
Mixed-Initiative, Multi-Source Information Assistants

Craig A. Knoblock
�

Steven Minton José Luis Ambite
Univ. of Southern California Fetch Technologies Univ. of Southern California

knoblock@isi.edu minton@fetch.com ambite@isi.edu

Maria Muslea Jean Oh Martin Frank
Univ. of Southern California Univ. of Southern California Univ. of Southern California

mariam@isi.edu jeanoh@isi.edu frank@isi.edu

ABSTRACT
While the information resources on the Web are vast, the
sources are often hard to �nd, painful to use, and diÆcult
to integrate. We have developed the Heracles framework for
building Web-based information assistants. This framework
provides the infrastructure to rapidly construct new appli-

cations that extract information from multiple Web sources
and interactively integrate the data using a dynamic, hier-
archical constraint network. This paper describes the core
technologies that comprise the framework, including infor-
mation extraction, hierarchical template representation, and
constraint propagation. In addition, we present an applica-

tion of this framework, the Travel Assistant, which is an
interactive travel planning system. We also brie
y describe
our experience using the same framework to build a second
application, theWorldInfo Assistant, which extracts and in-
tegrates geographic-related data about countries thorughout
the world. We believe these types of information assistants

provide a signi�cant step forward in fully exploiting the in-
formation available on the Internet.

1. INTRODUCTION
People use search engines today to �nd information, but in

many cases what people actually want is an application that
allows them to access a set of related sources, extract the in-

formation they need, and integrate the data in ways that al-
lows them to solve their problems. The future of the Web in-
volves going beyond traditional information-retrieval-based
search engines to much more advanced integration frame-
works. In this paper we present a framework for building
information assistants, which support the construction of

domain-speci�c applications that extract and integrate data
to support a speci�c task. These are not search engines, but

�Mailing address: 4676 Admiralty Way, Marina del Rey,
CA, USA 90292-6601

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

rather applications that organize and integrate data to sup-
port a particular task.

Consider the problem of travel planning on theWeb. There
are a huge number of travel sites, each of which provides dif-
ferent types of information. You can go to one site and get
hotel and
ight information, another site to get the airports
that are closest to your destination, a third site to get di-

rections to your hotel, and yet a fourth site to �nd out the
weather in the destination city. It is a tedious process to go
to each of these sites, repeatedly entering the same informa-
tion about dates, addresses, etc. Instead you would like the
best of the Internet-related travel sources combined into a
single integrated environment that can help you plan a trip.

We have developed the Heracles framework to solve these
types of information gathering and management problems.
We have applied our general framework for creating infor-
mation assistants to build an example travel assistant. The
resulting system helps a user plan out a business trip from
beginning to end. When you start the system, it �rst looks

up the upcoming meetings in your calendar. After you have
selected a meeting, it extracts the dates for the meeting,
looks up the location, checks the weather, and even makes
a recommendation about whether you should
y or drive to
the meeting. It goes beyond what is provided in most travel
web sites by comparing the costs of various choices, such as

the costs of taking a taxi to the airport or parking a car
there. It helps select a hotel based on your meeting loca-
tion. And can even help you plan your trip to help minimize
the total cost or the total time you will be away from home.
In short, it provides all of the information that you need to

plan a trip and links this information together to provide
a uni�ed framework to quickly and eÆciently work out the
details of a trip and make the appropriate reservations.
The Heracles framework for building information assis-

tants consists of three components. First, we have a set
of tools for creating what we call wrappers that allow web

sources to be queried as if they are databases. This is crit-
ical for turning the many human-readable web sources into
data sources that can be used and integrated within our sys-
tem. Second, we have developed an interactive, hierarchical
constraint propagation system that provides the reasoning
system for integration applications. Third, we have built an

interactive graphical user interface that allows an end user to
interactively control the entire process. In this paper we de-
scribe each of these components and describe our experience
in applying the framework to several di�erent applications.

697

2. THE TRAVEL PLANNING ASSISTANT
We applied the Heracles system to the travel domain, in-

tegrating the information sources that are needed for travel

planning into a single application, the Travel Assistant. This
real-time application can plan a trip in a semi-automated
fashion, gathering live data from web sources and other pro-
grams.
When the user initiates a new trip, the system extracts a

list of people from his Outlook calendar that he has sched-

uled meetings with in the next two months. When the user
selects whom to meet with, the system retrieves the per-
son's company name and the address of the company from
the Outlook Address Book. The company address is used as
the default destination of the trip. The starting address is

retrieved from the user's personal pro�le. The system also
retrieves the dates, start time, and end time of the meet-
ing from the Outlook calendar. As soon as the dates of the
meeting and the address of the destination are available,
the system retrieves the weather forecast from the Yahoo!
weather site (weather.yahoo.com).

Figure 1 shows the selection of the meeting in the Travel
Assistant. There is a set of boxes showing values, which we
call slots. A slot holds a current value and a set of possible
values, which can be viewed in the pull down list if we click
the arrow at the right edge of the slot. For example, there
are two slots in the �rst line: a slot Person and another

slot Company Name, holding values Jim Hendler and DARPA,
respectively.

