
Personalizing Web Sites for Mobile Users

Corin R. Anderson
University of Washington

Seattle, WA, USA
corin@cs.

washington.edu

Pedro Domingos
University of Washington

Seattle, WA, USA
pedrod@cs.

washington.edu

Daniel S. Weld
University of Washington

Seattle, WA, USA
weld@cs.washington.edu

ABSTRACT
The fastest growing community of web users is that of mo-
bile visitors who browse with wireless PDAs, cell phones,
and pagers. Unfortunately, most web sites today are opti-
mized exclusively for desktop, broadband clients, and deliver
content poorly suited for mobile devices | devices that can
display only a few lines of text, are on slow wireless network
connections, and cannot run client-side programs or scripts.
To best serve the needs of this growing community, we pro-

pose building web site personalizers that observe the behav-
ior of web visitors and automatically customize and adapt
web sites for each individual mobile visitor. In this paper,
we lay the theoretical foundations for web site personaliza-
tion, discuss our implementation of the web site personalizer
Proteus, and present experiments evaluating its behavior
on a number of academic and commercial web sites. Our ini-
tial results indicate that automatically adapting web content
for mobile visitors saves a considerable amount of time and
e�ort when seeking information \on the go."

Keywords
Adaptive web sites, personalization, wireless web

1. INTRODUCTION
The fastest growing community of web users is that of

mobile visitors | people who browse the web with wireless
PDAs, cell phones, and pagers. Ninety-�ve percent of cell
phones sold today are \web-ready" and authorities predict
that the number of wireless Internet devices will outnumber
desktop computers by 2003. Despite this trend, however,
few web sites today cater to mobile visitors, instead, opti-
mizing their content exclusively for desktop clients. Unfor-
tunately, mobile devices are not as capable as their desktop
counterparts, instead limited by small screens, low-band-
width networks and slower processors. Thus the user expe-
rience for mobile visitors at these \one-size-�ts-all" web sites
su�ers. To address this problem, we propose building web
site personalizers that automatically adapt and personalize
a web site to each individual mobile visitor.
A number of companies [1, 23, 10, 6] have taken the

�rst step to bring web content to wireless devices: syntactic
translation. Syntactic translation recodes the web content
in a rote manner, usually tag-for-tag or following some pre-
de�ned templates or rules. This method enjoys some suc-

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

cess, particularly for mobile clients that have at least some
graphical display (e.g., a Palm Connected Organizer, but
not text-only pagers). However, this approach essentially
produces a scaled down version of the original web site: all
the original content and structure designed for the desktop,
broadband visitor, but in miniature form. The mobile visi-
tor must wade through a morass of possibly irrelevant links
and content to �nd the single gem of information for which
he or she is looking; browsing such a site with a small screen
and a low-bandwidth network connection only exacerbates
this problem. Syntactic translation is not a awed approach
| quite to the contrary, it is a necessary component of a
successful mobile web site. What it lacks is an awareness
of the particular needs of each visitor | syntactic trans-
lation simply perpetuates the \one-size-�ts-all" philosophy
from the original web site.
Our solution to this problem begins with the observa-

tion that mobile web visitors exhibit a variety of brows-
ing behaviors: random sur�ng, task completion (e.g., buy-
ing stocks), information-goal seeking (i.e., answering ques-
tions), etc. Information-goal seeking is of particular interest
because it is generally predictable: visitors tend to have sim-
ilar information goals in the future as in the past. Some
example goals include: \What is the current stock price of
MSFT?"; \Are there any Pentax K-mount zoom lens on
auction at eBay?"; \What oÆce is Dan Weld in?". This
browsing behavior is predictable because visitors generally
follow the same set of links, view the same set of pages, to
attain these goals each time, and attempt to do so in a di-
rect and eÆcient manner. In addition, visitors tend to view
pages with similar content as pages viewed in the past (e.g.,
a photography a�cionado may frequently view pages con-
taining words \zoom lens" and \f-stop", although the URLs
requested may di�er). By mining the past interactions with
the web site for these behaviors (the navigational patterns
and the content viewed), we can automatically personalize
the web content for each individual visitor. We envision web
site personalizers that act on behalf of a mobile visitor to
adapt1 web content as the visitor browses. A web site per-
sonalizer is an intermediary between the web site and the
visitor and may be situated on the web server, on the vis-
itor's device, or at a proxy server in between. A web site
personalizer can:

� Make frequently-visited destinations easier to �nd. For
example, if a visitor always follows a link pa ! pb,
then a personalizer could make the link easier to �nd

1We use adapt, adaptation and personalize, personalization
interchangeably throughout this paper.

565

by making the anchor text boldface. In another exam-
ple, if the visitor always follows the same path of links
pa ! pb ! pc ! pd, then a personalizer could add a
link directly from pa to pd, saving the visitor the time
to follow each link and download each page over the
wireless network.

� Highlight content that interests the visitor. A person-
alizer can build a model of each visitor's interests, for
example, \technology stocks" and \world news", and
correspondingly alter the presentation of each page to
make interesting content more salient.

� Elide uninteresting content and structure. Just as a
visitor may be keenly interested in certain content at
a site, the visitor frequently will be uninterested in
other content and links at the site. A personalizer
can leverage the same visitor model to elide uninter-
esting content, for example, by replacing large swathes
of content with a link to a new page bearing the elided
content.

The key observation behind web site personalizers is that
a great deal of information about visitors is readily available
in the form of access logs (either at the web site or at an
intermediary web proxy). That is, without any additional
e�ort by either the site administrator or the mobile visitor,
a personalizer can improve a site for the individual visitor.
A web site personalizer adapts the site for the mobile visitor
in a two-step process:

1. The personalizer mines the access logs to build a model
for each visitor. This model includes navigational
browsing behavior (which links the visitor follows), as
well as content interests (what sorts of words or im-
ages appear on the pages the visitor views most of-
ten). This model can also include \out-of-band" infor-
mation, such as visitors' geographical location, demo-
graphics, etc.

