
Algorithms and Programming Models for Efficient
Representation of XML for Internet Applications

Neel Sundaresan
NehaNet Corp.

2355 Paragon Drive Suite F
San Jose, CA 95131
neel@nehanet.com

Reshad Moussa
NehaNet Corp.

2355 Paragon Drive Suite F
San Jose, CA 95131

reshad@nehanet.com

ABSTRACT
XML is poised to take the World-Wide-Web to the next level of
innovation. XML data, large or small, with or without associated
schema, will be exchanged between increasing number of
applications running on diverse devices. Efficient storage and
transportation of such data is an important issue. We have
designed a system called Millau and a series of algorithms for
efficient encoding and representation of XML structures. In this
paper we describe some of the newer algorithms and APIs in our
system for compression of XML structures and data. Our
compression algorithms, in addition to separating structure and
text for compression, take advantage of the associated schema (if
available) in compressing the structure. We also quantify XML
documents and their schema with the purpose of defining a
decision logic to apply the appropriate compression algorithm for
a document or a set of documents following a particular schema.
Our system also defines a programming model corresponding to
XML DOM and SAX for XML APIs for XML streams and
documents in compressed form. Our experiments have shown
significant performance gains of our algorithms and APIs. We
describe some of these results in this paper. We also describe
some web applications based on our system.

Categories and Subject Descriptors
E.4. [Coding and Information Theory]: Data compression and
compaction. H.1.1[Systems and Information Theory]:
Information theory.

General Terms
Algorithms, Measurement, Performance, Design,
Experimentation, Standardization, Languages, Theory.

Keywords
XML, DOM, SAX, Compression, WBXML.

1. INTRODUCTION
With the boom of Business-to-Business applications and the need
to run web applications over a variety of user devices, the Internet

community is rapidly realizing the power of XML [1] as a
language for data communication. The hierarchical structure of
the language and the facility to label and reference elements
affords exchanging data while retaining structural relationship
between entities in the data. The extensible nature of the language
with a facility to define domain-specific schemas (called
Document Type Definitions (DTDs) enables customizing the
element and attribute names and their relationships while
retaining a common structure. At the same time, the seamless
dependence on the Internet to find information and conduct
business has caused the network bandwidths to be tested to their
limits. One approach to addressing this bandwidth problem is to
compress data on the network.

The Wireless Application Protocol (WAP) [4][9] defines a format
to reduce the transmission size of XML documents with no loss of
functionality or semantic information. The core of our system,
called Millau, extends this format while improving on the
compression algorithm itself. It separates structure compression
from text compression. In addition it takes advantage of the
schema and data type information, if present, to achieve better
compression. To be compliant with the XML standards, it defines
APIs equivalent to the tree model of DOM (Document Object
Model) [3] and the event and streaming model of SAX (Simple
API for XML) [2] to work with encoded XML documents.

This paper discusses new algorithms for efficiently encoding
XML documents in our system. It also discusses quantification of
XML documents and their schema with the purpose of studying
these algorithms. It also discusses programming models and APIs
for such efficient representations. The paper is organized as
follows: In the next section we discuss work in text data
compression and XML compression. In section 3 we introduce
our system. In sections 4 and 5 we discuss various improvements
to the core compression algorithm in Millau [22][23]. In section
5, specifically, we discuss the Differential DTD Tree Compression
Algorithm that performs compression based upon the differential
information between the document and its schema. In section 6
we study quantification of XML documents and DTDs. In section
7 we study experimental results. In section 8 we discuss
Document Object Models that cater to compressed documents. In
section 9 we introduce a couple of prototypical applications we
built using our system. In section 10 we draw conclusions and
chalk out path for future work.

2. RELATED WORK
Lossless data compression is a mature field of research [15]
mainly based on Claude Shannon’s information theory that there
is a direct correlation between the probability of occurrence of a

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

366

symbol and the bits needed to encode it. Huffman coding [17]
achieves the minimum amount of redundancy possible in a fixed
set of variable length codes. It uses statistical modeling to encode
symbols using the probability of the symbol’s occurrence. A
dictionary based compression scheme uses a different concept. It
looks for groups of data that occur in a dictionary. If a match is
found an index into the dictionary is output instead of the code for
that symbol. The longer the match, the better the compression
ratio. In LZ77 compression [16], for example, the dictionary
consists of all the strings in a window into the previously read
input stream. The deflate algorithm [6] uses a combination of the
LZ77 compression and the Huffman coding. It is used in popular
compression programs like GZIP[7] or ZLIB[5].

These text compression algorithms perform compression at the
character level. In adaptive extensions (like in LZ77) the system
slowly learns correlations between adjacent pairs, triples,
quadruples of characters to improve upon the compression. Other
algorithms [18] use words instead of characters. In [19] a
complete offline dictionary is inferred to optimize the choice of
phrases for optimization.

As for XML, the Wireless Application Protocol Forum [9] has
proposed a table-based encoding of element names and attributes
into what is called a code space. It takes advantage of both the
offline approach (since the codespaces are built offline) and of the
word-based approach (since tags and element names are the most
frequent occurrences in an XML document). However, it does not
attempt to compress the text data and the attribute value data
defined outside the DTD that occur in a document. Moreover, it
does not suggest any method to build efficient code spaces. Our
system addresses all of these limitations. Further, it introduces
other compression techniques that are advantageous in certain
classes of XML documents. We quantify XML documents based
on various criteria like complexity (number of elements and
attributes, size of the document), distance from the DTD, and
statistical measures like frequency of occurrences of elements and
attributes, size of the text data, tag and text ratios, and entropy
measures based on well-formedness and validity. We measure
DTD complexity based on number and frequency of elements, and
density of the operators, among other measures. We introduce
novel algorithms to perform compression and relate the
performances to this quantification.