Figure 1: Meeting Details Retrieved Directly from

Calendar

Once the system has the details of the meeting, the next
step is to determine how to get to the destination. There
are three possible modes of transportation: Fly, Drive or
Take a Taxi. Each mode has di�erent choices and infor-

mation, which are organized into groups of slots called tem-

plates and then arranged hierarchically into templates and
subtemplates. For example, the Fly subtemplate introduces
information about the closest airports and available
ights,
whereas the Drive subtemplate provides maps and driving
directions.

The system recommends the transportation mode based

on the distance between the origin and destination. The sys-

tem computes the distance by �rst geocoding (determining
the latitude and longitude) of the origin and destination ad-
dresses using the MapBlast Web site (www.mapblast.com).
Then, using the geocoded information, a local constraint
computes the distance between the two points by applying
a distance calculation formula. In our example, the distance

between Los Angeles and Washington D.C. is 2,294 miles,
so the system recommends that the user Fly.
Once the user con�rms that he wants to
y, the system

shows the details of the Fly subtemplate (Figure 2). Based
on the destination address passed from the top-level tem-
plate, the system queries the Travelocity Web site (www.-

travelocity.com) to get airports in the Washington D.C. area
ordered by distance. The system recommends DCA (Na-
tional Airport) because DCA is the closest airport to the
meeting location. Once the airports have been selected, the
system then queries ITA Software (www.itasoftware.com) to
retrieve the
ights from LAX to DCA.

BLACK

GREEN

GREEN

GREEN

GREEN

GREEN

GREEN

GREEN

GREEN GREEN

GREEN GREEN

BLACK

GREEN GREEN

GREENBLUE

BLUE RED

REDRED

RED

RED

RED

RED

RED

RED

RED

Figure 2: Slot Colors Show the Processing Status

and where the Information Came From

The interface informs the user of its processing status us-
ing the colors shown in Figure 2.1 A slot can appear in four

1The words black, blue, red, and green do not appear in
the actual interface, but are simply labeled in the paper for
black and white printers. A color version of the paper is
available from http://www.isi.edu/info-agents/heracles.

698

di�erent colors as its status changes. A slot is initially black

when it has only the default set of values. A slot becomes
blue if it is the user who entered a value for it. While the
system is computing a possible value for a slot, it turns red,
and once the system produces a suggested value it changes
color to green.
As shown in Figure 2, when the user changes DCA (Na-

tional) to IAD (Washington Dulles), the arrival airport slot
becomes blue because it is the user's choice. The system
starts to get a new set of
ights from LAX to IAD using the
ITA Software site. The slots holding the
ight information
turn red until the new data is returned from. When the sys-
tem �nally recommends the new values for the slots, they

become green.
The user can always override what the system suggests.

The system initially �nds
ights for any airlines, but if the
user �xes the airline to be Continental, for instance, the
Travel Assistant will present only the Continental
ights.
The user's choices also serve to narrow the possible options.

The Travel Assistant helps the user evaluate tradeo�s that
involve many di�erent pieces of information and calcula-
tions. For example, Figure 3 illustrates how the system
recommends the mode of transportation to the departure
airport. This recommendation is made by comparing the
cost of parking a car at the airport for the duration of the

trip to the cost of taking a taxi to and from the airport.
The system computes the cost of parking by retrieving the
available airport parking lots and their daily rates from the
AirWise site (www.airwise.com), determining the number
of days the car will be parked based on scheduled meet-

ings, and then calculating the total cost of parking. Sim-
ilarly, the system computes the taxi fare by retrieving the
distance between the user's home address and the depar-
ture airport from the Yahoo! Map site (maps.yahoo.com),
retrieving the taxi fare from the WashingtonPost Taxi Fare
site (www.washingtonpost.com), and then calculating the

total cost. In the �gure, the system recommends taking
a taxi since the taxi fare is only $23.00, while the cost of
parking would be $64.00 using the Terminal Parking lot.
When the user changes the selected parking lot to Economy

Lot B, which is $5 per day, this makes the total parking
rate cheaper than the taxi fare, so the system changes the

recommendation to Drive.
The system actively maintains the dependencies among

slots so that changes to earlier decisions are propagated
throughout the travel planning process. For example, Fig-
ure 4 shows how the Taxi template is a�ected when the
user changes departure airport in the higher-level Fly tem-

plate. In the original plan (top template of Figure 2), the
departure time from the origin airport (LAX, Los Angeles
International) is 6:30 AM. The user's preference is to ar-
rive an hour before the departure time, which means that
he would need to arrive at LAX by 5:30 AM. Since accord-

ing to Mapblast driving takes 22 minutes from his home to
LAX, the system recommends that he leaves home at 5:08
AM. When the user changes the departure airport from LAX
(Los Angeles International) to LGB (Long Beach), the sys-
tem retrieves a new map and recomputes the driving time
to the Long Beach airport. Changing the departure airport

also results in a di�erent set of
ights. The recommended

ight leaving from LGB departs at 6:55 AM, and the driving
takes 34 minutes from his home to LGB. In order to arrive