2. The personalizer transforms the site to maximize the
expected utility [12] for a given visitor. The expected
utility of a personalized web site is a measure of how
much bene�t the visitor will receive by browsing the
site; the personalizer computes this value based on the
visitor model derived in the �rst step.

The focus of this paper is on a principled approach to au-
tomatically personalizing web sites for mobile clients. We
extend the pioneering work of Perkowitz and Etzioni on
adaptive web sites [20, 21] and Bickmore and Schilit's Di-
gestor [3] system by focusing on each individual visitor and
by building and leveraging a deeper semantic model of the
web site. Speci�cally, this paper makes the following contri-
butions:

� Precise problem statement. Section 2 provides
clear details of the web site personalization problem,
including input and output characteristics.

� Principled utility model. Central to our approach
to personalization is a model of the expected utility
the visitor will receive by viewing a particular per-
sonalized web site. Our model takes a probabilistic
approach to estimating what parts of the site the vis-
itor will see, and de�nes utility in part based on what

content the visitor has viewed in the past. We present
the basis of this model in section 3.2 and additional
implementation-speci�c details in section 4.3.

� Heuristics for eÆcient search. Section 3 describes
how we characterize web site personalization as a search
process. However, the na��ve implementation of this
search is computationally intractable for any but the
smallest sites. We therefore present in section 4.3.3
a number of heuristics that trade o� optimality of the
solution for search run-time.

� Experimental evaluation. Following the framework
we propose, we implemented the web site personalizer
Proteus and applied it to a number of sites on the
web. Section 5 presents our experimental evaluation
of Proteus, comparing our personalizations to strict
syntactic translation.

2. WEB SITE PERSONALIZATION:
PROBLEM STATEMENT

In this section we precisely formulate the web site per-
sonalizer problem. In short, a web site personalizer acts as
an intermediary between a web site and its many visitors,
automatically adapting content to meet the needs of each
visitor. We tend to view a personalizer as associated with
only one web site, although it could just as easily be situ-
ated on a proxy server and adapt many sites, or exist on the
browsing device and serve only one visitor. In contrast to
manual personalization approaches, such as those employed
at Yahoo! and Excite, automatic personalization does not
require explicit e�ort from the web visitors to customize
the content. The inputs to the personalizer are the web site
and data about the visitors, and an evaluation function that
measures the quality of a particular personalized site. More
precisely, the inputs are:

� A web site W , represented as the URL of its main
entry page U . From U , a personalizer can crawl the
site to determine any number of features: the graph
of pages and links at the site; the content of every
page; the URL naming hierarchy of the web content;
etc. The exact features the personalizer mines from
the site depends on the implementation; we describe
our personalizer's site model in section 3.1.

� A set of visitors V = fv0; : : : ; vmg. An individual
visitor vi is represented as a tuple (R;D) whose el-
ements are, respectively, the visitor's history of page
requests (i.e., links followed) as captured by a proxy
server and the visitor's demographics. A single re-
quest rj is a tuple (us; ud; t; c) containing the source
page us, destination page ud, time of the request t,
and web client device c (i.e., the IP address of the re-
questing computer or mobile device). From R we can
reconstruct the sequence of pages viewed, by selecting
the ud from each request and ordering by time, and
can subsequently apply any number of sequence pre-
diction algorithms (e.g., [17, 5]). The demographics
D is an n-tuple of values that embody all the avail-
able information about the visitor external to the web
experience: the visitor's age, gender, city of residence,
annual income bracket, etc. We represent each of these
data items generically as di. In summary:

566

V = fv0; : : : ; vmg A set of m individual visitors
vi = (R;D) A visitor is represented as his

or her history and demographics
R = hr0; : : : ; rti The history is a sequence of

requests ordered by time
ri = (us; ud; t; c) A request is the originating

page, destination page, time,
and client

D = (d0; : : : ; dn) Demographic information is an
n-tuple of data items

� Current visitor v and requested URL u. A web per-
sonalizer acts as an intermediary for many visitors
but adapts content for each visitor individually. v
is the speci�c visitor to whom the personalizer must
presently return a page, and u is the content that the
visitor has requested.

� An evaluation function F . F measures the quality of
the web site for a speci�c visitor, starting at a par-
ticular page, as a scalar (larger values indicate higher
quality). We emphasize that the quality of a site de-
pends on the particular page the visitor has requested
| it is this page that de�nes the visitor's current view
into the site. Thus, F takes as input the web site W ,
the requested URL u, and the visitor model v, and
returns a real-valued scalar: F(W;u; v) 7! R.

The output of a personalizer is a customized version of the
requested content u that maximizes F(W;u; v). Although a
personalizer may choose to adapt an entire site en masse for
the visitor, the only adapted content returned to the visitor
is that for page u. Of course, the personalizer may record
the steps it took to personalize the site and reuse these steps
for future requests.

3. PERSONALIZATION AS SEARCH
In this section we present the framework of our approach,

providing precise de�nitions wherever appropriate. In the
next section we describe how we implemented this system
as a functioning web site personalizer.
We �rst describe our approach briey. In essence, our

web site personalizer performs a search through the space
of possible web sites. The initial state is the original web
site of unadapted pages. The state is transformed by any of
a number of adaptation functions, which can create pages,
remove pages, add links between pages, etc. The value of
the current state (i.e., the value of the web site) is measured
as the expected utility of the site for the current visitor. The
search continues either until no better state can be found,
or until computational resources (e.g., time) expire. We
provide more detail on our approach below.