Other XML-related compression research work includes Xmill
[25]. XMill uses binary encoding for structure and for content and
performs structure and content separation. Additionally, it takes
user input hints to perform efficient encoding. XMill performs
well for large documents and not so well for smaller documents.
XMLZip [24] from XML Solutions provides a facility for the user
to specify the depth at which compression is to be performed. This
way the system provides efficient access to top-level nodes. The
main limitation of XMLZip is that it consumes large memory
resources and runs out of memory for large documents.

3. COMPRESSION IN Millau
Millau starts with an extensive implementation of WBXML,
extending it with separation of structure and content. By
separating structure and content it separates the content and
structure redundancy by encoding the structure part using the
WAP WBXML encoding and the content using standard text
compression techniques. Thus the first cut implementation takes

advantage of the redundancy in the structure part and of the
content part. The general architecture of Millau compression is
given in figure 1. The system takes in as input either an XML
stream or a DOM tree structure, and as part of compression splits
it into 2 parts – a structure part containing the encoding for the
element tags and attributes and the content part containing the
compressed data form of the text part. The decompression process
does just the reverse - - reading in two compressed streams
(structure and content) and producing an XML stream or a DOM
tree or generating SAX events as required.

Figure 1 Architecture of the Millau Compression -
Decompression System.

3.1 Millau Compression File Format
The Millau encoding format is an extension of the WAP Binary
XML format. The WBXML (Wireless Application Protocol
Binary XML) Content Format Specification [4] defines a compact
binary representation of XML. This format is designed to reduce
the transmission size of XML documents with no loss of
functionality or semantic information. For example, WBXML
preserves the element structure of XML, allowing a browser to
skip unknown elements or attributes. More specifically, the
WBXML content encodes the tag names and the attributes names
and values with tokens (a token is a single byte).

In WBXML format, tokens are split into a set of overlapping
“code spaces”. The meaning of a particular token is dependent on
the context in which it is used. There are two classifications of
tokens: global tokens and application tokens. Global tokens are
assigned a fixed set of codes in all contexts and are unambiguous
in all situations. Global tokens are used to encode inline data (e.g.,
strings, entities, opaque data, etc.) and to encode a variety of
miscellaneous control functions. Application tokens have a
context-dependent meaning and are split into two overlapping
“code spaces”: the “tag code space” and the “attribute code
space”.

The tag code space represents specific tag names. Each tag token
is a single-byte code and represents a specific tag name. Each
code space is further split into a series of 256 code spaces. Code
pages allow for future expansion of the well-known codes. A
single token (SWITCH_PAGE) switches between the code pages.

The attribute code space is split into two numeric ranges
representing attribute prefixes and attribute values respectively.
The Attribute Start token (with a value less than 128) indicates the
start of an attribute and may optionally specify the beginning of
the attribute value. The Attribute Value token (with a value of 128
or greater) represents a well-known string present in an attribute
value. Unknown attribute values are encoded with string, entity or
extension codes. All tokenized attributes must begin with a single
attribute start token and may be followed by zero or more attribute
value, string, entity or extension tokens. An attribute start token, a

XML
Compression

L XM
De Compression

Encoded
Structure
stream

Compressed
content stream

XML Stream

DOM Tree

XML Stream

SAX

DOM Tree

XML
Compression
XML
Compression
XML
Compression

L XM
De Compression

L XM
De Compression
XM
De Compression

Encoded
Structure
stream

Encoded
Structure
stream

Compressed
content stream

XML Stream

DOM Tree

XML Stream

SAX

DOM Tree

367

LITERAL token or the END token indicates the end of an
attribute value.

In Millau format, an Attribute Start token is followed by a single
Attribute Value token, string, entity, or extension token. So there
is no need to split the attribute token numeric range into two
ranges (less than 128 and 128 or greater) because each time the
parser encounters an Attribute Start token followed by a non-
reserved token, it knows that this non-reserved token is an
Attribute Value token and that it can be followed only by an END
token or another Attribute Start token. Thus, instead of two
overlapping code spaces, we have three overlapping code spaces:

1. tag code space as defined in the WAP specification;

2. attribute start code space where each page contains 256
tokens;

3. attribute value code space where each page contains 256
tokens.

Notice that in WBXML format, character data is not compressed.
It is transmitted as strings inline, or as a reference in a string table
which is transmitted at the beginning of the document. In Millau
encoding format, character data can be transmitted on a separate
stream. This allows separation of the content from the structure so
that a browser can separately download the structure and the
content or just a part of each. This further allows compression of
the character data using traditional compression algorithms like
deflate[6]. In the structure stream, character data is indicated by a
special global token (STR or STR_ZIP) which indicates to the
Millau parser that it must switch from the structure stream to the
content stream if the user is interested in content and whether the
content is compressed (STR) or uncompressed (STR_ZIP).
Optionally, the length of the content is encoded as an integer in
the structure stream right after the global token (STR_L or
STR_ZIP_L). If the length is not indicated, the strings contained
in the structure must terminate with an End Of String character or
a null character.

4. NEW CLASS OF Millau ALGORITHMS

4.1 Improved Code Assignments
The encoding can be improved and better compression can be
obtained if the element tags are assigned tokens in such a way that
the number of page switches are minimized. One of the techniques
would be to break down the elements in the schema based upon
proximity of occurrences into clusters whose maximum size is the
size of a page.

4.2 Variable Byte Encoding
An alternative to the code spaces approach is to encode the tags
with variable length tokens. One or several bytes encode a tag
according to its occurrence frequency. The 128 most frequent tags
will be encoded with a single byte. The format of these bytes is
similar to the byte format of UTF-8 [20]. The frequency of the
element occurrence can be obtained either by pre-processing the
document to identify the element frequency and assigning smaller
tokens for the most frequent ones. Alternatively, since the DTD
represents the document schema, it is possible to predict the
probability of occurrence frequency of each element and encode
based on that. In the most degenerate case, if the DTD has no
operators of the kind ?, *, +, | or ANY, then there is only one
single element structure that is valid for this DTD (though there

may be many documents with different text content, for example).
Variable byte encoding can also be driven by using user input of
frequency, or by random assignment of frequencies to each
element.