Figure 3: Compares Cost of Driving versus Taking

a Taxi

at LGB by 5:55 AM, the system now suggests he leave home

at 5:21 AM.
The Travel Assistant allows the user to control the various

tradeo�s between the many choices that need to be made in
planning a trip. For example, when selecting the hotel, the
user can specify that he wants the cheapest one possible,
the one closest to the airport, or the one that is closest to

their meeting. Figure 5 shows the expansion of the Hotel

subtemplate. The system retrieves the hotel, address, and
fax information from the ITN site (www.itn.com) and the
map from the airport to the hotel from the Yahoo! Map site.
In the �gure, the system initially suggests the hotel that is
closest to the meeting and when the user changes that to

the one closest to the airport, the system recomputes the
set of hotels (ordered by distance), suggests the closest one,
showing the address, price, and maps.

699

Figure 4: Change in Selected Airport Propagates to

Drive Subtemplate

Figure 5: User Can Specify High-Level Hotel Pref-

erence

700

3. ACCESS TO WEB SOURCES
Access to on-line data sources is a critical component of

our information assistants. In the Travel Assistant there is

no data stored locally in the system. Instead all information
is accessed directly from web sources. To do this we build
wrappers that turn web sources into structured data sources.
This allows the system to reason with the data and integrate
the information with other data sources. As XML becomes
more widely used, the access to data will become easier, but

it will be a long time before most of the required data will
be available as structured sources.
A wrapper is a program that turns a semi-structured infor-

mation source into a structured source. This idea is shown
in Figure 6 where the Yahoo! weather source is dynamically

turned into an XML data source. Since the weather data
changes frequently it would not be useful to download this
data in advance. Instead the wrapper provides access to the
live data, but provides it in a structured form. Once we have
built such a wrapper, the Travel Assistant can send HTTP
requests to the wrapper and get back XML tuples.

We have developed a set of tools for semi-automatically
creating wrappers for web sources [8]. The tools allow a
user to specify by example what the wrapper should extract
from a source. The examples are then fed to an inductive
learning system that generates a set of rules for extracting
the required data from a site. The user interface for the

wrapper learning system is shown in Figure 7. The window
in the upper right shows the original web page, the win-
dow in the upper left shows the labeled data for this page,
and the bottom window shows the learned extraction rules.
Beyond just creating the rules, we have also developed tech-
niques for ensuring that the system is extracting the right

data [7], monitoring the source to ensure the it continues to
function properly [5], and automatically repairing wrappers
in response to format changes in a site [3].
Once a wrapper for a site has been created, one can use

that site programmatically. For example, with the wrapper

for Yahoo! Weather, we can now send a request to get the
weather for a particular city and it will return the corre-
sponding XML data with the weather for that city. As we
mentioned earlier, there is no data stored in the application.
This minimizes the work involved in maintaining an assis-
tant and ensures that the assistant has access to the latest

information.

4. CONSTRAINT NETWORKS FOR
MANAGING INFORMATION

The critical challenge for the Heracles system is in inte-
grating multiple information sources, programs, and con-
straints into a cohesive, e�ective tool. We have seen some
examples of these diverse capabilities in the Travel Assis-

tant, for example, retrieving scheduling information from a
calendar system, computing the duration of a given meet-

ing, and invoking a web wrapper to �nd directions to the
meeting.
Constraint reasoning technology o�ers a clean way to inte-

grate multiple heterogeneous subsystems in a plug-and-play
approach, maximizing overall eÆciency via rapid informa-

tion propagation between components. The basis for our
approach is a constraint representation where we model each
piece of information as a distinct variable2 and describe the

2In the example of Section 2 we have referred to each piece

relations that de�ne the valid values of a set of variables as

constraints. A constraint can be implemented either by a lo-
cal procedure within the constraint engine, or by an external
component that interfaces to the constraint engine (such as
a wrapper or an o�-the-shelf scheduler).
Using a constraint-based representation as the basis for

control has the advantage that it is a declarative representa-

tion and can have many alternative execution paths. Thus,
we need not commit to a speci�c order for executing compo-
nents or propagating information. The constraint propaga-
tion system will determine the execution order in a natural
manner. The constraint reasoning system propagates infor-
mation entered by the user as well as the system's sugges-

tions, decides when to launch information requests, evaluate
constraints, and compute preferences. All of these tasks run
as asynchronous processes to give the user as much support
as possible without interfering with his work.
In order to manage the complexity and capture the task

structure of the application, closely related variables and

constraints are encapsulated into templates. The templates
are organized hierarchically so that a higher-level template
representing an abstract task (e.g., Trip) may be decom-
posed into a set of more speci�c subtasks, called subtem-
plates (e.g., Fly, Drive, etc). This hierarchical task network
structure helps to manage the complexity of the application

for the user by hiding less important details until the major
decisions have been achieved.
In this section, we describe the representation for the vari-

ables, the constraints, the hierarchical templates, and the
constraint propagation algorithm.