3.1 State representation
Each state in our search space S is an entire web site, W .

Although an actual implemented system (such as ours, as we
discuss in section 4) may choose to adapt only a single page
at a time, we model the entire web site to allow adaptations
to be made anywhere in the site. The web siteW is modeled
as a directed graph whose nodes are pages, p0; : : : ; pn, and
whose arcs are hypertext links, l0; : : : ; lm. A link lk is a
triple (ps; pd; a) where ps is the source page (i.e., the page
on which the link appears), pd is the destination page2, and

2pd may also be the distinguished page \hexternali" which
represents any page outside the current web site.

a is the anchor text. Each page pi is modeled as a hierarchy
of web content, much in the same way the parse tree of
an HTML document confers a hierarchy of HTML tags. pi
is thus represented as the root of this hierarchy, and is a
content node. A content node c is a pair (C;B) where C is a
sequence of children hc1; : : : ; cki of c and B is a behavior that
c imparts on its children. The elements of C may be either
plain text or (recursively) content nodes. The behavior B
is the action that a�ects the human-viewable content. For
example, if c were a \" node, then B would render
its children in boldface; or if c were an \<a>" node, then B
would render its children as a hypertext link. Summarizing:

S = fW0;W1; : : : g Each state in the search
space is a web site

W = (fp0; : : : ; png; A web site is a directed
fl0; : : : lmg) graph of pages and links

lk = (ps; pd; a) A link has a source,
destination, and anchor

pi = ci A page is its root content
node

ci = (hci1; : : : ; ciki; B) A content node is a
sequence of children
and node behavior; or

ci = text A content node is plain text

3.2 State Evaluation
We estimate the quality of the personalized web site as the

expected utility of the site from the point of view of the re-
quested page. Intuitively, the expected utility is the sum of
the utility the visitor receives by browsing each page in the
site, discounted by the diÆculty of reaching each page3. For
example, following a link at the top of the current page may
not be diÆcult, but reaching a page many links \away" will
require scrolling (to �nd the links) and waiting for intermedi-
ate pages to download over the wireless network. The graph
nature of a web site naturally suggests a recursive traversal
to evaluate the site, starting from the current page. At each
step in the traversal (i.e., at each page in the site), we de-
�ne the utility of the page as the sum of its intrinsic utility
| the utility of the page, in isolation | and the extrinsic
utility | the utility of the linked pages4. We make these
concepts more precise below.

3.2.1 Web site model for evaluation
We transform the search state model slightly to make eval-

uation easier. We observe that, while adaptation requires
detailed internal structure of each web page, an evaluation
function that is based on a human visitor's view should not
be exposed to this internal structure, but should see only a
linear sequence of text and links. Thus, instead of using the
tree-based model, we use only the leaves of the tree in their
left-to-right order.
The leaves of a page pi and their ordering impose a lin-

earization of the content, which we subsequently decompose
into a sequence of \screens" hsi0; : : : ; simi, each of which
represents the web content that can be seen in one window
of the visitor's browser. A single screen sij is composed of
web content (i.e., the text and graphics that are displayed),

3We will actually compute the utility at a �ner granularity
than each web page, but the intuition from the utility of an
entire page is the same.
4In many ways, the intrinsic and extrinsic utilities are anal-
ogous to the authority and hub weights, respectively, from
Kleinberg's work [13].

567

which we denote as Tij , and a set of links lij1; :::; lijk that
appear on the screen. In summary:

pi = hsi0; : : : ; simi A page is a sequence of
screens

sij = (Tij ; flij1; : : : ; lijkg) Each screen contains web
content and links

3.2.2 Expected utility
Because our goal is to maximize expected utility, we must

be able to calculate the expectation that the visitor will view
any given piece of content in the site. To this end, we model
the visitor as having only a �xed set of navigation actions
at his or her disposal, but any number of which the visitor
may select (i.e., the actions are not mutually exclusive).
Speci�cally, if the visitor is at screen sij , then the set of
actions available is:

A = fascroll; alij1 ; : : : ; alijkg

That is, the visitor may: scroll down to the next screen
(assuming that sij is not the last screen of the page); or fol-
low any link that appears on the screen. We reiterate that
the visitor will generally perform a number of these actions
at any screen, and that the actions are not independent. For
example, the visitor may follow three di�erent links (each
time returning to this screen with the browser's \back" but-
ton) and scroll to the next screen of content. Thus, to model
the visitor behavior, we maintain independent probabilities
that the visitor will take each action, and these probabilities
will generally not sum to one. In section 4 we describe how
we choose these probabilities in practice.
Recall from section 2 that the evaluation function F takes

as input the web site, the page requested, and the current
visitor model, and calculates the quality of the site. If we
let p̂ be the personalized page for the requested URL u and
UV (p̂) be the utility of p̂ for visitor v, then:

F(W;u; v) = E[UV (p̂)]

That is, as we observed earlier, the evaluation of W is the
product of a recursive traversal through the site, and this
equation states that p̂ is the root of that recursion. Similarly,
because only the �rst screen of p̂ is initially visible to the
visitor, we calculate the expected utility of p̂ (or any pi, in
fact) as the expected utility of its �rst screen:

E[UV (pi)] = E[UV (si0)]

The expected utility of a single screen sij is the sum of its
intrinsic and extrinsic utilities:

E[UV (sij)] = E[IUV (sij)] +E[EUV (sij)]