4.3 Example
Consider the following DTD:

<!ELEMENT book (title, authors, ISBN?, price)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT authors (author)+>
<!ELEMENT author (firstName, lastName)>
<!ELEMENT ISBN (#PCDATA)>
<!ELEMENT firstName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>
<!ELEMENT price (#PCDATA)>

It can be seen from the DTD that the probability of occurrence of
the book, title, authors, and price is the same, as they occur
exactly once. ISBN occurs zero or one time. For every occurrence
of author, there is an occurrence of firstName and of lastName. It
can be obviously noted that the probability of occurrence of
author is at least as much as that of authors since there is at least
one, possibly more than one, occurrence of author. By assigning
an upper limit (of say, 5) to the number of occurrences to author,
and with the assumption that the number of author occurrences
happen with some probability distribution, and by similarly
setting the probability of ISBN being present, we can assign
probabilities to the occurrence for each element. Then the
elements with high probability occurrence are assigned smaller
encodings while the elements with low probability occurrences
can be assigned longer encodings in the UTF-8 style variable byte
encoding scheme. A typical token in this scheme appears as
follows:

ABYZZZZZ | YZZZZZZZ | YZZZZZZZ …

where each of X, Y, Z represent a bit and where A is the default
flag for content information, B is the default flag for attributes
information, Y specifies “has more elements” flag and Z is the
token value bit. The Z bits are right aligned and big endian. The
following formula is used to determine the number of bytes
necessary to encode the number: is given by sup((sup(log v) –
5)/7) + 1; where sup(x) is the smallest integer greater than or
equal to x.

4.4 Well-formed Only XML Documents
If the DTD for an XML document is not available, the encoding
has to be done on the fly. In this case the correspondence between
the tags and tokens has to be done during the compression
mechanism. When a new element tag or attribute is encountered,
it is sent as plain text with a token assignment, but subsequent
occurrence of the same tag is done using this token assignment.

5. DIFFERENTIAL DTD COMPRESSION
As discussed before, a valid XML document refers to its DTD
schema and follows its rules. In other words the schema is an
approximation of the document. Thus the schema defines
knowledge about a document that it knows a-priori. We describe a
novel method for compression which encodes only the difference
between the schema and the document. Thus the encoding of an
XML document is the encoding of the occurrences of its operators

368

like ?, |, +, *. This algorithm can achieve high efficient storage by
storing only the minimal structural information.

Example
Consider the DTD given in section 4.3. If we draw the hypothesis
that both the sides of the codec (sender and receiver) have prior
knowledge of the DTD the only information needed in order to
reconstruct the XML document is:

- To know if the ISBN element is chosen inside the book
elements.

- To know the number of occurrences of the author elements.

- To separate encoding of PCDATA.

Encoding
The DTD of an XML document can be represented as a tree
(similar to the DOM tree), except that that there are specific nodes
storing the operators. It is possible to go through that tree, with
recursive methods to explore the tree. Our novel algorithm of
differential DTD Tree compression (DDT-compression) involves
parsing the XML document and the DTD tree simultaneously and
following the path of the XML tree inside the DTD tree. This
mechanism is similar to a validating parser where the document is
parsed and navigated in lock step with the DTD and values for the
operators like ?, *, and + are computed. For example, if there is a
book document for the DTD in section 4.3 with no ISBN and 3
authors, the value for the ‘?’ operator attached to the book
element will be 0 and the value of the ‘+’ operators attached to the
author element is 3.

Decoding
The decoding algorithm requires the compressed data and the
DTD tree to reconstruct the document. The DTD tree is parsed
and each time an operator like *, |, +, ? is encountered the value is
read from the document stream. When an element is encountered,
it is written to the decompressed XML document. When
PCDATA information is expected by the DTD, it is read from the
compressed stream.

Implementation Considerations
We use variable byte encoding like UTF-8 to encode element
names. For the ‘|’ operator a 1 bit indicates the left branch and a 0
bit indicates the right branch. For ‘*’, and ‘+’ a number is put in
the stream indicating the number of occurrences. For ‘?’ a 1 bit
indicates presence, and a 0 bit indicates absence. The content part
is represented by blocks of data annotated with their respective
lengths.

6. QUANTIFICATION OF XML
DOCUMENTS AND DTDS
Since XML is the meta-language for all markup documents from
small signature documents to large web pages and database
structures, the same compression algorithm will not perform
uniformly for all types of XML documents. In this section we
study the different quantifications of XML document structures
that influence or can be used to relate an XML document or its
schema to a particular compression algorithm.

General Quantification
General parameters include size of the document in terms of
number of elements and in bytes, and the mean and the maximum
depth of the XML tree. Statistical measures like distribution of the
elements in terms of frequency of their occurrence, standard
deviation of the content size and content ratio to the total size of
the document, and average number of attributes per element can
also be used to study compression algorithms and relate their
performance to document properties. A DTD tree can also be
quantified using similar measures like number of elements defined
in the DTD, depth of the DTD tree, recursion factor (a measure of
loops contained in the content model), number of defined
attributes, and weighted measure of operators like +, *, |, ? in the
DTD. These operators define the flexibility afforded by the DTD
and the less flexible it is, the more information it contains, and in
return, better compression is achieved.

Distance between the Document and its DTD
The DTD operators give a measure of how specific the DTD is to
the document. For instance, a DTD with no operators like +, |, *,
or ?, represents unique document structure. The distance between
the DTD and a document valid against that DTD can be measured
in terms of its operators by giving measures to each of the
operators. The distance is the sum of the values assigned to the
operators in the DTD. Large DTD distances imply that the DTD
does not contain sufficient information about the document and
may not enable efficient compression. A more precise measure is
obtained using weighted distances. Here the operator values are
weighted by the distance of their occurrence from the root of the
DTD tree. The deeper the operator occurrences, the greater the
weighted distance.

