
LiteMinutes: An Internet-Based System
for Multimedia Meeting Minutes

Patrick Chiu, John Boreczky, Andreas Girgensohn, Don Kimber
FX Palo Alto Laboratory

3400 Hillview Avenue, Bldg. 4, Palo Alto CA 94304, USA
http://www.fxpal.xerox.com/

{chiu, johnb, andreasg, kimber}@pal.xerox.com

ABSTRACT
The Internet provides a highly suitable infrastructure for sharing
multimedia meeting records, especially as multimedia
technologies become more lightweight and workers more mobile.
LiteMinutes is a system that uses both the Web and email for
creating, revising, distributing, and accessing multimedia
information captured in a meeting. Supported media include text
notes taken on wireless laptops, slide images captured from
presentations, and video recorded by cameras in the room. At the
end of a meeting, text notes are sent by the note taking applet to
the server, which formats them in HTML with links from each
note item to the captured slide images and video recording. Smart
link generation is achieved by capturing contextual metadata such
as the on/off state of the media equipment and the room location
of the laptop, and inferring whether it makes sense to supply
media links to a particular note item. Note takers can easily revise
meeting minutes after a meeting by modifying the email message
sent to them and mailing it back to the server’s email address. We
explore design issues concerning preferences for email and Web
access of meeting minutes, as well as the different timeframes for
access. We also describe the integration with a comic book style
video summary and visualization system with text captions for
browsing the video recording of a meeting.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia – architecture, navigation, user issues.

General Terms
Documentation, Design, Human Factors.

Keywords
Meeting support systems, meeting capture, note taking,
hypermedia systems, video applications, multimedia applications.

1. INTRODUCTION
Documenting meetings can be an important part of organizational
activities. Meeting minutes constitute a portion of the
organizational memory. Right after a meeting, it is often useful to
look at the notes to review and act on decisions. Even during a
meeting, it can be helpful to refer to something from a point
earlier in the meeting, for example, asking a question that pertains
to an earlier presentation slide.

Multimedia meeting minutes provide a rich record of what took
place in a meeting. Video picks up details that are difficult to
catch, captures nonverbal activity, and shows context. Slides
contain text, images and meaningful layout information. Meeting
minutes, when correlated and linked to the video recording and
slides, can be used to retrieve and playback interesting points of a
meeting.

As multimedia applications become more lightweight and the
quality of multimedia over networks improves, supporting the
creation and access of multimedia meeting minutes over the
Internet becomes more compelling. Also, workers are becoming
more mobile and distributed, and the Web and email are now
indispensable for collaborative activities. In view of these two
trends, we have designed and built LiteMinutes, a system for
multimedia meeting minutes that uses both the Web and email for
creating, revising, distributing, and accessing multimedia
information captured in a meeting.

The Web provides a set of technologies that allows users to access
meeting minutes and other information about a meeting without
having to install special-purpose applications. The Web offers an
infrastructure facilitating both access by remote users and
communication among the different components of our system.
Our goal of both lightweight meeting minutes capture and
lightweight access is well-supported by this infrastructure.

There are several challenges to designing a system that works
well. The first is how to record the video and capture the slide
images; for this we have equipped a conference room at our
laboratory for multimedia meeting capture [5]. Our approach is
that a multimedia meeting room serves as a computing
environment that captures the heavier weight media such as video,
audio, and slide images. These are then combined with the more
lightweight and interactive medium of notes taken during a
meeting.

The second challenge is designing an Internet-based application
for taking notes in a meeting. From our experience with

Copyright is held by the author/owner.
WWW10, May 2-5, 2001, Hong Kong
ACM 1-58113-348-0/01/0005.

140

multimedia note taking systems (see [4], [6], [23]), we found that
a note taking application must support rapid interaction. Taking
notes during a live event required users to pay close attention and
sometimes they had to participate in the meeting in addition to
formulating notes. This made it difficult for novice users to fiddle
with user interface widgets and perform tasks such as labeling or
organizing information. After some experiments with various
hardware devices and software using HTML forms and applets,
we arrived at a minimalist Java Swing applet for taking text notes
on wireless laptops.

The third challenge is generating hypermedia meeting minutes
from the text notes and the recorded media. In order to do this,
the text notes must be timestamped and parsed into note items,
and the individual note items linked to each media. We
discovered that people could be confused when links are
generated indiscriminately; for example, supplying a link to the
slides when no slide was used during that part of the meeting. To
deal with this, we developed a technique for smart link generation
using contextual metadata.

Finally, the fourth challenge is distributing and revising the
hypermedia meeting minutes generated by the system. We studied
the work process of the note takers and found that it was best to
use email to distribute and revise the notes. We also surveyed the
recipients who indicated both email and Web versions of the
meeting minutes should be available for access. To support
revisions on the Web, the system automatically detects the email
revisions and updates the meeting minutes collection on the Web.