4.1 Constraint Network Representation
A constraint network is a set of variables and constraints

that inter-relate and de�ne the valid values for the variables.
Heracles represents all the pieces of information in a given
application and their inter-relationships as a constraint net-
work. Figure 8 shows the fragment of the constraint net-

work of the Travel Assistant that addresses the selection of
the method of travel from the user's initial location to the
airport. The choices under consideration are: driving one's
car (which implies leaving it parked at the airport for the
duration of the trip) or taking a taxi. We will use this ex-
ample throughout the section to illustrate the components

of a constraint network and the constraint propagation al-
gorithm.

4.1.1 Variables
Each distinct piece of information in an application is rep-

resented as a variable in the constraint network. Each vari-

able takes values from a given domain. At any point in time
a subset of the domain of a variable constitutes its set of
possible values. The possible values represent the system's
view of the available choices for that variable, that is, those
that are currently consistent with all the constraints.
In addition, each variable may have an assigned value.

The assigned value of a variable can be set directly by the
user or selected by the system from the possible values (see
Section 4.3). If the user selects a value it remains as the

of information presented to the user as a slot. We use the
term slot for user interface purposes. Each slot has a cor-
responding variable de�ned in the constraint network, but
there may be variables that are not presented to the user
(see Section 5).

701

<YAHOO_WEATHER>
- <ROW>

<TEMP>55</TEMP>
<OUTLOOK>Partly Cloudy</OUTLOOK>
<HI>66</HI>
<LO>54</LO>
<WINDCHILL></WINDCHILL>
<HUMIDITY>71%</HUMIDITY>
<WIND>S/5 mph</WIND>
<VISIBILITY>10 mi</VISIBILITY>
<DEWPOINT>46</DEWPOINT>
<BAROMETER>29.80 inches</BAROMETER>
</ROW>

</YAHOO_WEATHER>

Wrapper

Figure 6: A Wrapper Turns Yahoo! Weather into an XML Data Source

Figure 7: The Graphical User Interface for Building a Wrapper

assigned value unless it is changed again by the user or it
becomes inconsistent with the constraints.
In the sample network of Figure 8 the variables are shown

as dark rectangles and the assigned values as white rectan-
gles next to them. The variables capture the relevant infor-
mation for this task in the application domain, such as the

DepartureDate, the Duration of the trip, the ParkingTotal
(the total cost of parking for the duration of the trip), the
TaxiFare, and the ModeToAirport. The DepartureAirport
has an assigned value of LAX (Los Angeles International),
which is assigned by the system since it is the closest air-
port to the user's address.

4.1.2 Constraints
Conceptually, a constraint de�nes the valid combinations

of values for a set of variables. A primitive constraint is a
n-ary predicate that relates a set of n variables by de�ning
the valid combinations of values for those variables. A prim-
itive constraint is a computable component which may be

implemented by a local table look-up, by the computation of

a local function, by retrieving a set of tuples from a remote
wrapper, or by calling an arbitrary external program.
In the sample network of Figure 8 the constraints are

shown as rounded rectangles. For example, the compute-

Duration constraint involves three variables (DepartureDate,
ReturnDate, and Duration), and it's implemented by a func-

tion that computes the duration of a trip given the departure
and return dates. The constraint getParkingRate is imple-
mented by calling a wrapper that accesses a web site that
contains parking rates for airports in the USA.
In Heracles, the set of possible values of each variable is de-

termined by a domain expression. The primitive constraints
that operate on the same variable are combined to form a
domain expression. The grammar for domain expressions is:

Exp = (AND Exp Exp) j
(OR Exp Exp) j
(DLIST Exp Exp ...) j
PrimitiveConstraint

PrimitiveConstraint =

(PREDICATE var1 var2 ... varN)

702

computeDuration

multiply

getDistance

getTaxiFare

findClosestAirport

getParkingRate

selectModeToAirport

DestinationAddress

OriginAddress

DepartureDate

Mar 15, 2001

ReturnDate

Mar 18, 2001

DepartureAirport

LAX

Distance
15.1 miles

Duration

4 days

ParkingTotal

$64.00

ModeToAirport

Taxi

ParkingRate

$16.00/day

TaxiFare
$23.00

Figure 8: Constraint Network Comparing Driving

Versus Taking a Taxi

The semantics of domain expressions is as follows: A con-
junction (AND) of domain expressions evaluates to the in-
tersection of the corresponding value sets. A disjunction
(OR) evaluates to the union of value sets. A decision list

(DLIST) takes the values of the �rst expression that eval-
uates to a non-empty value set. A domain expression can
also be a primitive constraint and it evaluates to its corre-
sponding possible value set.
For example, in the travel domain we might be able to

compute accurate distances for some cities but not for oth-
ers, which a�ects the computation of the driving time neces-
sary to get to the airport. If we have a source that geocodes
addresses, we can compute an accurate distance and driving
time. However, there may be some smaller cities where the
data is not available for geocoding. In this case we might

want to assume a default value, say half an hour. These two
constraints can be combined using a DLIST domain expres-
sion so that the system attempts the most accurate method
�rst.
Each variable can also be associated with a preference

constraint. Evaluating the preference constraint over the

possible values produces the assigned value of the variable.
Preference constraints are often implemented as functions
that impose an ordering on the values of a domain. Pref-
erences are soft constraints because they do not a�ect the
consistency of the network only the desirability of the values.
An example of a preference in the business travel domain is

to choose a hotel closest to the meeting.