The intrinsic utility of a screen measures how useful the
screen's content is towards ful�lling the visitor's information
goal, in isolation of the rest of the web site. Typically, the
intrinsic utility will depend on the visitor model | the past
history and demographics. A more detailed description of
intrinsic utility depends on particular assumptions regarding
visitor interests and goals; see section 4 for a discussion of
the method we used in Proteus.
The extrinsic utility, on the other hand, measures the

value of a screen by its connections to the rest of the web
site. As we noted earlier, the visitor may reach other parts

of the web site by taking one or many navigation actions
from the current screen. Associated with each of these ac-
tions is a probability that the action will be taken, denoted
by P (action) (see section 4 for a discussion of how Proteus

estimates these probabilities). In addition, actions may im-
pose a cost to the visitor (i.e., a negative utility); these costs
are s and l for scrolling and following a link, respectively.
These costs subtract directly from the expected utility of
the action, and represent the cost to the visitor (in time,
money, etc.) of taking the action. In summary, if we let dijk
be the destination page of link lijk, then the extrinsic utility
of screen sij is a sum weighted by probabilities:

E[EUV (sij)] = P (scroll)(E[UV (si;j+1)]� s) +X

k

[P (lijk)(E[UV (dijk)]� l)] (1)

We can see that equation 1 introduces the recursive com-
ponent of the evaluation function, by referencing the utility
of other pages and screens. The recursion is halted when
the expected utility of a screen or page is less than the cost
of reaching that content (i.e., when E[UV (si;j+1)] < s or
E[UV (dijk)] < l).
The equations given above and a formula for intrinsic util-

ity completely determine the utility of an adapted page p̂.
However, the equations given, evaluated verbatim, would
not be computationally tractable | they call for a screen-
by-screen decomposition of potentially every page in the en-
tire web site. For small sites, this �ne-grained analysis may
be possible, but many sites have hundreds if not thousands
of static web pages, as well as potentially limitless dynamic
web pages | far too many to examine individually. Fortu-
nately, the evaluation can be made computationally much
simpler with the aid of a few assumptions. We describe
those assumptions and under what conditions they hold in
the next section.

4. IMPLEMENTATION
We have implemented Proteus, a web site personalizer

based on the framework described in the previous section.
While most of the details of this system should be clear from
the framework, a few issues are implementation-speci�c; we
describe those issues here. We conclude this section with a
few words about the performance of Proteus.

4.1 Search control
We implemented a simple, steepest-descent search control

method for Proteus (see Table 1). Throughout the search,
Proteus maintains the best-known state so far, BestState,
and a current search seed SearchSeed. At each iteration in
the search, Proteus produces all states one \step" away
from the search seed, and replaces the search seed with the
best of these new states. The search stops after a �xed
number of iterations and Proteus returns the best-known
state.

4.2 Search operators
While the framework described in the previous section

allows for transformation to occur anywhere in the site, we
have restricted Proteus to make changes only that involve
the requested page, p̂. That is, any transformation to the
site must act on p̂| add content to p̂, remove content from
p̂, etc. Changes made elsewhere in the site, such as creating
a new web page or adding links between two other pages,

568

Inputs:
W Unadapted web site

Search(W)
BestState W
BestUtility Expected utility of W
SearchSeed W
For K iterations:
S Generate new states from SearchSeed
s State in S with greatest expected utility
SearchSeed s
If expected utility of s > BestUtility
BestState s
BestUtility Expected utility of s

Return BestState

Table 1: Search control.

Figure 1: Content blocks. Solid black borders out-
line blocks of content on which elide-content and swap-
siblings may operate. Note that these blocks may be
nested.

are not allowed. We made this choice to limit the branching
factor of the search.
We presently support three transformation operators:

elide-content, swap-siblings, and add-shortcut. Two of these
operators, elide-content and swap-siblings, act on only cer-
tain subtrees of the original p̂, speci�cally, only subtrees that
correspond to block-level content. For instance, content in
a <div> tag can be manipulated, as can entire lists (,
), but a single emphasized word () cannot. In
addition, subtrees can be nested. Figure 1 shows a typical
decomposition into these content blocks for Yahoo!'s �nance
portal (finance.yahoo.com). Proteus automatically iden-
ti�es the content blocks using a number of heuristics.
The elide-content operator replaces a subtree of p̂ with a

link to the original content in a fashion similar to Digestor [3]
(�gure 2). Content elision trades o� screen space and page
complexity of p̂ for the cost the visitor may incur to view
the elided content (i.e., to follow the link). Note that elided
content is still available | the visitor can always reach the
original content by following the replacing link.

Figure 3: Shortcut links. Proteus has created a new
shortcut link on the this page: \UW CSE Faculty".
The link is placed near the most-common starting
point of the path it shortens.

The second operator, swap-siblings, permutes two subtree
siblings in p̂'s hierarchy. The result of swap-siblings is to
swap the positions of the subtrees' content in the rendered
page | the former right-sibling's content in placed above
the former left-sibling's content. Like elide-content, swap-
subtree is allowed to swap only preidenti�ed content blocks.
In addition, swap-subtrees may not swap any blocks that
are implicitly ordered, such as ordered lists () or text
(<p>).
The �nal operator, add-shortcut, creates a new link from p̂

to some other page inW (�gure 3). BecauseW may have an
arbitrarily large number of pages, add-shortcut does not con-
sider all new links from p̂. Instead, add-shortcut considers
only those pages that can be \reached" by following at most
k links from (the original version of) p̂. Thus, add-shortcuts
may create a link from p̂ to another page that e�ectively
\shortcuts" a longer path of links. For instance, if the vis-
itor previously followed the path p̂ ! pa ! pb ! pc ! pd,
add-shortcut will create a link directly from p̂ to pd. Fur-
thermore, Proteus places the new link p̂! pd next to the
original link p̂ ! pa, based on the assumption that, if the
visitor previously reached pd by �rst going through pa, and
the visitor wants to �nd pd again, then the visitor will look
towards the link to pa �rst. Of course, placing p̂! pd near
p̂! pa is possible only if the visitor actually took the path
p̂ ! pa ! � � � ! pd before. If the visitor has not estab-
lished this path before, then Proteus places the link based
on the paths other visitors at the site have taken. That is, if
there are many paths from p̂ to pd, Proteus will choose the
most popular path and place the shortcut link near the �rst
step along that path. The anchor text of the link is chosen
heuristically as either the destination's <title> or <h1>.