This paper is organized as follows. We discuss our empirical
observations and design requirements in section 2. Next, we
describe the LiteMinutes application in section 3 and the system
architecture in section 4. In section 5, we describe a video
summary and visualization system with text captions for browsing
a video of a meeting on the Web. To wrap up, we discuss related
work in section 6 and conclude with section 7.

2. EMPIRICAL OBSERVATIONS AND
DESIGN REQUIREMENTS

To inform the design of our meeting minutes system, we observed
the pre-existing practice of creating and distributing meeting
minutes, conducted a survey on user access preferences, and
explored various devices and user interfaces.

2.1 Pre-Existing Practice
Before introducing the first LiteMinutes prototype, text-based
email meeting minutes had been in use for more than a year and a
half at our lab. Notes were taken on paper by a single person,
transcribed and sent out as an email to all lab members. Figure 4a
shows a sample of these notes. The transcription was typed using
an email application and not a word processor. Transcription was
a tedious process, and the note taker often had to track down
people in the meeting to clarify what was said or to obtain
information that was shown on a slide. Part of this was due to the
difficulty of catching everything in a meeting. Another factor was
that the spelling of names in cosmopolitan Silicon Valley and the
spelling of technical terminology sometimes needed checking.

Four people took notes over this period of a year and a half. For a
span of several months, one person served as the primary note
taker with the other three occasionally substituting. Then another

person rotated in as the primary note taker. These four were part
of the staff at the lab but not researchers, and were inexperienced
users of computer technology.

Our observations suggest that the device and application for
taking meeting minutes must be easy to use and require at most a
few minutes of training or re-familiarization when someone has to
substitute for the primary scribe. Because the notes eventually
end up in email form, providing integration with email would be
useful.

2.2 Survey on Access Preferences
On the access end, we conducted a survey to determine the
preferences for accessing meeting minutes. A key question was
whether people like to have meeting minutes delivered as email or
to have the minutes on the Web for browsing; i.e. the push/pull
question.

In our survey, we walked around the building and interviewed 13
people in their offices. We asked them two questions:

1) Do you read the email meeting minutes that you have been
receiving?

2) Would you prefer to have the minutes: (a) emailed to you,
(b) put on the Web, or (c) both?

They were also given an opportunity to make comments after
answering these questions.

For question (1), 11 of the 13 subjects answered that they read the
emails. One subject commented that he “looked more carefully if
missed the meeting.” Another read them for the “spin.”

For question (2), 5 preferred email, 2 preferred the Web, 5
preferred both, and 1 said it “doesn’t matter.” One subject
commented: “won’t go to the Web to look, only email.” Another
commented that it was “easier to find things on the Web than
through email.” Yet a third person saved all the email minutes
and felt that he could find things by searching through them.

This survey indicates that in order to support the habits of users of
email and the Web, it is desirable to have both email delivery and
Web access to the meeting minutes.

2.3 Exploring Devices and User Interfaces
We found laptop computers with a wireless network connection to
be well suited for taking meeting minutes. Laptops are familiar
devices that require no training for someone already familiar with
a PC workstation and its keyboard interface. Hooking it up to a
wireless network allows the note taker to sit anywhere in the room
and provides an unobtrusive form factor. While text is limited in
expressiveness compared to ink (which supports both writing and
drawing), having the text entered while note taking during a
meeting saves the scribe from the time consuming task of
transcribing the notes after a meeting.

We also explored other devices such as pen-based notebook
computers, scanned notes on paper handouts, and hybrid
paper/digitizer CrossPads [7]. Pen-based computers have not yet
reached the point where writing on them feels like writing on
paper, plus there are problems with resolution and parallax that
take time to get used to. Multimedia pen-based note taking
systems such as FXPAL NoteLook [6] can create notes with slide
images, pictures of the room activity, along with ink notes and

141

annotations, but such full-featured systems require more than a
few minutes of training. Scanning notes on paper can be useful in
certain situations such as when handouts are available (see [4]),
but it is generally a difficult problem to determine time
information of the ink strokes written with ordinary pens. Hybrid
paper/digitizer systems such as the Audio Notebook [19] and the
CrossPad allow a user to write on a paper pad on top of a digitizer
that captures the ink strokes electronically while timestamping
them. These systems are quite usable, but have some quirks in the
user interface such as provisions for letting the system know what
page the writer is on.

When notes are shared publicly, legibility is crucial. The
NotePals [9] work shows that people prefer reading text notes to
handwritten notes taken on PDAs. Current handwriting
recognition technology does not solve the transcription problem,
due to insufficient accuracy when applied to transcribing
handwritten meeting notes.

2.4 HTML Form-Based Prototype
Our first prototype was a HTML form-based application (see
Figure 1). It supports note taking, editing, and playing back of the
video recording. Each note item is typed into a form field, and
pressing the Enter button submits the item, which is appended to
the list of note items on the page. On the left margin next to each
note item are buttons for Edit and Play. Pressing the Edit link of
an item puts the text of that item into the form field for editing
and re-submitting. Pressing the Play link of an item plays back
the video at the time that item was entered. Playback and
management of the video recordings are handled by the FXPAL
Metadata Media Player and MBase system [11], which are
described in more detail in a later section.