4.2 Hierarchical Template Representation
In order to modularize an application and deal with its

complexity, we organize the variables and constraints into a
hierarchy of templates. This allows us to group the variables
into more manageable units and provides an overall orga-

nization to the information that is presented to the user.

For example, the top-level template of the Travel Assistant

(shown in Figure 1) includes a set of variables associated
with who you are meeting with, when the meeting will oc-
cur, and where the meeting will be held. In addition, it
has several other variables that can be expanded to �ll in
more details about the trip, such as how you will get to the
meeting and where you will stay once you get there. Each

expansion corresponds to a subtemplate that has its own set
of variables and constraints and may in turn be composed
of lower level subtemplates.
A template is comprised of a name, parameters, variables,

constraints, and expansions. The name uniquely identi�es
the template. The parameters specify the variables that can

be passed into or out of a template. The variables have cor-
responding domain expressions (as de�ned in Section 4.1.2).
The constraints de�ne the set of primitive constraints that
are used to compose the domain expressions. And the ex-
pansion speci�es how a template is elaborated into the ap-
propriate subtemplates based on the assigned value of the

expansion variable.
A fragment of the speci�cation of the Trip template is

shown in Figure 9. The fragment focuses on the ModeToDes-
tination decision, the variable de�nitions involved, the cor-
responding set of constraints, and the expansion that deter-
mines which subtemplate to call based on the value of this

variable. The variables involved are Origin, Destination,
Distance, and ModeToDestination. The getDistance con-
straint computes the distance between the origin and des-
tination addresses by calling the YahooMap wrapper. The
selectModeToDest constraint suggests a value for ModeTo-

Destination. If the Distance is greater than 200 miles it
suggests Fly, otherwise Drive. Note that this constraint
never suggests taking a taxi, but the user may select this
choice since it is an option in the ChooseTemplate state-
ment and will appear in the interface.

template Trip() f
variables: ...

Distance = getDistance(Origin, Destination),

ModeToDestination = selectModeToDest(Distance),

...

constraints:

getDistance(X,Y) f
WrapperRemote(

domain = travel;

wrapper = yahoomap;

query = "select distance from yahoomap

where origin='X' and

destination='Y')g
selectModeToDest(Distance) f

if Distance > 200 then Fly else Drive;g
...

expansions:

choosetemp(ModeToDestination) f
"Take a Taxi" : Taxi(Origin, Destination)

"Drive" : Drive(Origin, Destination)

"Fly" : Fly(Origin, Destination, Distance)gg

Figure 9: Fragment of the Trip Template

The hierarchical organization of the templates for the Tra-
vel Assistant is illustrated in Figure 10. This �gure shows
the top-level Trip template and the subtemplates that can
be expanded from this template. There are three subtasks
that must be achieved for a trip: getting to the destina-

tion, �nding an accommodation, and continuing the trip (if

703

necessary). These decisions are associated with the three

expansion variables: ModeToDestination, ModeHotel, and
ModeNext. Since all these subtasks must be achieved for a
successful trip, we label the subtask decomposition with an
AND. Each of these subtasks can be achieved by several alter-
native means. The �gure shows the choices as OR branches.
For example, the ModeToDestination is a variable that can

take the values Fly, Drive, or Taxi. For each of these pos-
sible values, there is a corresponding subtemplate that will
be expanded and used to achieve the subtask. Also, note
that the choices for ModeNext are recursive instantiations of
the Trip template. In this way the system can handle trips
of any number of legs.

Trip

ModeNext

Drive

ModeToDestination

Fly

ModeToAirport

Taxi

FlightDetail

Hotel

ModeHotel

NoOvernight

1

1 2

32

Trip
(Return
Home)

Trip
(Return
Office)

Trip
(New
Leg)

ModeFromAirport

3 End
Trip

AND

OROR OR

AND

Drive Taxi

OR

Drive Taxi

OR

Figure 10: Example of the Hierarchical Organiza-

tion of Templates

4.3 Constraint Propagation
The domain expressions de�ne a directed graph on the

variables. In the current version of the system, the con-
straint graph must be a acyclic, which means that infor-
mation
ows in one direction. This directionality simpli�es
the interaction with the user. The structure of the graph
is given by the dependency relations present in the domain
expressions. Variable Y depends on variable X if the domain

expression of Y mentions a constraint that includes variable
X. The idea here is that if variable X changes, variable Y
may have to be recalculated.
The constraint propagation algorithm proceeds as follows.