DTD Patterns
Characterizing typical DTD structural patterns can add knowledge
to our compression algorithm and in turn help produce efficient
encodings. We identify 3 simple patterns which are relevant to the
discussions in this paper:

1. The first such structure is the constant structure in which the
DTD has no operators (| + * ?) except for ,. For a DTD following
this pattern, all corresponding XML documents have exact same
structure. They differ only in their PCDATA and attribute values.
It can be easily shown that for a constant structure DTD with no
PCDATA element, and no attribute, there can be one and only
one XML document. A constant structure is represented as
constant in a DTD with the following content models:

<!ELEMENT root constant>

Even if the entire DTD is not a constant pattern, a compression
algorithm can be aided by identifying elements whose content
models form a constant structure since a fixed few tokens can be
used to encode the structures.

Consider the following example:

<!ELEMENT root (A, B)>
<!ELEMENT A (C*)>
<!ELEMENT B (D, E)>
<!ELEMENT C (F, G)>
<!ELEMENT D (#PCDATA)>
<!ELEMENT E (#PCDATA)>
<!ELEMENT F (#PCDATA)>

369

Here the elements root, B, and C have content models that follow
the constant pattern. Thus, in a content tree, the constant
structures can be encoded using a single encoding rather than
encodings for each of the constituents of the structure.

2. The finite pattern represents a finite collection of constant
patterns. The finite pattern is one which allows occurrences of
only the ? and | operators. Note that a? indicates presence or
absence of a and a| b indicates presence of a or presence of b but
not both. From a DTD fragment containing only the , ? and |
operators it is possible to find all enumerations of possible XML
structures.

3. Another type of pattern we identify is a simple list-based
database where the root element holds many constant entries. We
define this pattern as a first order list pattern. The model is given
by:

<!ELEMENT root (entry)* >
<!ELEMENT entry constant >

For example: The DTD fragment

<!ELEMENT names (name)*>
<!ELEMENT name (firstName,lastName)>
<!ELEMENT firstName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>

follows the first order list pattern.

7. COMPARING THE ALGORITHMS
We list the different compression algorithms presented above for
convenience.

1. Basic Millau (BM). The original implementation of Millau
encodings.

2. Variable-length Millau (VLM): Variable length encodings
in Millau with random assignments of codes.

3. Variable-length Millau with DTD statistics (VLM-DTD):
Tokens are assigned based upon apriori chosen statistics taken
from the DTD. A tag which has the highest probability of
occurrence will have the smallest length.

4. Variable length Millau with XML statistics (VLM-XML):
Same as 3 above except probabilities derived from XML
documents directly.

5. DDT Compression (DDT) Differential DTD Tree
Compression.

6. ZIP compression (ZIP) (using of standard Java
compression package methods).

We compared these algorithms in different dimensions –
compression rates, and complexity of the algorithm itself. We ran
our experiments using large log files encoded in XML with
different number of log structures (Access_log100 with 100 logs
and Access_log1000 with 1000 logs), and Shakespeare’s play,
Hamlet, encoded in XML.

Table 1 Performance of different Algorithms for
Access_log100 with file size = 24528 bytes, content = 41%,
structure = 59%, DTD distance = 100. DDT Algorithm obtains
the best structure compression but is the slowest. CR is
Compression Ratio.

Algorithm
Encode
time
(msec)

Decode
time
(msec)

Content
size
(bytes)

Structure
size
(bytes)

CR

%

BM 914 250 1222 84 5.3

VLM 266 140 1222 84 5.3

VLM-DTD 483 140 1222 84 5.3

VLM-XML 673 140 1222 84 5.3

DDT 2556 293 1222 38 5.1

GZIP 3.33 3.33 1516 - 6.1

Table 2 Performance of different Algorithms for
Access_log1000 with file size = 244655 bytes, content = 42%,
structure = 58%, DTD distance = 1000. DDT Algorithm
obtains the best structure compression but is the slowest.

Algorithm
Encode
time
(msec)

Decode
time
(msec)

Content
size
(bytes)

Structure
size
(bytes)

CR
%

BM 1170 1075 8819 153 3.7

VLM 813 498 8819 153 3.7

VLM-DTD 1174 510 8819 153 3.7

VLM-XML 1278 514 8819 153 3.7

DDT 7924 7934 8819 39 3.6

GZIP 77 70 10457 - 4.3

Table 3 Performance of different Algorithms for Hamlet with
file size = 288735 bytes, content = 60%, structure = 40%, DTD
distance = 2771. DDT Algorithm performs poorly (exceeds our
performance threshold), because of the significant difference
between DTD distance (2771) and weighted DTD distance
(51140432)

Algorithm
Encode
time
(msec)

Decode
time
(msec)

Content
size
(bytes)

Structure
size
(bytes)

CR
%

BM 1511 861 71349 1292 25.2

VLM 1127 501 71349 1292 25.2

VLM-DTD 1625 471 71349 1292 25.2

VLM-XML 1692 471 71349 1292 25.2

DDT N/A N/A N/A N/A N/A

GZIP 235 201 79931 - 27.6

370

Large Web XML log files are standard Web log files encoded in
XML. The data is well-formed and valid against its DTD. For this
DTD the weighted distance is low. Each log entry element follows
a constant architecture (has no operators like ?,|,*,+). The DTD
itself follows the first order list pattern. Web log files tend to have
high redundancy in both content and text. Such files are
representative of large XML database files like addresses and
bibliography. The hamlet.xml DTD has operators like ?, |, *, +
buried deep, thus making the weighted distance large as compared
to the DTD distance measure.

It can be seen that DDT compression achieves significant
structural compression. In the case of Access_log100.xml (see
Table 1) and Access_log1000.xml (see Table 2), DDT
compression achieves over 2.7 times and 4 times better
compression of structure. In case of hamlet.xml (see Table 3),
since the DTD distance is 2771 and the weighted DTD distance
51140332, the wide difference between the two causes DDT
compression to be inefficient. Our experiment with DDT
compression exceeded the default memory and time settings we
had in the experiment due to extensive recursion. The difference
in the distance implies the operators being away from the root
element. DDT compression does not perform well in such cases.
Thus, for DDT compression to perform well, the DTD distance
should be large but not the weighted distance, i.e., the operators
should be close to the root. The optimal case would occur when
the weighted distance equals the DTD (standard) distance.