Figure 1. An early HTML form-based prototype for taking,
editing, and playing back multimedia meeting minutes.

We learned a number of things from using this prototype for four
months. Notes were taken in five staff meetings and a few other
meetings. Forms are simpler than applets, but the interaction and
user interface layout is far from ideal. Having to enter each note
item proved to be tedious, and being able to specify precisely the
text and time of each item was not enough of a benefit. We
concluded that it was better to go with an applet with a text
window for entering notes. Each character would be timestamped
by the applet, and line breaks would be used later to parse the text

into separate note items for linking to media. Another observation
was that note items can be longer than one line (see Figure 1).
This meant that support for word-wrap was required; otherwise
line breaks in the middle of sentences would appear, put in by
users as a way to keep text visible in the window. The need for
word-wrap made us choose Java Swing text widgets, and not Java
AWT widgets that lack support for the word-wrap feature. Of
course, the superior look-and-feel of the Swing user interface
components was a plus.

For revising the notes, editing almost always took place right after
a meeting to supply missing words or to correct typos. After this
revision, further editing was never done in these samples. The
text notes did not need to be perfect, because they were linked to a
video recording that provides an accurate account of what took
place in the meeting. Consequently, always having the Edit
buttons on the page was not a good use of screen real estate. As
we would find out later, people felt that links to different media
(e.g. video, slides) should not exist when the corresponding media
was not recorded at all or not used at a time a particular note item
was taken. To solve this problem, we developed a scheme for
smart link generation using contextual metadata.

2.5 Design Requirements
To summarize, we list the design requirements obtained from our
observations, survey, and working with various devices and
prototypes.

• Provide both email delivery and Web access

• Wireless laptop for taking meeting minutes

• Java Swing applet for text note taking

• Timestamp note items for correlating with media

• Support revision right after a meeting

• Smart link generation using contextual metadata

3. THE LITEMINUTES APPLICATION
With knowledge gained from the aforementioned observations
and prototype testing, we designed and built a system called
LiteMinutes. It has been deployed and used for our weekly staff
meeting minutes for more than 10 months. In this section, we
describe the typical scenario of how the application is used to
create, revise, distribute, and access multimedia meeting minutes.
How the system works internally is explained in section 4 below.

3.1 Creating Meeting Minutes
Creating multimedia meeting minutes with LiteMinutes is very
easy: meeting participants or a designated scribe walk into a
meeting with their laptops or use the wireless laptops supplied in
the room (see Figure 2). The system can support more than one
note taker simultaneously; sets of notes taken on different laptops
are handled separately. Normally, a single scribe takes notes in
our staff meetings. On a Web page that can be found from our
laboratory’s (internal) home page, the user clicks on a link to get
the note taking applet. A screen shot of this applet is shown in
Figure 3. The user simply takes notes in a text window. In the
mean time, the meeting is recorded on video and slide images
shown by the speaker are captured. At the end of the meeting, the
user enters his email address and presses the Create Notes
button. The notes are sent to the notes server via a CGI script for
processing and distribution.

142

Figure 2. Meeting room with large main display, secondary
display, and wireless laptop for note taking.

Figure 3. LiteMinutes note taking Java Swing applet running
inside a Web browser on a laptop.

The notes are parsed by the server and formatted in HTML, with a
small addition at the end of each note item, where a [video]
and/or [slide] link is appended. Figures 4b and 4c illustrate two
design alternatives for showing the links, the first with text and
the second with thumbnail images. In keeping with the spirit of
making a lightweight application, we chose the minimalist design
with text links. Another consideration is that sending a bunch of
thumbnail images in an email message either takes up space or
requires HTTP access to the image host when viewing the
message.

Parsing the text notes from the applet is based on the rule that
newline characters separate note items, and an item is associated
with the time when the first character of that item was typed. The
multimedia note items are context-aware: an item’s link to a
medium is generated only if that medium was recorded or used at

the time that item was taken during the meeting. This is
determined by checking the contextual metadata collected during
the meeting.

Figure 4a. Sample of early text-only email meeting minutes.

Figure 4b. Sample of HTML formatted multimedia meeting
minutes in LiteMinutes. Links are generated only if that
medium (slide or video) was used or recorded at the time the
note item was taken.

Figure 4c. Alternative to 4b with thumbnail links, which we
felt was too cumbersome for email.

After parsing and generating the HTML hypermedia meeting
minutes, the server emails them to the email address filled in by
note taker and a copy is placed in the Web collection. Using
email for distributing the notes leverages an existing document
routing system and integrates smoothly with the pre-existing work
process. Since the hypermedia meeting minutes are very similar
to the pre-existing text-only email meeting minutes (compare
Figures 4a and 4b), the transition experienced by the users was
smooth and not disruptive.

Finally, placed at the bottom of the HTML meeting minutes are
links to Revisions, Weekly Meeting Notes, and Help (see
Figures 5 and 6). The Revisions link accesses the latest revision
of the meeting minutes. The Weekly Meeting Notes link takes
the user to a Web page where the collection of notes can be
browsed by the week or month (see Figure 7).