When a given variable is assigned a value, either directly by
the user or by the system, the algorithm recomputes the

possible value sets and assigned values of all its dependent
variables. This process continues recursively until there are
no more changes in the network. More speci�cally, when a
variable X changes its value, the system evaluates the do-
main expression of each variable Y dependent on X. This

may generate a new set of possible values for Y. If this set
changes, the preference constraint is evaluated selecting one
of the possible values as the new assigned value for Y. If this
assigned value is di�erent from the previous one, it causes
the system to recompute the values for further downstream
variables. Values that have been assigned by the user are

always preferred as long as they are consistent with the con-
straints.
Consider the sample constraint network in Figure 8. First,

the constraint that �nds the closest airport to the user's
home address assigns the value LAX to the variable Departure-
Airport. Then, the constraint getParkingRate, which is a

call to a web wrapper, �res producing a set of rates for dif-

ferent parking lots.3 The preference constraint selects ter-

minal parking which is $16.00/day. This value is multiplied
by the duration of the trip to compute the ParkingTotal of
$64 (using the simple local constraint multiply). A similar
chain of events results in the computation of the TaxiFare.
Once both the ParkingTotal and the TaxiFare are com-
puted, the selectModeToAirport constraint compares the

costs and chooses the cheapest means of transportation,
which in this case is to take a Taxi.
There are some issues in terms of how aggressively the

system should propagate constraints. We have considered
four general constraint propagation strategies: propagation
on con�rmation, propagation within a template, one-level

look-ahead propagation, and full propagation.

� Propagation on con�rmation only starts constraint pro-
pagation when the user actually explicitly inputs or ap-
proves the values. The advantage of this mechanism
is that there is no wasted computation, as every con-
straint evaluation (which could involve a potentially
expensive computation) is guaranteed to be relevant

to the user. The disadvantage is that it can be tedious
for the user to approve every value suggested for the
user and confusing from a user-interface perspective.

� Propagation within a template immediately �res con-
straints as soon as possible but without crossing tem-
plate boundaries. This approach o�ers a good trade-
o� between computation by the system and input by

the user. The system reasons thoroughly within a
template assigning values for all the variables in the
template. However, it waits for con�rmation from the
user in the proposed template expansion since a user
may choose a di�erent expansion for reasons not repre-
sented in the system. This is the default propagation

strategy in Heracles.

� One-level look-ahead propagation �res constraints both
within the current template as well as one-level down
from this template. In the cases where the system
correctly predicts the users' selections, this approach
makes the system appear very responsive. The disad-
vantage is the increased resource requirements.

� Full Propagation evaluates the whole constraint net-

work. The advantage is that this method is that the
system can make recommendations based on values
propagated up from subtemplates. The disadvantage
is that the system may consume signi�cant resources
on paths that turn out to be irrelevant.

5. USER INTERFACE DESIGN
We automatically generate the user interface for our in-

formation assistants from the hierarchical representation de-
scribed earlier in this paper. We want to share some of the
lessons learned about our human interface design and re-
design over the last two years in this section, which is an
elaboration of [2].
The greatest challenge in developing the user interface is

that it is mixed-initiative: either the user or the system
can provide the value for most of the slots. For example,

3For simplicity we assume in the example that all domain
expressions only involve one constraint.

704

the email address of a meeting contact can typically be au-

tomatically computed (from a user's Outlook address book,
or from the company White Pages, for example) { but it can
also be hand-typed. The user interface must convey which
�elds were provided by the system and which �elds were pro-
vided by the user, and most importantly, must assure the
users that they are in control and making steady progress on

their task. (Imagine a mixed-initiative user interface where
the data
ow between �elds is unclear or apparently cyclic
and the system overwrites data provided by the user!)
Figure 11 shows our initial design, which we based on the

spreadsheet metaphor because our data
ow from multiple
Web sources is similar to the data
ow in spreadsheets, and

many users are already familiar and comfortable with that
metaphor. Unfortunately, there was a key problem with
that metaphor { having two �elds in the same vertical col-
umn (e.g. San Diego and 28 in the screenshot) suggests a
relationship where there is none. It was also diÆcult to visu-
ally distinguish subsections (we tried to do that by indenting

the �rst column, but that was too subtle).

Figure 11: User Interface Based on the Spreadsheet

Metaphor

Figure 12 shows our subsequent design. What it shares

with the original design is that �elds whose values are pro-
vided by the user have a blue border, system-provided �elds
a green border, and �elds currently being computed by the
system a red border. In the black-and-white screenshot,
all �elds are green except the �rst one, provided by the
user, which is blue. In addition, every �eld has a \locked"

checkbox { whenever a user enters any �eld manually it is
auto-locked and its value is never changed by the system.
For example, in Figure 12 the �rst �eld is automatically
locked because the value was selected by the user; the sys-
tem is free to change any other �eld without asking the user.