4.3 Web site evaluation
As we stated in the previous section, we evaluate the

search states by calculating the expected utility of the web
site for the visitor. The previous section described the frame-
work for this evaluation, but left some details to the actual
implementation of the system. Below, we describe these
choices in Proteus.

4.3.1 Navigation action probabilities
Section 3.2.2 presented a set of navigation actions that a

visitor can take when viewing a screen sij . Proteus esti-
mates the probabilities that the visitor takes each of these

569

Figure 2: Elided content. On the left is an unadapted web page. On the right a number of blocks of content
have been elided and replaced with hypertext links.

actions by measuring the frequency with which the visitor
took the action in the past. For example, the probability
that the visitor follows a link ps ! pd is the quotient of the
number of sessions5 in which the visitor viewed pd some-
time after ps divided by the number of sessions in which the
visitor viewed ps (i.e., the probability of the link ps ! pd
is simply the probability the visitor will reach pd sometime
after ps).
The probability for scrolling is derived empirically and is

held constant. Proteus presently uses a probability of 0.85
that the visitor will scroll to the next screen, although we
are in the process of determining this number empirically.
In addition to the action probabilities, actions also im-

pose a cost on the visitor. Through empirical evaluation,
we set the cost of scrolling, s, at 0.01 and the cost of fol-
lowing a link, l, at 0.05. These values tended to work
acceptably in practice, although we found that our results
were largely insensitive to their exact values. In practice,
the dominant term in the expected utility equation is the
product of probabilities of taking chains of actions. That is,
for all but the most probable links the visitor would follow,
the contribution of a remote page to expected utility is al-
ready vanishingly small, irrespective of the cost of following
the link. The situation is similar for scrolling through the
screens of the current page.

4.3.2 Intrinsic Utility
Our implementation measures intrinsic utility of a screen

as a weighted sum of two terms, which relate to how the
screen's content matches the visitor's previously viewed con-
tent, and how frequently the visitor viewed this screen. If
Tij is the viewable content on screen sij , then:

IUV (sij) = !sim � simV (Tij) + !freq � freqV (sij) (2)

5A session is a sequence of page views that occur closely in
time, and together serve to answer a single information goal.
The visitor will have many browsing sessions represented
in their request history. Proteus sessionizes the browsing
data by collecting sequential accesses that are separated by
not more than one minute from the previous access.

simV (Tij) is the similarity between Tij and a model rep-
resenting the visitor's web content interest. Speci�cally, we
are concerned only with the textual content of the page, and
ignore any graphical elements. Thus, we model the visitor
and the requested content as word vectors, vectors in an n-
dimensional space, with each word that appears on any web
page as a di�erent dimension. Further, we scale both vec-
tors according to a TFIDF scheme [22], which weights words
proportionally to how often they appear in the document (in
this case, the particular screen or the visitor's history), and
inversely proportionally to how often the words appear in
any document.
Let wTij be the word vector for content Tij , and consider

a particular word k. The value of wTij (k) is the number of
times word k appears anywhere in Tij , divided by the num-
ber of other pages on which word k appears. For instance,
if the word \Microsoft" appeared eight times in Tij , but ap-
peared in a total of 119 documents, thenwTij (\Microsoft") =
8=119. The numerator is called the \term frequency" while
the denominator is called the \document frequency."
Let wV be the visitor's word vector, and again consider a

word k. Instead of simply summing the number of times the
visitor has ever encountered the word k before, we compute
a weighted sum in the following manner. Any words on a
page at the end of a browsing session receive a high weight;
if the visitor stopped browsing after that page, then that
page, more likely than not, answered the visitor's needs.6

On earlier pages in a browsing session, any words near the
links selected receive a moderate weight, while the other
words on the page receive little or no weight. We assign
moderate weight to link anchor words because these words
caught the visitor's eye while browsing; these words must

6Of course, a visitor may end a browsing session with-
out ever satisfying his or her information goal, and, worse,
this model would reinforce whatever dead-end the visitor
stopped at. However, our experience indicates that, for a
wide range of information-seeking goals, the last page in a
session does satisfy the visitor's task, and does contain per-
tinent content. An interesting line of future work would be
to improve how the content model is populated from the
access logs.

570

have some signi�cance to the visitor. The term frequency
for a word k is thus the weighted sum of all the occurrences
of word k in the visitor's history. The document frequencies,
by which the entries in wV are divided, are the same as for
wTij : the number of web pages on which word k appears.
The similarity between Tij and V is thus �nally computed

as the dot product of the word vectors normalized by their
lengths:

simV (Tij) =
wTij � wV

jjwTij jj � jjwV jj

freqV (sij) measures the number of times the visitor viewed
screen sij . Calculating this value is easy, by simply counting
the number of times the visitor requested page pi in the
visitor's link history L and dividing by the number of screens
in pi (we assume that the visitor viewed each screen on every
page visited in the past). We balanced the weights !sim and
!freq in equation 2 to trade o� each additional page view

by the visitor for roughly 1% of text similarity. As with
the action cost values, this choice of value seems to work
well in practice, but we are in the process of determining it
empirically.