3.2 Revising the Meeting Minutes
Revision is a crucial step in the meeting minutes process that
gives an opportunity for the filling in of missed items, checking
details, and fixing typos. This step is easily performed in the note
taker’s own email application when the note taker receives the
processed HTML meeting minutes as an email message sent by
the LiteMinutes system. What is required is that the email
application supports HTML editing, and this is a feature in
popular email applications such as Microsoft Outlook and
Netscape. After editing this email message, the revision is then
forwarded by email to all the meeting participants and other
interested parties, along with the email address for the
LiteMinutes server. When the LiteMinutes system receives a
revision (tracked by HTML comment tags embedded in the
meeting minutes explained in Section 4.5), it automatically
updates the Web collection of meeting minutes.

143

Figure 5. Video playback from meeting minutes is activated by clicking on the [video] links. Meeting minutes in a Web browser is
shown on the right. The video player shown on the left is the FXPAL Metadata Media Player.

Figure 6. Slide images are accessed from the meeting minutes by clicking on the [slide] links. Meeting minutes in an email
application is shown on the right. Slides are viewed in the LiteSlideViewer applet shown on the left.

144

Figure 7. Browsing the archived notes on the Web. Notes are
listed by the week, and users can navigate by the week or
month with the arrow buttons. Real-time notes are accessed
by the “…” button.

Sometimes revisions are not necessary and the note taker wants to
distribute the original email meeting minutes directly. This is
more appropriate for meetings that are more informal than staff
meetings, such as a small group discussion on project design. In
this case, the note taker simply enters several email addresses or
the group’s email address in the note taking applet.

An example is illustrated in Figure 6. The email message
displayed is a revision.1 The first three items of the meeting
minutes shown in the email window had been revised as follows:

1) The first item, originally incomplete, was an announcement
of a publication, and the details of the citation were
obtained by the note taker after the meeting.

2) The second item was an announcement that the note taker
had missed in the meeting. Originally the item entered was
“Jim announced”.

3) The third item was also partially missing in the original
notes: “Trip report: Cathy, Where is…”

In the revision shown in Figure 6, we see that these
incomprehensible and incomplete note items are now corrected.

The note takers who had used both LiteMinutes and the earlier
HTML form-based prototype expressed that revision by editing
email is highly preferred over modifying a Web page.

3.3 Accessing the Meeting Minutes
Multimedia meeting minutes can serve a number of different
purposes depending on when they are accessed. Three important
timeframes along with some examples that we have identified are:

1 The contents of the data taken from real meetings in this

example and throughout the paper have been altered for privacy
reasons.

• During a meeting (real time)
o Question and discussion referring to a slide shown

earlier in the meeting
o Instant replay of a remark or event with the

recorded audio or video
• Right after a meeting (minutes to days)

o Review details, action items
o Skim email minutes if missed the meeting

• After an indefinite duration (weeks to months)
o Recall plans and accomplishments over past year
o Organizational memory

During a meeting (in real time), any meeting participant can view
the live meeting minutes on the Web from their laptops while the
scribe or others are taking notes. These real-time notes are
accessed through the “…” link on the Weekly Meeting Notes page
(see Figure 7). The real-time notes look exactly like the regular
HTML-formatted notes. Clicking on the [slide] link of a note
item shows that captured slide image in our LiteSlideViewer
applet (shown in Figure 6). This applet can be used to navigate
through the presented slides.

For purposes of question and discussion, a slide image may be
“beamed” to the secondary display in our meeting room (see
Figure 2). The LiteSlideViewer applet is designed to be context-
aware and beaming slide images is operational only if the laptop
is inside the room during the meeting, with the available displays
in that room listed in the combo box at the lower right of the
applet. The applet has a “Beam to:” button for sending a slide
image to a selected room display. In a room with multiple
displays, the default display is the secondary display because a
slide shown by someone who is not the presenter should not
intrude upon the main display used by the presenter.

Having instant replays in meetings is an interesting capability.
Rather than having people repeat what they said, an instant replay
can be invoked. The playing back of the audio or video recording
during the meeting itself has been investigated by our colleagues
at Xerox PARC in the WhereWereWe project [14]. Our Metadata
Media Player does not currently support this capability, although
we may add this capability in the future.

Right after a meeting (within minutes to days), the recipients of
the email can skim the notes quickly, or browse an identical set of
notes on a Web page (see Figures 5 and 6). Clicking on the
[video] link of a note item brings up a video player (shown in
Figure 5). Clicking on the [slide] link shows the corresponding
slide image, which is displayed by our LiteSlideViewer applet on
a Web page (see Figure 6).

After some weeks or months, the Web archive provides a better
way to retrieve and access the meeting minutes. Currently we list
sessions by the week, and users can flip back and forth by the
week or by the month (see Figure 7). Providing search capability
would be desirable, and we intend to add this in the future.
People who file away all of their email meeting minutes can
search them with their email application.