The user could explicitly ask the system to recompute a
value by unchecking the checkbox, which then triggers a re-
computation. We carried the idea of \locking" even further
by letting the user lock entire groups of �elds. For example,
in the Starting At row of the screen shot, the entire date
can be locked via the �rst checkbox and just the month in

the second checkbox.
As Figure 1 demonstrates, we made a number of changes

from that attempt but kept that basic design. The color-
coding of the �elds' origin proved to be valuable and un-
derstandable, but the locking checkboxes and their hierar-
chical nesting to be confusing and space-consuming. Fields

are now still implicitly locked when the user manually pro-

Figure 12: User Interface with Checkboxes

vides a value but no checkbox is shown. Instead, the user
can \unlock" the �eld by selecting \Default" from the drop-
down menu. We also no longer automatically expand new
sub-sections of the template, even if the system can safely
determine the triggering value. For example, even though

the system is quite con�dent you will
y to a meeting more
than 2000 miles away, we do not expand the subsection and
start displaying
ights { it is a correct inference but too
distracting and confusing to the user.
One remaining problem with the automatically generated

form is that it can be very large since it does not use screen

space as eÆciently as if a human designer had laid it out by
hand. We plan to address these issues by repeating less in-
formation in the subsections, packing the �elds more tightly,
using a more sophisticated layout mechanism, substituting
windows for expanding sub-sections, and by possibly mov-

ing some of the more auxiliary supporting information (e.g.,
Weather) to an output-only Web page in the background.

6. THE WORLDINFO ASSISTANT
In Heracles one can build a new information assistant

by de�ning a new hierarchy of templates and a new set of
constraints. The templates de�ne the type of information
needed in the new assistant, while the set of constraints link
together this information. If Web sources are used in the
new application, the necessary wrappers for those sources

must also be created.
In order to show the generality of our infrastructure, this

section describes another example of an information assis-
tant, the WorldInfo Assistant. The WorldInfo Assistant is
an application that brings together a large variety of geo-
referenced information. For a user-speci�ed location, it re-

trieves information like weather, news, holidays, maps, air-

705

ports, geospatial points of interest, etc. Where available it

also retrieves satellite images and plots georeferenced infor-
mation on them. Georeferenced information includes geo-
graphical features such as rivers, lakes, deserts, etc., and
a variety of man-made features, such as hospitals, bridges,
factories, etc. In addition to selecting values from the slots,
the user can navigate through the satellite images and maps

by recentering, zooming, and panning.
A variety of Web sources are used to provide the infor-

mation necessary for this application. For example, geo-
referenced points of interest are retrieved from USGS.gov
(United States Geological Survey) and Mapblast.com, im-
ages are retrieved from TerraServer.com and SpaceImag-

ing.com, weather data is retrieved from weather.Yahoo.com
and Weatherbase.com, holiday information from Holidayfes-
tival.com, etc.
The top-level template and weather subtemplate of the

WorldInfo Assistant is show in Figure 13. The template
allows the user to select the location and date of interest.

In the �gure the user has chosen Asia as the region, China
as the country, Hong Kong as the city, and May 2001 as the
date. Based on this input, the application retrieves relevant
information related to this location and date. For example,
it retrieves the current weather, a �ve day forecast (Yahoo!
weather), and the monthly averages for May (Weatherbase).

Figure 13: Top-level Template for theWorldInfo As-

sistant

As an example of integrated geospatial imagery and points,
Figure 14 shows a satellite image and map of the Washing-
ton, D.C. area. The resolution of the image is 8 meters, and

the 12 points of interest plotted on this image are bridges.

The template shows an image and a map of the same area

at roughly the same resolution.
The constraint reasoning system provides a coordinated

view of the di�erent types of information. The imagery,
maps, and points are all linked to the center of the image,
which is de�ned by variables for the latitude and longitude.
If the user then clicks anywhere on the current image, the

system updates the values for the image center, which trig-
gers updates to the image, map, and points. Similarly, if the
resolution is changed, it would trigger the system to retrieve
a new set of points and change the resolution of the image
and map.

Figure 14: Integrated Satellite Image, Points of In-

terest, and Map

7. RELATED WORK
There has been a lot of research in the area of constraint

programming [12, 11, 10], but not much attention has been
paid to the interplay between information gathering, con-

straint propagation, and user interaction, which is the focus
of Heracles. Bressan and Goh [1] have applied constraint
reasoning technology to information integration. However,
the speci�c problem they are addressing is quite di�erent
from ours. They use constraint logic programming to �nd
relevant sources and construct an evaluation plan for a user

query. In our system the relevant sources have already been

706

identi�ed. We focus on user interactivity,
exible integra-

tion of information gathering and other computational con-
straints in an uniform framework, and on information prop-
agation in service of the user tasks. Petrie et al. [9] de-
veloped an architecture for constraint-based agents in engi-
neering design applications. We share the idea of combining
multiple reasoning systems. However, their focus is on dis-

tributed constraint management issues, such as adding and
removing constraints, and in recording the rationale for the
design choices and inconsistencies. Real-time information
gathering is not considered in their system.
The growth and changes to the constraint network that

occur in Heracles as a result of the hierarchical expansion of

templates can be seen as a form of dynamic constraint satis-
faction [6]. In dynamic constraint satisfaction the variables
and constraints present in the network are allowed to change
with time. Heracles imposes a structure to these changes as
they correspond to meaningful units in the application: the
templates.