4.3.3 Approximating Expected Utility
At the end of the previous section, we noted that calcu-

lating expected utility using the given equations verbatim
would be computationally intractable | the equations im-
ply a need to recur through the entire web site, evaluating
each screen of content. Fortunately, we can make this evalu-
ation more tractable with two heuristics. The �rst heuristic
is to assume that the cost of scrolling a page of text is much
smaller than that of following a link (s � l). In this case,
the cost of viewing, say, the second screen on a distant page
is dominated by the cost of reaching that page (l+s � l).
Thus, we may treat all pages but p̂ as single-screen pages
and can ignore the recursion due to scrolling on these pages.
The second heuristic places a bound on the number of

pages considered when evaluating p̂. We implemented a pri-
ority queue into which pages pi and screens sij are placed
and ordered by the maximum probability that the visitor
will reach the respective content. For example, the �rst
screen on p̂ has probability 1.0, the second screen probabil-
ity 0.85, and a link very frequently followed from the sec-
ond screen (say, in nine sessions out of ten) has probability
0:85 � 0:9 = 0:765. We can tune exactly how much com-
putation is spent evaluating p̂ by setting a threshold on the
probability | any content that has a lower probability of be-
ing viewed will simply be ignored in our computation. This
threshold gives us a direct \knob" that we can turn to trade
o� performance for accuracy: the lower the threshold, the
more accurate the evaluation, at the expense of recurring
through more of the site.

4.4 Performance
Proteus is written in Python and uses a MySQL database

server. Proteus runs as a proxy through which mobile
clients connect. To adapt a remote web site, Proteus re-
trieves the requested page and manipulates it locally, re-
trieving additional pages from the remote site on-demand.
Our system can generate each alternative personalization
in 10 milliseconds and produces an average of 40 adapta-
tions per search iteration. Evaluating each personalization
requires roughly 500 milliseconds using a probability thresh-

old of 0.001. In our experiments we ran Proteus for 20
iterations of search for each page, which typically produced
a personalized page in four to seven minutes.
With these rates, Proteus can successfully adapt a web

site o�ine in a reasonable amount of time, but is not yet
fast enough to produce personalized content at \click-time."
However, we are con�dent that two simple enhancements
can substantially increase the speed of our system. First,
the single most-expensive operation is retrieving content
from the remote host. Our system caches as much infor-
mation locally as it can, but ensuring that the local infor-
mation is accurate, and collecting new content from remote
hosts, consumes a great deal of time. If Proteus were in-
stalled on the remote web site directly, this overhead would
be eliminated. Second, although Python is an excellent pro-
totyping language, its performance in certain areas, such as
string manipulation, is less than ideal. We are con�dent that
reimplementing Proteus in C++ would yield two orders of
magnitude of speedup | enough for real-time adaptation.

5. EVALUATION
In this section we present the results of an experiment

that provides insight into the e�ectiveness of our system. In
the experiment, we track ten test subjects' browsing habits
on their desktop workstations and then compare how ef-
fectively these subjects can use a suite of personalized and
non-personalized web sites on a wireless Palm Connected
Organizer. We measure visitor e�ort in terms of both time
to attain the goal and the amount of navigation (number of
scrolling actions and links followed) the visitor must take. In
the following subsections, we present our method of collect-
ing data, details of our experimental setup, and our results
and analysis.

5.1 Data collection
A key element in our experiment is a body of detailed

access logs for the ten test subjects' browsing behavior. To
produce these logs, we instrumented every subject's desktop
browser to make all its requests through a proxy, and to not
cache any web content. Thus, pages the subjects viewed and
links followed were recorded in the logs7. We then asked the
test subjects to perform a suite of information-seeking tasks
that we provided each day. The tasks dictate a starting
page and we directed the subjects to attain their goals by
browsing exclusively at the given site. The complete list of
questions used in our experiment appears in Appendix A.
We illustrate two example questions here:

� \Find the current stock price for MSFT, starting at
finance.yahoo.com". We varied the particular stock
ticker symbol among a number of computer-related
technology stocks (MSFT, YHOO, AMZN, etc.).

� \Find the make and model of the editor's choice digi-
tal camera at cnet.com". The variable is the consumer
electronics device, which we selected from among sev-
eral choices.

7The only page views missing from the logs were pages vis-
ited using the browser's Forward and Back buttons. How-
ever, because every new page request included the referring
document, we could reconstruct the entire sequence of page
requests, with the only exception of \loops" of Forwards and
Backs.

571

The tasks in the seed suite were drawn randomly from
a distribution of parametric questions (i.e., the tasks con-
tain variables that permit many similar but not identical
questions) and represent a coherent model of visitor interest
(i.e., the goals were typical of a visitor with a stable set of
interests).

5.2 Evaluation with a mobile device
In our experiment we asked the test subjects to browse

the web with a wireless Palm Connected Organizer8. The
subjects were given a suite of information-seeking goals to
achieve, drawn from the same distribution as the goals dur-
ing the original seeded browsing phase. Note that some of
the goals in this test phase were identical to the goals from
the seeded-browsing phase. This duplication is acceptable
in our experiments, because visitors frequently will have the
same goals on a number of occasions, for example, when
the answer to a question changes with time (e.g., \What is
the stock price of MSFT today?"). During this experiment,
we measured the number of navigation actions taken and
amount of time required to meet each information-seeking
goal.
We asked test subjects to answer the suite of questions

twice: once, on the unmodi�ed web site, and again on a
personalized version of the target site. We personalized the
target site for each visitor by allowing Proteus to �rst build
a model of that visitor, based on the subject's past seeded
browsing data (their desktop, broadband browsing data),
and then to create adapted pages for the testing suite. We
did not personalize every page of every web site because of
the sheer volume of the task | all the sites in our study
contained dynamic web content and potentially an unlim-
ited number of pages. However, because our current im-
plementation is not yet fast enough to adapt a single page
in real-time, we personalized the sites before the subjects
performed their tests. We chose the speci�c pages for Pro-
teus to adapt by using our human judgment of where the
subjects would likely visit during the test. Note that we
have not inuenced the personalization at all | simply, we
have selected the subset of pages that Proteus will per-
sonalize, purely for the sake of eÆciency. On average, Pro-
teus personalized twenty-one pages for each subject, which
represented 38% of the subject's page views during the ex-
periment. Because Proteus personalized only a subset of
the actual pages viewed, our results present a lower bound
on the bene�t the visitor would receive and tend to under-
state the full impact personalization would have for a mobile
visitor.
A priori, we anticipated two results from this experiment.