The meeting minutes are also accessible from our MBase system,
which has a listing its video collection. Another use of the
minutes is for text captions in our Manga visual summary of a
video. Both systems are described in the next section.

145

4. SYSTEM ARCHITECTURE
In this section we discuss the LiteMinutes system architecture.
We describe the various components of this multimedia system:
video management, slide image capture, smart link generation
with contextual metadata, and revision via email.

4.1 LiteMinutes Components
Each medium is handled separately by a server that manages the
capture and playback of that medium (see Figure 8). Metadata
about the contextual or environmental conditions are also
captured. This loose coupling of the media modules provides
flexibility when supporting different combinations of media for
different kinds of meetings, and allows the multimedia services to
be offered to other applications beyond multimedia meeting
minutes. Furthermore, extending support to a new medium is
simple.

The LiteMinutes applet for taking meeting minutes is a Java 2
Swing applet. When a user types a character, the applet
timestamps it. This applet runs in any Web browser that supports
Java 2 or has a Java 2 plug-in. Each time a line break character is
entered, the text notes along with timestamps for each character
are sent from the applet to the server. This continual updating
enables the notes to be shared and viewed in real time, accessed
from the “…” button on the Weekly Meeting Notes Web page
(see Figure 7). Continual updating also acts as auto-save, which
prevents all the notes from being lost in case of a breakdown on
part of the applet, server, or wireless network. A CGI script on
the server parses the notes and generates the multimedia meeting
minutes in HTML with the video and/or slide links. These
minutes are then put on the Web. If the user is performing a
Create Notes operation and the email address field in the note
taking applet is filled in, the server also emails a copy of the
HTML meeting minutes via a SMTP mail server.

slide
image

capture

video
capture

text
notes

capture

HTML notes
(web & email)

note taking
applet/server

video
server & player

slide image
server & viewer

other
media

capture

other media
server & viewer

metadata
capture

metadata
server

slide
image

capture

video
capture

text
notes

capture

HTML notes
(web & email)

note taking
applet/server

video
server & player

slide image
server & viewer

other
media

capture

other media
server & viewer

metadata
capture

metadata
server

Figure 8. Diagram showing how the text notes, different
media, and metadata are captured and connected.

For viewing, real-time reviewing, and beaming of slide images, an
applet called LiteSlideViewer is used (shown in Figure 6). The
[slide] link of a note item is a CGI script that fetches the
LiteSlideViewer applet and shows the target slide image. The
applet has buttons to navigate to previous and next slides. The
timestamp of the slide is shown. For beaming a slide image to a
room display, a combo box provides a choice of available
displays. The beam button communicates back to the slide image
server the command to show the image on the target room display.

An applet called LiteSlideShow displays the beamed slide images
on the room display. Figure 2 shows this applet running on the
secondary display in the room. The LiteSlideShow applet
periodically checks for new images from the slide image server.

Using these applets also provides a simple way to share and beam
images to remote displays during a teleconference.

4.2 Video Management
For the video server and player we use the FXPAL MBase system
with its Metadata Media Player [11]. The video is recorded
directly in MPEG and can be played back right after a meeting.
The clocks of the workstation recording MPEG and the laptop for
taking meeting minutes are kept synchronized with the Network
Time Protocol. This protocol provides sufficient accuracy to
correlate events to the right frame in the video. We also convert
the MPEG video to RealVideo, which is easier to stream over the
Internet. The MBase system provides the necessary support to
automatically choose the video format most appropriate for the
client. For local users, MPEG served via Microsoft Windows file
sharing to our Metadata Media Player provides better
performance than any streaming video format. For remote users,
RealVideo is the appropriate choice. The MBase system uses a
combination of JavaScript and a helper application for the MPEG
playback to serve the video. A CGI script generates JavaScript to
set a boolean variable based on the client’s IP address, which
determines the video format. The combination of static and
dynamically generated JavaScript allows for the inclusion of
JavaScript video links in the static meeting minute pages that
either launch a helper application or open another browser
window with a RealVideo plug-in. Unfortunately, these
JavaScript links are not supported by all email applications so that
MPEG playback is the only choice from the email messages.
Overall, it is possible to use any video player that provides an API
function to play a video at a given point in time. We note that an
audio recording may be used instead of video.

The video can be shot with a camera operator or automatically. A
camera operator has the ability to direct multiple cameras and
follow the speakers in close focus. A simple way to produce a
video recording automatically without a camera operator is by
fixing a camera with wide focus at the front of the room. We have
begun to experiment with automatic person tracking and
panoramic cameras (see [10]).

Information about captured meetings can also be accessed from
the MBase system. This Web-based system provides access to
video collections that are organized into directories grouped by
topic (e.g., staff meetings, project reviews, etc.). A number of
video analysis techniques are used to give users summaries of and
access points into the videos. Figure 9 shows an entry for a video.
A timeline visualizes different video features such as camera
shots. Moving the mouse over the timeline shows the
corresponding keyframes marked by the blue triangles along the
timeline. Three icons above the timeline provide links to other
applications related to the video or meeting: the first is for Manga
(described in section 5 below), the second for LiteSlideViewer to
see the captured slide images, and the third for notes taken on
pen-based systems with our NoteLook application [6].