7.1 Content Grouping
With data redundance at nodes of the same level content grouping
can help improve compression. Content grouping basically
reorders the content of a document to group similar element
structures or elements with the same names together. A similar
approach is taken in relational databases where column-wise
compression achieves better compression than row-wise
compression [25]. Traditional compression algorithms that use
compression windows can take advantage of this re-organization.

Consider the example in figure 2. The document on the left
shows 2 bibliographical entries in XML form. The document on
the right shows the extracted structure part of the document on the
left. The content part is shown in figure 3.

Content under similar element structures are grouped together. By
reordering the structure and grouping together content under
similar structures, traditional text compression algorithms like
LZ77 can perform better. Content grouping, however, has the
overhead of multiplexing between different content streams and to
see the advantage of grouping of similar items requires the
document size to exceed a threshold. For Web log files of size
under the threshold of 9K bytes content grouping performs 5 to 10
percent poorer than standard Millau compression. Studying the
numbers in the dimension of tag occurrences, as the tag
occurrences go up (and so do the text content under them), we
saw up to 20% improvement in the compressed size. The gain of
using content grouping is described by a logarithmic increase as
the size of the document increases. Over the threshold of 9K
elements, content grouping improves compression size in a
logarithmic way (see Figure 4).

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

0 200 400 600 800 1000 1200

Content Gain

Log. (Content Gain)

size (number of elements)

Gain

Figure 4 Logarithmic trend of the content grouping gain.
Beyond a threshold (100 element structures) the content
grouping helps in improving the content compression.

7.2 Compression Speed
All of our algorithms are implemented in Java. Due to Java
performance limitations, they perform slower than known C or
C++ implementations. Within the variations of the algorithms
implemented in Java, DDT compression is the slowest.

Intermediate
MicroEconomics
Hal Varian
W. W. Norton
1999
Workouts in

Intermediate
MicroEconomic
Hal Varian
Theodore Bergstorm
W.W.Norton
1997

Intermediate
MicroEconomics
Workouts in
Intermediate
MicroEconomics

Hal Varian
Hal Varian
Theodore
Bergstorm

W.W.Norton
W.W.Norton

1999
1997

Title elements

Author elements

Publisher elements

Year elements

Intermediate
MicroEconomics
Hal Varian
W. W. Norton
1999
Workouts in

Intermediate
MicroEconomic
Hal Varian
Theodore Bergstorm
W.W.Norton
1997

Intermediate
MicroEconomics
Workouts in
Intermediate
MicroEconomics

Hal Varian
Hal Varian
Theodore
Bergstorm

W.W.Norton
W.W.Norton

1999
1997

Title elements

Author elements

Publisher elements

Year elements

Figure 3 Similar content grouping: By reordering the
structure and grouping together the content under similar
structures traditional text compression algorithms like
LZ77 can perform better.

<biblio>
<bibentry>

<title>Intermediate
MicroEconomics</title>

<authors>
<author>Hal Varian</author>

</authors>
<publisher>W.W.Norton</publisher>
<year>1999</year>

</bibentry>
<bibentry>

<title>Workouts in
Intermediate Microeconomics</title>

<authors>
<author>Hal Varian</author>
<author>Theodore

Bergstorm</author>
</authors>
<publisher>W.W.Norton</publisher>
<year>1997</year>

</bibentry>
</biblio>

<biblio>
<bibentry>

<title>#1</title>
<authors>

<author>#2 </author>
</authors>
<publisher>#3 </publisher>
<year>#4</year>

</bibentry>
<bibentry>

<title>#5</title>
<authors>

<author>#6</author>
<author>#7</author>

</authors>
<publisher>#8</publisher>
<year>#9</year>

</bibentry>
</biblio>

<biblio>
<bibentry>

<title>Intermediate
MicroEconomics</title>

<authors>
<author>Hal Varian</author>

</authors>
<publisher>W.W.Norton</publisher>
<year>1999</year>

</bibentry>
<bibentry>

<title>Workouts in
Intermediate Microeconomics</title>

<authors>
<author>Hal Varian</author>
<author>Theodore

Bergstorm</author>
</authors>
<publisher>W.W.Norton</publisher>
<year>1997</year>

</bibentry>
</biblio>

<biblio>
<bibentry>

<title>#1</title>
<authors>

<author>#2 </author>
</authors>
<publisher>#3 </publisher>
<year>#4</year>

</bibentry>
<bibentry>

<title>#5</title>
<authors>

<author>#6</author>
<author>#7</author>

</authors>
<publisher>#8</publisher>
<year>#9</year>

</bibentry>
</biblio>

Figure 2 Content and structure separation: The left box shows
the original document. The right box shows the structure with
references to the content. Content part is shown in figure 3.

371

7.3 Composed Algorithm
Since different algorithms perform differently on different size
and types of XML documents we came up with a composed
algorithm that applies some decision logic before picking the
appropriate encoder. The decision logic works as follows (see
Figure 5). If the document is not wellformed, standard ZIP
compression is applied. If it is well formed, then if DTD
information is not present, then Well-formed Millau is applied. If
DTD information is available, weighted DTD distance and
standard DTD distance is computed and compared. If the
difference between the two is large, variable byte Encoding
Millau compression is chosen. Otherwise, DDT compression is
chosen. For documents of size more than 10k content grouping is
activated. When variable byte encoding Millau is chosen, if the
number of elements in the DTD is more than 255 then enhanced
Millau with DTD statistics is chosen, otherwise, enhanced Millau
with random statistics is chosen.

We implemented this composed decision algorithm and found that
on an average the decision process caused an overhead of under
4% in size over the optimal algorithm (the optimal algorithm is
chosen a posteriori after trying all the algorithms.)