First, we anticipated that the subjects' behavior on the per-
sonalized site would require fewer navigation actions and
less time than on the equivalent unmodi�ed site. Second,
we anticipated that subjects' behavior would become more
eÆcient as they navigated the web sites on the Palm device.
To mitigate this \subject-training" e�ect in our results, we
alternated for each visitor which version of the web sites we
presented �rst | personalized or unmodi�ed. Thus, both
versions of the web sites received equal advantage in our
experiment as a whole.
Figures 4 and 5 compare links followed and time spent

to attain each goal on the personalized versus unmodi�ed

8We connected a Palm VII to a Ricochet wireless modem
for network connectivity and used EudoraWeb [23] as the
web browser on the Palm.

0

1

2

3

4

5

6

cs
.w

as
hin

gt
on

.e
du

cn
et

.co
m

cs
.w

as
hin

gt
on

.e
du

eb
ay

.co
m

fin
an

ce
.ya

ho
o.

co
m

cn
n.

co
m

cs
.w

as
hin

gt
on

.e
du

fin
an

ce
.ya

ho
o.

co
m

cn
n.

co
m

cs
.w

as
hin

gt
on

.e
du

fin
an

ce
.ya

ho
o.

co
m

eb
ay

.co
m

#
lin

ks
fo

llo
w

ed

Unmodified
Personalized

Figure 4: Links followed.

0

50

100

150

200

250

cs
.w

as
hin

gt
on

.e
du

cn
et

.co
m

cs
.w

as
hin

gt
on

.e
du

eb
ay

.co
m

fin
an

ce
.ya

ho
o.

co
m

cn
n.

co
m

cs
.w

as
hin

gt
on

.e
du

fin
an

ce
.ya

ho
o.

co
m

cn
n.

co
m

cs
.w

as
hin

gt
on

.e
du

fin
an

ce
.ya

ho
o.

co
m

eb
ay

.co
m

T
im

e
(s

ec
o

n
d

s)

Unmodified
Personalized

Figure 5: Time required.

web sites (the graph of the scrolling actions follows the same
trends as the graph for time). Along the y-axis is the amount
of e�ort | time in seconds or number of links | while along
the x-axis is the location of each goal listed chronologically.
Results for the unmodi�ed sites appear as the left, darker
column while results for the personalized sites are given in
the right, lighter column. These graphs show that, for a ma-
jority of the sites, Proteus's personalizations appear quite
useful: Proteus's addition of shortcut links and elision of
unnecessary content reduced both the time required and the
amount of visitor navigation at the sites. However, the study
also illustrates a number of weaknesses in our implementa-
tion. These are not fundamental aws in our approach, but
rather implementation issues that must be addressed by a
successful personalizer:
Overly aggressive content elision. For a number of

personalized pages, particularly those for the cnet.com and
finance.yahoo.com domains, Proteus elided blocks of con-
tent that contained the links for which the visitor was look-
ing, thereby requiring more e�ort to attain the information-
goal. Proteus's visitor model incorporates both content
and structural preferences, but it is clear that the weights
of these preferences must be tuned carefully. In future work
we are investigating how to incorporate a con�dence model
that predicts how accurate each component of the model
will be on each page. For example, on a page containing
predominantly links, the con�dence in the structural model
component is much greater than for the content (i.e., word-
based) component. That is, the personalizations on a page
of links should depend more strongly on the probability the
visitor will follow each link, and less strongly on the textual
content of each anchor word. Additionally, the con�dence in
the structural component depends on the number of times

572

the visitor has viewed the page. If the visitor views the page
frequently, and follows the same two links each time, then
the personalizer has much higher con�dence that those links
are very important aspects of the page.
Inconspicuous elision links. We designed our method

of eliding content explicitly to tolerate when Proteus elided
content incorrectly: Proteus creates a link in the place of
the removed content. However, the subjects in our study
often could not �nd the link to the elided content, usually
for one of two reasons. First, the link anchor text for elided
content was taken from the �rst few words of the removed
content. For the examples in Figure 2 the anchors are in-
tuitive (e.g., \Mutual Funds..."). However, when the elided
content block contained, for instance, an advertisement at
the top, Proteus selected the text from the advertisement
as the link anchor | clearly, an unintuitive choice. Unfor-
tunately, automatically �nding a brief summary of a block
of text, much less a page of content, is an open research
problem [16]. A second reason elision links were diÆcult to
�nd was that their visual appearance was no di�erent from
the other links on the page. Thus, the visitors could not tell
when a link led to elided content, or when the link simply led
to another page. A simple solution to this problem is to add
a unique annotation to elision links. However, we are also
investigating other approaches to making links more salient.
Over-estimated navigation probabilities. At graphi-

cally intense pages, such as cnn.com or cnet.com, the visitor
can easily �nd his or her desired link when using the desk-
top browser. However, on the mobile device, such a page
typically appears as a morass of links and text, often indis-
tinguishable from one another, and the visitor has great dif-
�culty in locating the link of interest. Unfortunately, Pro-
teus calculates the probability that the visitor follows a link
simply as how often the visitor has followed the link before
while browsing on the desktop, when the visitor is unencum-
bered by the display constraints of the mobile device. Thus,
Proteus tends to overestimate the link probabilities and,
instead of adapting the page to reduce the visual complexity,
will search for (what it views as) more useful personaliza-
tions, such as adding new shortcut links. In another line of
future work, we are expanding the link probability estimate
to take link salience into account, which will discount the
value of visually complex pages and encourage Proteus to
create simpler pages.