Figure 9. MBase entry for a video. A timeline shows different
video features. Icons above the timeline are links to other
applications related to the video or meeting.

146

4.3 Slide Image Capture
Slides are captured by a screen-capture component on the PC
workstation whose monitor output is the main display in the
meeting room. Images from the display are captured at equal
intervals. Captured images are compared to the previous image
and saved if a change occurred. There are tradeoffs between the
frequency of the capture, the size and format of the saved images,
and the load the capturing imposes on the workstation. Capturing,
scaling down, and compressing images are all relatively expensive
operations that should not interfere with the normal operation of
the PC. GIF compression is better than JPEG for the relatively
uniform format of slides. Scaling images down before the GIF
compression does save time. We determined a color table based
on a corpus of color schemes people used in their presentations.
We found that capturing images once every 2 seconds, scaling
them down to 640x480, and saving them as GIF images without
dithering provides sufficient information without interfering too
much with the normal operation of the PC. The time that a
particular slide is displayed by the presenter is recorded along
with the slide image (we encoded the time as part of the file
name).

We have used different architectures to capture and use the
images. Initially, we created a custom HTTP server that would
capture a single screen image and deliver it as a GIF image. That
server was contacted periodically by the meeting minutes server
using the HTTP If-modified-since field to deal with unchanged
images. In that architecture, the meeting minutes server took care
of the archival of the screen images. While that architecture
provided a nice source for screen images for a number of clients,
it did not produce the best performance. We decided to let the
screen capture service periodically save the screen images to a
directory served by a standard Web server.

We also experimented with instrumenting the Microsoft
PowerPoint application to capture all slide change events. While
that is not difficult to accomplish, we found that the ease of
getting screen images together with the support for presentation
applications other than PowerPoint (e.g., Web-based
presentations) made our current approach more convenient and
flexible.

4.4 Contextual Metadata for Link Generation
Systems that detect and make use of changing environmental
conditions are context-aware (e.g. see [17]). Context can be used
to specify which media are being recorded and which media are
being used in a meeting at a particular time. This type of
information can be determined by recording when each piece of
equipment is switched on or off. We capture and store this
information as contextual metadata for the multimedia recording.
When links from the text meeting minutes are generated, the
metadata determines whether it makes sense to provide the links
or not. Examples are illustrated in Figures 4b, 5, and 6, where a
[slide] link has been generated only at those times when the
speaker showed slides.

Contextual metadata becomes even more important when the
device is mobile. Currently, a laptop is used in the one room
equipped for meeting capture. For multi-room use, the location of
the laptop needs to be known to match the text notes to the
captured media streams in that room. One method to do location

sensing is to employ an infrared transceiver system, as in [17].
Another way to locate the laptop is with commercially available
GPS, which is somewhat limited for our purpose but can locate
the device to the nearest building in a research park or campus.
Both of these methods require attaching another device to the
laptop.

However, additional hardware attachments are not necessary for a
laptop already connected to a wireless LAN system, as recent
work at UCLA furnishes a location service that deduces the room
location of the device by analyzing the wireless signal (see [3]).
This location service has been installed at our lab and we plan to
apply it to generate contextual metadata for room location.

4.5 Revision Via Email
The revision process is handled via email (see Figure 10). In the
main scenario, after a staff meeting the note taker revises the
meeting minutes by editing the contents of the HTML email sent
by the LiteMinutes server. The note taker then sends the result
either to all lab members (which includes the email address of the
LiteMinutes server), or to the appropriate people while cc’ing the
LiteMinutes server. In other scenarios, the revision may be
performed on a subsequent message from an email thread (not
unlike a discussion on a distribution list).

HTML
hypermedia

notes

raw
timestamped

text notes

metadata

email
in HTML

(& plain text)

Web page

revised
& forwarded

email

Web page
revision

HTML
hypermedia

notes

raw
timestamped

text notes

metadata

email
in HTML

(& plain text)

Web page

revised
& forwarded

email

Web page
revision

Figure 10. Diagram showing the flow of the text notes to the
generated hypermedia meeting minutes, along with email
revisions.

The LiteMinutes system handles revisions as follows.
LiteMinutes has a mailbox, from which meeting minutes are
extracted by searching for sections of email bracketed between
special HTML comment tags. The comment tags have the
following form, in which the field Date_Time_IP_Location is
unique for each session taken at a specific time and on a specific
laptop at a specific room location:

<!-- LiteMinutes|NotesHtmlBegin|Date_Time_IP_Location| -->

<!-- LiteMinutes|NotesHtmlEnd|Date_Time_IP_Location| -->

Extracting the ASCII text between these comment tags filters out
emails that are not meeting minutes, and strips off the email
headers. The Revisions link on the HTML meeting minutes calls
a CGI script that gets a list of revisions. The Weekly Meeting
Notes Web page is generated dynamically by a CGI script to link
to the latest revisions.