8. EFFICIENT DOCUMENT OBJECT
MODELS
The XML standard includes a document object model called
DOM that allows navigating, querying, and updating a parsed
XML document tree. Typical DOM implementations are in-
memory tree based (which means that the whole XML tree is
constructed in memory for full processing), though variants like
Lazy DOM, Persistent DOM [27] have emerged that take load
documents into memory in a delayed fashion. In addition to
DOM, Simple API for XML (SAX) provides a programming
interface that enables streaming XML and is event-driven. In this
section we study how compression and encoding can influence
this API definition.

8.1 Document Object Models for Encoded
Documents
The DOM model mainly caters to the assumption that the
underlying document tree has character and not binary encoding.
Even though most of the DOM API methods can be implemented
to support compressed encodings some additional methods are
required to enhance and take advantage of the fact that the
document is encoded. The DOM API methods use element and
attribute names as arguments or results. The first generation
Millau extends these APIs to support BDOM (Binary DOM) by
allowing lookup and return using tokens, instead. Our SAX parser
supports event-based parsing in SAX. Further, SAX is extended
to support encodings instead of string names in the SAX API
methods. The DOM and SAX support helps avoid conversion
between binary encoded and compressed XML documents and the
ASCII form unnecessarily for the sake of supporting DOM and
SAX. In our experiments, for a sample document of size 3MB,
standard parsing took 40 seconds; the same document compressed
using Millau and using our SAX parser took 8 seconds; with our
binary SAX parser it took 5 seconds.

8.2 Schema-aware Document Object
Models
Validating XML parsers have to parse two documents – the
content document that is being validated and parsed; and the
schema document against which this document is validated. DDT
compression operates in a manner similar to a validating XML
parser in that it looks for the differential between the document
and the schema to obtain better encoding. One method to make
this process efficient is to encode schematic information in the
nodes of the document itself. Corresponding to DOM we define a
Schema-driven DOM or SDOM model where the non-constant
operator information like *, |, ?, +, are stored within the nodes in
the DOM tree. For example, consider the DTD in section 4.3.
Consider a DOM tree fragment rooted at the authors element. The
DOM tree is illustrated by Figure 6.

From the tree it is not apparent that the schema of the Authors
element is Author* and not Author, Author, Author or something
else. By decorating the tree with the schema of Authors we get a
SDOM tree which looks like Figure 7.

Figure 5 Flowchart of decision algorithm for picking the right
compression algorithm based upon the characteristics of the
XML document and its associated DTD (if present)

In the DOM model, all the programming interfaces corresponding to
the different entities in XML like Element, Attribute, Comment,

Figure 6 Document Object Model (DOM) representation of
a simple XML document

Author

firstName lastName

Authors

Author

firstName lastName

Author

firstName lastName

Ravi Sethi Al fred Aho Jeffre y Ullman

Author

firstName lastName

Authors

Author

firstName lastName

Author

firstName lastName

Ravi Sethi Al fred Aho Jeffre y Ullman Ravi Sethi Al fred Aho Jeffre y Ullman

372

Entity, PI, etc. are derived from a base Node interface. We extend the
NODE interface for SDOM. The base interface for SDOM is called
the SPNode interface. There are three derivations of this interface –
XNode (element Node in SDOM), OPNode (operator node), and
CLNode (Cluster node denoting a group of nodes separated by a
‘,’ in the DTD). Correspondingly, new methods are added in
SDOM to setting and getting the operators associated with a Node
object and setting and getting the size of a cluster of nodes. We
describe these methods below.

XNode Methods:
 void setElement(Node): set the associated element
 Node getElement(): get the associated element
 void setUnderlying(Node) : set the SDOM tree under this node
 Node getUnderlying(Node) : get the SDOM tree underlying this
node

OPNode Methods:
 void addNode(Node node): add a node in the subtree of this
operator
 int getSize(Node node): get the number of SPNodes under this
OPNode
SPNode getNode(int index): get the index-th SPNode under this
OPNode
int getType(): get the type of the operator (*, +, ? or |)
void setType(int type): set the type of the operataor (*, +, ? or |)

CLNode Methods:
void addNode(Node node): add a node to the subtree of the
cluster node
int getSize(): get the number of children of this cluster node
Node getNode(int index): get the index-th node of this cluster
node

8.2.1 SXML Documents
Corresponding to the SDOM model there is a textual
representation of XML. We call this the Schema-driven XML or
SXML document. An SXML document is an XML document
with extended markup to represent the DTD structure inside the
document. We use the XML Processing Instruction (PI) facility to
embed the schema information into the document. This way we
retain the XML validity of the original document against its DTD
while enhancing it with Processing Instructions about the schema.
Processing Instructions in XML are like Pragmas in standard
programming languages. We introduce two types of PIs -- one for
operators, and the other for clusters.

PI for Operators
Operators have the following format:

<?SXML “start-operator” “operator” [“count”]>
…
<?SXML “end-operator”>
where “operator” can be one of - *, +, ?, or | . “count”
represents the number of occurrences for that operator
(applicable to only * and +). For example,
<?SXML “start-operator” “*” “3”>
 <x/>
<?SXML “end-operator”>

 denotes the 3 repeated occurrences of the element x
corresponding to the content model x*.

PI for Clusters
<?SXML “start-cluster” “count”>
 …
<?SXML “end-cluster”>

 where count is the number of Elements inside the cluster node.

The schema for SXML itself can be expressed as an extension to
that of the underlying XML using the following production rules:

SXML => (XML|Cluster)*
Cluster => (XML|Cluster|Operator)*
Operator => (XML|Cluster)*

The SXML fragment corresponding to the SDOM tree discussed
in section 8.2 Error! Reference source not found. is illustrated
by the following.

