXML is XML with 
additional schematic annotations. The downside of associating the 
schema with the document this way is the increase in the 
document size. More importantly, changes in the DTD have to be 
appropriately reflected into the SXML document. 

9. Applications 
We have built two prototypical applications using our model of 
XML compression.  

9.1 Compression-Decompression Proxy 
Server Application 
Proxy servers have been used to efficiently tokenize HTML pages 
to reduce network bandwidth. Significant work has been done to 
reduce network bandwidth by using Proxy servers to efficiently 
compress and decompress data over the network [11]. However, 
they do not have a systematic way to compress arbitrary XML 
documents. 

In the architecture of our prototypical system we have two proxy 
servers: a server-side proxy server, and a client-side proxy server. 
Our proxy servers were built using the WBI (Web Intelligence), a 
programmable proxy server package [15]. An XML request from 
a client (say a browser) is intercepted by the client proxy server, 
compressed and sent to the server. On the server side it is 
intercepted by the server-side proxy server and decompressed 
before sending it to the actual server. Similarly, the response from 
the server is compressed by the server-side proxy server and  sent 
to the client to be intercepted by the client-side proxy server to be 
decompressed and served to the client. 

For typical documents, our system is 4 times faster. For 
transmission of small documents with approximately 20% 
compression-decompression overhead, it reduces the document 
size from an average of 3647 bytes to an average of 886 bytes. For 
a large document of average size 213 Kb our system reduces the 
transmission time from 30 seconds to 21 seconds where the 
document is compressed to an average size of 148Kb. There is an 
overhead of 1.5 seconds. 

9.2 XML-based RPC Mechanism 
XML-RPC [11] is used for remote procedure calls over HTTP 
using XML. An XML-RPC message is an HTTP-POST request. 
The body of the request is in XML. A procedure executes on the 
server and the value it returns is also formatted in XML. 
Procedure parameters can be scalars, numbers, strings, dates, etc., 
and can also be complex record and list structures. In our 
implementation, the body of the request is encoded using our 
compression scheme. To evaluate the performance of this 
implementation, we made a benchmark which sends an array of 
100 integers as a parameter and receives the same array as a return 
value. We compared the performances of our implementation with 
the Helma XML-RPC system [12]. Helma RPC system could do 
12 RPC calls per second. Using our system, we could do 27 RPC 
calls per second once again proving its compression efficiency. 

10. Conclusions and Future Work 
As XML becomes pervasive in Internet applications, new 
methods for efficiently storing, streaming, and processing XML 
structures will be required. The contributions of this paper are 
three-fold: We described a number of novel compression 

Figure 8 SDOM/SXML general architecture. From an 
XML document and its DTD, our parser can create an 
SDOM tree or an SXML document as output. The SXML 
document can be  run through a DOM parser (to create a 
DOM tree), a SAX parser ( to generate SAX events), or 
an SDOM parser (to generate an SDOM tree) or a SAS 
parser (to generate SAS events). 

XML

DTD

SXML

SDOM Tree

SAS Parser

SDOMParser

SAX Parser

DOM Parser

SDOM Tree

SAX events

DOM Tree

SAS events 

XML

DTD

SXML

SDOM Tree

SAS Parser

SDOMParser

SAX Parser

DOM Parser

SDOM Tree

SAX events

DOM Tree

SAS events 

374



algorithms in the context of our system for XML. We used XML 
and DTD quantification to study and compare these algorithms. 
We also introduce novel programmatic APIs for XML that can 
take advantage of our compression-decompression schemes. We 
also looked at 2 prototypical applications of our system. As we 
write, we continue to improve our algorithms and study their 
performance on various classes of XML documents. We have also 
built a variation of the DDT compression called the DTD 
Constant Structures compression (or DCS compression) where 
we look for the largest constant structures within the DTD and 
encode them with efficiently and achieve better compression. As 
we continue to benchmark our system, we will also look at new 
applications that can use our algorithms. 

Another area of work we continue to research is lazy loading of 
XML documents into memory. This is motivated by the fact that 
exploitation of large XML documents can become extremely 
difficult for regular applications if the data has to be modeled in 
memory (like for DOM). XML compression can be useful for 
storing and accessing this data without decompressing the full 
data or storing it in memory. DDT-compression can help  achieve 
of such applications. In DDT-compressed data, both the structure 
and content are accessible without first decompressing the data. 
This is due to the small structural information stored in DDT-
compression which can be easily decompressed. Then content 
data can be accessed randomly without decompressing the whole 
data, requiring only small memory overhead. This model of XML 
processing has interesting applications in streaming XML 
structures over the network medium. 

The authors acknowledge Marc Girardot who implemented the 
first version of Millau. Part of this was the  second author’s  
thesis[27] work done at the IBM Almaden Research Center. 
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