5. VISUALIZATION OF VIDEO AND
TEXT CAPTIONS

In addition to a text-centric access to a meeting, we also provide a
visual summary that allows users to start video playback at points
that look visually interesting. Our video summarization and

147

visualization system called Manga [20] summarizes a video into a
comic book style page with different size images, plus text
captions in balloons activated when the cursor is over an image
(see Figure 11). Image and audio analysis is used to automatically
detect events and rate their importance. Keyframes are extracted
for the events, with the more important ones shown in a larger
size. Manga picks a small subset of the most important events for
laying out on a single Web page, with links to video playback
from the images.

Figure 11. Manga video summarization and visualization
system with text captions. Text captions are shown in a tooltip
balloon when the cursor is over an image.

The timestamped text notes from LiteMinutes are used to create
the Manga captions. Each note item parsed by LiteMinutes
furnishes a balloon caption displayed as tooltips in Manga.
Before LiteMinutes was developed, Manga captions were created
manually while watching the video and aligning the text-only
meeting minutes (see Figure 4a) to the right times in the video.
Obtaining the text captions automatically from the LiteMinutes
data eliminated this painful process.

6. RELATED WORK
There exist more heavyweight and full-featured multimedia note
taking systems for meetings. The FXPAL NoteLook system [6]
allows users to incorporate images from the video sources of the
room activity and presentation material into the notes, and users
can take freeform notes with digital ink. It runs on pen-based
notebook computers and does not support text notes. The images
and ink strokes are indexed to the video recording for retrieval. It
requires training to use and is not designed for novices. Other
multimedia pen-based systems also require a certain amount of
training; examples are Audio Notebook [19], Classroom 2000 [1],
FXPAL Dynomite [23], Filochat [22], and Marquee [21].

WEmacs [15] is a text note-taking application based on the GNU
Emacs editor. Its user interface is more complicated than the
LiteMinutes text box, and it assigns functions to special characters
(e.g., a Tab is used to separate note items). Starting and ending a
session in WEmacs is also more involved; in contrast,
LiteMinutes applet is accessed from the Web and runs inside a
Web page. WEmacs serves a purpose different from taking

meeting minutes: its notes are beamed onto a shared display
running the Tivoli application on a LiveBoard (an electronic
whiteboard) and these notes along with the whiteboard contents
plus an audio recording are used to create reports after the
meeting [16].

The Where Were We system (W3) [14], which is related to
WEmacs, supports making annotations and video recording
during a live event. Each note is created in a separate user
interface widget, which makes it difficult to use in a live meeting.
W3 supports the playing back of the video recording during the
meeting itself. W3 does not support slides.

There are a number of related video annotation systems (e.g., see
[12] for an overview). A more recent Web-based system is
Microsoft MRAS [2]. It is designed for asynchronous video
annotation, and supports text and voice annotations. Each text
annotation is created in a separate user interface widget. It is
based on ActiveX technology, which only works in
Windows/Internet Explorer so it is not as portable as Java applets.
Users can email text or audio annotation with a single URL, so in
effect, each note item is an annotation. This is usable for the task
of video annotation, which allows the user to pause the video
when making the notes. In contrast, LiteMinutes has a single text
box for arbitrarily making note items to support rapid interaction
during a live meeting.

There are commercial applications that link timestamped notes to
media, such as Souvenir [18]. This product allows users to
bookmark audio and video on the Web with their text or
handwritten notes taken on a computer, PDA, or CrossPad. Each
note item can be played back or emailed to others. While access
is Web-based, note creation is not Web-based. It does not provide
an easy way to do revisions.

7. CONCLUSION
With LiteMinutes, we have demonstrated how multimedia
meeting minutes can be effectively supported on the Internet. The
observations of our staff meeting minutes process indicate that a
simple text applet on a wireless laptop provides a good way to
take notes in a meeting, and that both email and Web access are
necessary to satisfy the different preferences for push and pull
distribution of meeting minutes. Our architecture of loosely
coupled media streams reduces the multimedia capture and access
into more manageable modules. We also learned how contextual
metadata could be employed to produce cleaner multimedia
documents. A phenomenon of the Internet is that boundaries
between content and between applications are not always clear-
cut, and these interrelations can be exploited as exemplified by
our integration of LiteMinutes text notes as captions in our Manga
video summarization and visualization system for browsing
videos of meetings.

LiteMinutes has been successfully deployed at our lab and has
been in use for over 10 months. Because our design carefully
considered the pre-existing process, we experienced a smooth
transition from the earlier text-only meeting minutes transcribed
from notes taken on paper to the LiteMinutes multimedia meeting
minutes. In the future, we plan to explore more complex
interactions with multiple note takers and more complex spatial
arrangements with distributed locations such as teleconferences.

148

8. ACKNOWLEDGMENTS
We thank the many people at our lab that used the LiteMinutes
system and offered their valuable feedback.