<authors>
 <?SXML “start-operator” “*’ “3”>
 <author>
 <firstName>Alfred</firstName>
 <lastName>Aho</lastName>
 </author>
 <author>
 <firstName>Alfred</firstName>
 <lastName>Aho</lastName>
 </author>
 <author>
 <firstName>Alfred</firstName>
 <lastName>Aho</lastName>
 </author>
 <?SXML “end-operator”>
</authors>

8.3 Programming Interface for SXML
Analogous to the DOM and SAX programming models for
standard XML, for the SXML document structure, we have
Schema-driven DOM (SDOM) and Schema-driven SAX (SAS).
Figure 8 shows the conceptual relationship between the XML,
DTD, DOM, SAX, SDOM, and SAS. Given an XML document
and its DTD, our parser can create an SDOM tree or create an
SXML document as output. On this SXML document a DOM
parser can produce a DOM tree, a SAX parser can generate SAX
events, an SDOM parser can produce an SDOM tree, and a SAS
parser can produce SAS events.

8.4 Use of SDOM and SXML
As we have already seen, SDOM and SXML can be used for the
purposes of achieving better XML compression using the

SXML Processing

Instruction

Author

firstName lastName

Authors

Author

firstName lastName

Author

firstName lastName

Ravi SethiAlfred Aho Jeffrey Ullman

*

Author

firstName lastName

Authors

Author

firstName lastName

Author

firstName lastName

Ravi SethiAlfred Aho Jeffrey UllmanRavi SethiAlfred Aho Jeffrey Ullman

*

Figure 7 The Schema-driven DOM (SDOM) tree
corresponding to the DOM tree in figure 6. The original
DOMtree is decorated with the ‘*’ operator indicating
that the content model for Authors is Author*. The rest
of the tree is not decorated since the content model
model follows the constant pattern.

373

Differential DTD Tree algorithm. Compression using the SDOM
tree is faster than the one using the DOM tree because we do not
need to parse the DTD separately. We performed experiments
with the SDOM-based DDT compression (called the SDDT
compression algorithm) and found that over 80% faster than our
original DDT compression. This compensates for the slowness of
DDT algorithm as seen in tables 1, 2, and 3. Figure 9 shows a
graph of the time taken for parsing log files in XML syntax of
varying sizes. From the figure it can be seen that as the size of the
file increases, SDDT performs increasingly better as compared to
DDT.

In addition, SXML documents enable faster validating parsers
than typical XML documents as the schema is closely associated
with the content. SDOM can also be used for better and faster
application processing of XML data. SDOM data is more
structured and allow easy measurement of content than regular
XML. This allows faster parsing, validation and analysis of XML
data.

We can think of further ameliorations to SDOM and SXML
implementations. The first improvement is the use of compression
inside the SDOM tree to reduce memory usage. Another
improvement is to use tokens instead of tags inside the SDOM
tree as well as using caching for content to disk instead of
memory.

Figure 9 SDDT compression performs much better than DDT
compression for the Access log files of different sizes. As the
file size increases, SDDT performs increasingly better.

In summary, SDOM and SXML provide a new way of associating
schema with XML content. This improvement opens doors for
faster compression and content processing. The SDOM structure

as we have designed and implemented it is backward compatible
with the standard DOM model. Similarly, SXML is XML with
additional schematic annotations. The downside of associating the
schema with the document this way is the increase in the
document size. More importantly, changes in the DTD have to be
appropriately reflected into the SXML document.

9. Applications
We have built two prototypical applications using our model of
XML compression.

9.1 Compression-Decompression Proxy
Server Application
Proxy servers have been used to efficiently tokenize HTML pages
to reduce network bandwidth. Significant work has been done to
reduce network bandwidth by using Proxy servers to efficiently
compress and decompress data over the network [11]. However,
they do not have a systematic way to compress arbitrary XML
documents.

In the architecture of our prototypical system we have two proxy
servers: a server-side proxy server, and a client-side proxy server.
Our proxy servers were built using the WBI (Web Intelligence), a
programmable proxy server package [15]. An XML request from
a client (say a browser) is intercepted by the client proxy server,
compressed and sent to the server. On the server side it is
intercepted by the server-side proxy server and decompressed
before sending it to the actual server. Similarly, the response from
the server is compressed by the server-side proxy server and sent
to the client to be intercepted by the client-side proxy server to be
decompressed and served to the client.

For typical documents, our system is 4 times faster. For
transmission of small documents with approximately 20%
compression-decompression overhead, it reduces the document
size from an average of 3647 bytes to an average of 886 bytes. For
a large document of average size 213 Kb our system reduces the
transmission time from 30 seconds to 21 seconds where the
document is compressed to an average size of 148Kb. There is an
overhead of 1.5 seconds.

9.2 XML-based RPC Mechanism
XML-RPC [11] is used for remote procedure calls over HTTP
using XML. An XML-RPC message is an HTTP-POST request.
The body of the request is in XML. A procedure executes on the
server and the value it returns is also formatted in XML.
Procedure parameters can be scalars, numbers, strings, dates, etc.,
and can also be complex record and list structures. In our
implementation, the body of the request is encoded using our
compression scheme. To evaluate the performance of this
implementation, we made a benchmark which sends an array of
100 integers as a parameter and receives the same array as a return
value. We compared the performances of our implementation with
the Helma XML-RPC system [12]. Helma RPC system could do
12 RPC calls per second. Using our system, we could do 27 RPC
calls per second once again proving its compression efficiency.

10. Conclusions and Future Work
As XML becomes pervasive in Internet applications, new
methods for efficiently storing, streaming, and processing XML
structures will be required. The contributions of this paper are
three-fold: We described a number of novel compression

Figure 8 SDOM/SXML general architecture. From an
XML document and its DTD, our parser can create an
SDOM tree or an SXML document as output. The SXML
document can be run through a DOM parser (to create a
DOM tree), a SAX parser (to generate SAX events), or
an SDOM parser (to generate an SDOM tree) or a SAS
parser (to generate SAS events).