Lamma et al. [4] propose a framework for interactive con-
straint satisfaction problems (ICSP) in which the acquisition
of values for each variable is interleaved with the enforce-
ment of constraints. The interactive behavior of our con-
straint reasoner also can be seen as a form of ICSP. However,
our approach includes a notion of hierarchical decomposi-

tion and task orientation. Their application domain is on
visual object recognition, while our focus is on information
integration

8. CONCLUSION
In this paper we have described a general framework for

building information assistants and presented two compel-
ling applications of this framework. The combination of
real-time, structured access to Web sources and hierarchi-
cal constraint propagation provides a powerful paradigm for

building new web-based information assistants. Both exam-
ple applications that we presented go beyond what is cur-
rently available on the Web. And we believe there is a wide
variety of other interesting information assistants that can
be built using the same framework. Other possible assis-
tants include a real estate assistant for locating and buying

a house and a �nancial planning assistant for planning in-
vestments, major purchases and retirement.
There are many interesting research problems associated

with building information assistants. We are currently ex-
tending the underlying constraint reasoning system to pro-
vide support for temporal constraints and resources. We are

also investigating a variety of integration issues that arise,
including eÆcient distributed spatial data integration. We
are building a new version of the graphical user interface that
runs in a browser, but still provides the real-time update of
the information. Finally, we are exploring the addition of
monitoring agents for tracking plans once they have been

created, such as an agent for tracking
ight schedules for
cancellations or
ight delays.

Acknowledgements
We gratefully acknowledge the contributions of both Doug
Dyer and Shalom Flank to this work. Doug Dyer provided
the original idea of an interactive template-based travel plan-
ner based on a spreadsheet paradigm. Shalom Flank worked

closely with us on the original design of this system and

provided detailed feedback and ideas throughout the imple-

mentation process.
The research reported here was supported in part by the

Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory, Air Force Materiel Com-
mand, USAF, under agreement number F30602-00-1-0504,
in part by the Rome Laboratory of the Air Force Systems

Command and DARPA under contract number F30602-98-
2-0109, in part by the United States Air Force under con-
tract number F49620-98-1-0046, and in part by the Inte-
grated Media Systems Center, a National Science Founda-
tion Engineering Research Center, Cooperative Agreement
No. EEC-9529152. The views and conclusions contained

herein are those of the authors and should not be inter-
preted as necessarily representing the oÆcial policies or en-
dorsements, either expressed or implied, of any of the above
organizations or any person connected with them.

9. REFERENCES
[1] St�ephane Bressan and Cheng Hian Goh. Semantic

integration of disparate information sources over the
internet using constraint propagation. In Workshop on

Constraint Reasoning on the Internet, 1997.

[2] Martin Frank, Maria Muslea, Jean Oh, Steve Minton,
and Craig Knoblock. An intelligent user interface for
mixed-initiative multi-source travel. In Proceedings of

the ACM International Conference on Intelligent User

Interfaces, 2001.

[3] Craig A. Knoblock, Kristina Lerman, Steven Minton,
and Ion Muslea. Accurately and reliably extracting
data from the web: A machine learning approach.

Data Engineering Bulletin, 23(4), 2000.

[4] Evelina Lamma, Paola Mello, Michela Milano, Rita
Cucchiara, Marco Gavanelli, and Massimo Piccardi.
Constraint propagation and value acquisition: why we

should do it interactively. In Proceedings of IJCAI-99,
1999.

[5] Kristina Lerman and Steven Minton. Learning the
common structure of data. In Proceedings of AAAI-00,

2000.

[6] Sanjay Mittal and Brian Falkenhainer. Dynamic
constraint satisfaction problems. In Proceedings of

AAAI-90, 1990.

[7] Ion Muslea, Steven Minton, and Craig A. Knoblock.
Selective sampling with redundant views. In
Proceedings of AAAI-00, 2000.

[8] Ion Muslea, Steven Minton, and Craig A. Knoblock.
Hierarchical wrapper induction for semistructured
information sources. Autonomous Agents and
Multi-Agent Systems, 4(1/2), 2001.

[9] Charles Petrie, Heecheol Jeon, and Mark R. Cutkosky.
Combining constraint propagation and backtracking
for distributed engineering. In Workshop on

Constraint Reasoning on the Internet, 1997.

[10] Vijay Saraswat and Pascal van Hentenryck, editors.
Principles and Practice of Constraint Programming.

MIT Press, Cambridge, MA, 1995.

[11] Edward Tsang. Foundations of Constraint
Satisfaction. Academic Press, London, 1993.

[12] van Hentenryck. Constraint Staisfaction in Logic

Programming. MIT Press, 1989.

707