9. REFERENCES
[1] Abowd, G. D., Atkeson, C. G., Feinstein, A., Hmelo, C.,

Kooper, R., Long, S., Sawhney, N., and Tani, M. Teaching
and learning as multimedia authoring: the classroom 2000
project. Proceedings of ACM Multimedia ’96, ACM Press,
pp. 187-198.

[2] Bargeron, D., Gupta, A., Grudin, J. and Sanocki, E.
“Annotations for streaming video on the Web: system design
and usage studies,” Proceedings of the Eighth International
World Wide Web Conference (Toronto, Canada, May 1999),
available at http://www8.org/. Also in Computer Networks
(Netherlands), Elsevier Science, 17 May 1999, Vol. 31, No.
11-16, pp.1139-1153.

[3] Castro P. and Muntz R. Managing context for smart spaces,
IEEE Personal Communications, August 2000.

[4] Chiu, P., Foote, J., Girgensohn, A., Boreczky, J.
Automatically linking multimedia meeting documents by
image matching. Proceedings of Hypertext ’00, ACM Press,
pp. 244-245.

[5] Chiu, P., Kapuskar, A., Reitmeier, S., and Wilcox, L. Room
with a Rear View: Meeting Capture in a Multimedia
Conference Room. IEEE MultiMedia Magazine, vol. 7, no.
4, Oct-Dec 2000, pp. 48-54.

[6] Chiu, P., Kapuskar, A., Reitmeier, S., and Wilcox, L.
NoteLook: Taking notes in meetings with digital video and
ink. Proceedings of ACM Multimedia ’99, ACM Press, pp.
149-158.

[7] CrossPad, A. T. Cross Company. http://www.cross.com.

[8] Cruz, G. and Hill, R. Capturing and playing multimedia
events with STREAMS. Proceedings of ACM Multimedia
’94, ACM Press, pp. 193-200.

[9] Davis, R., Landay, J., Chen, V., Huang, J., Lee, R., Li, F.,
Lin, J., Morrey, C., Schleimer, B., Price, M., and Schilit, B.
NotePals: Lightweight note sharing by the group, for the
group. Proceedings of the CHI ’99, ACM Press, pp. 338-
345.

[10] Foote, J. and Kimber, D. FlyCam: Practical Panoramic
Video. Proceedings of IEEE International Conference on
Multimedia and Expo (ICME 2000), vol. III, pp. 1419-1422.

[11] Girgensohn, A., Boreczky, J., Wilcox, L., and Foote, J.
Facilitating video access by visualizing automatic analysis.
Proceedings of Interact ’99, IOS Press, pp. 205-212.

[12] Harrison, B. and Baecker, R. M. Designing Video
Annotation and Analysis Systems, Graphics Interface ’92,
pp. 157-166.

[13] Lamming, M. and Newman, W. Activity-based information
retrieval: technology in support of personal memory. In F.H.
Vogt. (Ed.), Information Processing ’92, Personal
Computers and Intelligent Systems, Vol. 3, pp. Elsevier, pp.
68-81.

[14] Minneman, S. and Harrison, S. Where Were We: Making
and using near-synchronous, pre-narrative video.
Proceedings of ACM Multimedia ’93, ACM, New York,
pp.207-214.

[15] Minneman, S., Harrison, S., Janssen, B., Kurtenbach, G.,
Moran, T., Smith, I., and van Melle, B. A confederation of
tools for capturing and accessing collaborative activity.
Proceedings of ACM Multimedia ’95, ACM Press, pp. 523-
534.

[16] Moran, T. P., Palen, L., Harrison, S., Chiu, P., Kimber, D.,
Minneman, S., van Melle, W., and Zellweger, P. “I’ll get
that off the audio”: a case study of salvaging multimedia
meeting records. Proceedings of CHI ’97, ACM Press, pp.
202-209.

[17] Schilit, B., Adams, N., and Want, R. Context-aware
computing applications. Proceedings of the Workshop on
Mobile Computing Systems and Applications, Santa Cruz,
CA, December 1994. IEEE Computer Society.

[18] Souvenir, i-Recall. http://www.i-recall.com.

[19] Stifelman, L. The Audio Notebook: Paper and Pen
Interaction with Structured Speech. PhD Thesis. MIT
Media Lab, 1997.

[20] Uchihashi, S., Foote, J., Girgensohn, A., and Boreczky, J.
Video Manga: generating semantically meaningful video
summaries. Proceedings ACM Multimedia ’99, ACM Press,
pp. 383-392.

[21] Weber, K. and Poon, A. Marquee: a tool for real-time video
logging. Proceedings of CHI ’94, ACM Press, pp. 58-64.

[22] Whittaker, S., Hyland, P., and Wiley, M. Filochat:
handwritten notes provide access to recorded conversations.
Proceedings of CHI ’94, ACM Press, pp. 271-276.

[23] Wilcox, L. D., Schilit, B. N., and Sawhney, N. Dynomite: A
Dynamically Organized Ink and Audio Notebook.
Proceedings of CHI ’97, ACM Press, pp. 186-193.

149