XML

DTD

SXML

SDOM Tree

SAS Parser

SDOMParser

SAX Parser

DOM Parser

SDOM Tree

SAX events

DOM Tree

SAS events

XML

DTD

SXML

SDOM Tree

SAS Parser

SDOMParser

SAX Parser

DOM Parser

SDOM Tree

SAX events

DOM Tree

SAS events

374

algorithms in the context of our system for XML. We used XML
and DTD quantification to study and compare these algorithms.
We also introduce novel programmatic APIs for XML that can
take advantage of our compression-decompression schemes. We
also looked at 2 prototypical applications of our system. As we
write, we continue to improve our algorithms and study their
performance on various classes of XML documents. We have also
built a variation of the DDT compression called the DTD
Constant Structures compression (or DCS compression) where
we look for the largest constant structures within the DTD and
encode them with efficiently and achieve better compression. As
we continue to benchmark our system, we will also look at new
applications that can use our algorithms.

Another area of work we continue to research is lazy loading of
XML documents into memory. This is motivated by the fact that
exploitation of large XML documents can become extremely
difficult for regular applications if the data has to be modeled in
memory (like for DOM). XML compression can be useful for
storing and accessing this data without decompressing the full
data or storing it in memory. DDT-compression can help achieve
of such applications. In DDT-compressed data, both the structure
and content are accessible without first decompressing the data.
This is due to the small structural information stored in DDT-
compression which can be easily decompressed. Then content
data can be accessed randomly without decompressing the whole
data, requiring only small memory overhead. This model of XML
processing has interesting applications in streaming XML
structures over the network medium.

The authors acknowledge Marc Girardot who implemented the
first version of Millau. Part of this was the second author’s
thesis[27] work done at the IBM Almaden Research Center.

11. REFERENCES
[1] Extensible Markup Language (XML) 1.0, W3C

Recommendation 10-Feb 1998,
 http://www.w3.org/TR/REC-xml

[2] SAX 1.0: The Simple API for XML,
http://www.megginson.com/SAX/

[3] Document Object Model (DOM) Level 1 Specification
Version 1.0, W3C Recommendation 1 October, 1998,
http://www.w3.org/TR/REC-DOM-Level-1/

[4] WAP Binary XML Content Format, W3C NOTE 24 June
1999, http://www.w3.org/TR/wbxml/

[5] P. Deutsch, J. Gailly, “ZLIB Compressed Data Format
Specification Version 3.3”, RFC 1950, May 1996,
http://www.ietf.org/rfc/rfc1950.txt

[6] P. Deutsch, “DEFLATE Compressed Data Format
Specification version 1.3”, RFC 1951, Aladdin Enterprises,
May 1996, http://www.ietf.org/rfc/rfc1951.txt

[7] P. Deutsch, “GZIP file format specification version 4.3”,
RFC 1952, Aladdin Enterprises, May 1996,
http://www.ietf.org/rfc/rfc1952.txt

[8] J. Bosak. Shakespeare’s plays encoded in XML
http://metalab.unc.edu/bosak/xml/eg/shaks200.zip

[9] The Wireless Application Protocol (WAP) Forum,
http://www.wapforum.org/

[10] J.C. Mogul, F. Douglis, A. Feldmann, B. Krishnamurthy,
“Potential benefits of delta-encoding and data compression
for HTTP”, Proceedings of the ACM SIGCOMM '97
Conference, September 1997

[11] XML-RPC Home Page: http://www.xml-rpc.com/
[12] Hannes Wallnöfer, XML-RPC Library for Java,

http://helma.at/hannes/xmlrpc/
[13] Open Applications Group,

http://www.openapplications.org/
[14] Rob Barrett, Paul Maglio, Jöerg Meyer, Steve Ihde, and

Stephen Farrell, WBI Development Kit,
http://www.alphaworks.ibm.com/tech/wbidk

[15] M. Nelson, The Data Compression Book, M&T Books, 1992
[16] J. Ziv, and A. Lempel, “A universal algorithm for sequential

data compression”, IEEE Transaction on Information
Theory, Volume 23, Number 3, May 1997, pages 337-343

[17] D.A.Huffman., “A method for the construction of minimum-
redundancy codes”, Proceedings of the IRE, Volume 40,
Number 9, September 1952, pages 1098-1101

[18] R. Nigel Horspool, Gordon V. Cormack, “Constructing
Word-Based Text Compression Algorithms”, IEEE
Transaction on Information Theory, 1992

[19] N. Jesper Larsson, Alistair Moffat, “Offline Dictionary-
Based Compression”, IEEE Transaction on Information
Theory, 1999

[20] F. Yergeau, “UTF-8, a transformation format of ISO 10646”,
RFC 2279, Alis Technologies, January 1998,
http://www.ietf.org/rfc/rfc2279.txt

[21] IBM XML Parser for Java,
http://www.alphaworks.ibm.com/tech/xml4j

[22] M. Girardot, N. Sundaresan, “Efficient representation and
streaming of XML content over the Internet medium”, IEEE
International Conference on Multimedia and Expo 2000,
New York, July 2000.

[23] M. Girardot, N. Sundaresan. “Millau: an encoding format for
efficient representation and exchange of XML over the
Web”, Proceedings of the 9th WWW Conference, May 2000,
Amsterdam, Netherlands.

[24] XML Solutions. XMLZip, available from
http://www.xmls.com/products/xmlzip/xmlzip.html

[25] H. Liefke, D. Suciu. XMILL: An Efficient Compressor for
XML Data. ACM SIGMOD 2000. Dallas, Texas.

[26] B. Iyer and D. Wilhite. Data Compression Support in
Databases. Proceedings of the 20th International Conference
on Very Large Databases. Pp 695-704. Santiago, Chile,
1994.

[27] R. Moussa. XML Data Compression, Quantification, and
Representation. Thesis Report. Multimedia Communications,
Eurecom Institute. Sofia Antipolis, France. July 2000.

[28] I. Macherius. Java Applications: XQL Language and
Persistent W3C-DOM. http://www.oasis-
open.org/cover/macherius19990329.html

375