6. RELATED WORK
As we have discussed previously, a closely related line of

research is Perkowitz and Etzioni's adaptive web sites [20,
21]. Our work di�ers from theirs on three important points:

� Adaptive web sites �nd singular transformations that
appeal to all visitors at the site, while Proteus per-
sonalizes the web content for each visitor. Perkowitz
and Etzioni provide a number of reasons to take their
en masse approach. However, as we noted in section 1,
mobile web visitors keenly need personalized web sites.

� The only transformation their adaptive web sites pro-
duce is synthesizing index pages | hubs of links to
other pages in the site. Proteus considers a much
wider range of adaptations that speci�cally aim to per-
sonalize every page on a site.

� Their evaluation metric for their transformations is
based strictly on the navigational usage patterns of

past visitors | the pages requested. Their model
does not include any notion of a visitor's content in-
terest, and cannot be used to determine how relevant
novel pages or links are to the visitor. Our approach,
based on expected utility, explicitly measures visitors'
content interest with intrinsic utility and is applicable
even to pages that the visitor has never seen before.

Two other systems similar to our own work are Digestor [3]
and Pythia [8]. Neither system personalizes web content,
but both concentrate simply on transforming content for
display on a small screen with limited network bandwidth.
Digestor uses a steepest-descent search similar to ours, to
�nd an optimal page. However, Digestor rates the quality
of a web page not on the visitor's expected utility, but only
on how much screen space the page occupies (smaller pages
have higher quality). This quality metric has two signi�cant
weaknesses. First, di�erent elements on a page will have dif-
ferent value to the visitor, and should not be measured sim-
ply by how large they are. Second, this metric encourages
the system to create degenerate pages | a blank web page
receives the highest quality value. Both these weaknesses
are addressed by a richer visitor model, such as we de�ne
for Proteus. In contrast to Digestor and Proteus, Pythia
does not use search, and instead performs a distillation of
every image on the requested web page to reduce the screen
size and �le transmit cost of the content. Pythia allows the
visitor to subsequently select images to restore to a larger
size in a re�nement step. Pythia's approach is well suited to
improving how images are transmitted and viewed on mo-
bile devices, but is unable to improve the textual content or
navigational structure in a web page. Proteus addresses
both of these issues and, in fact, would be bene�cially com-
plemented by Pythia's approach.
The Web Browser Intelligence (WBI) [2, 15] project pro-

poses an architecture of pluggable intermediaries that exist
between web servers and web clients. These intermediaries
generate, transform, and monitor the content they see in
connection with requests made from web visitors, and can
be used either individually or in chains. In many ways,
our approach to web site personalization can be viewed as
a particular transformation intermediary, providing highly
personalized content for mobile clients. An interesting line
of future research would be to reimplement Proteus in the
WBI framework and investigate what new capabilities are
available as a member of WBI's federation (in particular,
what other intermediaries are available that could be use-
fully composed with Proteus).
Countless other ideas have been researched and systems

been implemented that attack all or part of the web site
personalization problem. We mention briey several sys-
tems and projects that are most relevant to our approach.
The Daily Learner [4] is an agent that learns a Palm VII
user's preference for news content, by monitoring exactly
which stories the user requests from both the Palm device
and the user's corresponding desktop computer. Mobasher
et al. [18] describe how to mine web usage patterns and
web content to personalize the visitor experience, speci�-
cally, to recommend new content the visitor may like to see.
The PersonalClipper [9] allows visitors to build their own
custom views of web sites by recording navigational macros
using a VCR-metaphor and selecting components of the tar-
get page to view with the mobile device. In contrast to
Proteus, the PersonalClipper requires the visitor to man-
ually create these navigational macros and place the result

573

on the personal clipping. Letizia [14], WebWatcher [11],
and adaptive web site agents [19] are agents that help guide
web visitors by suggesting pages that the visitor may like
to see. Letizia relies on the visitor's past behavior at the
site, while WebWatcher suggests pages that the site's audi-
ence, as a whole, have favored in the past. Adaptive web
site agents combine both approaches and integrate an ani-
mated avatar with which visitors interact. Our work di�ers
from this earlier agent-based work in that we concentrate on
personalizing the web site for each visitor, instead of merely
suggesting which links to follow next, and in the depth to
which we mine the web logs for useful access patterns.

7. FUTURE WORK
The framework for web site personalizers that this pa-

per presents opens the door to a wide range of future re-
search. We are pursuing three speci�c threads in ongoing
work. First, we are looking at separating the web content
model into data, structure, and presentational elements [7].
As separate elements, the web site personalizer can trans-
form each aspect of the site independently for both a compu-
tational cost savings and for a expected utility performance
gain. For instance, when the data on the site is separated
from its presentation, the web site personalizer can very pre-
cisely tune what content the visitor will see | largely inde-
pendent of how the content is currently presented.
Second, we are expanding the set of transformations that

the Proteus can make to the site. Speci�cally, we are in-
vestigating a transformation that can aggregate blocks of
content from many pages into a single view for the visitor.
Such a transformation can allow Proteus to e�ectively cre-
ate \portal pages" that integrate information from several
separate resources on a web site. A single portal page that
satis�es a wide range of information-seeking goals at a site
would save the visitor a great deal of costly navigation.
In a third line of research, we are leveraging the whole pop-

ulation of visitor models described in section 2 to improve
the site evaluation function for the current visitor. Along
this line of work, we �rst cluster visitors based on models of
their browsing behavior, and then use the history of other
cluster members to inuence the utility model of the current
visitor. Clusters are formed by modeling visitors' browsing
habits with Markov models, and clustering these models [5].
By incorporating the models of many closely related visi-
tors, the web site personalizer can mitigate the sparseness
of data for any single visitor and increase the accuracy of
the expected utility estimate. Early results from this work
show promise in �nding cohesive clusters that can greatly
improve the site evaluation for every visitor.

8. CONCLUSIONS
As the community of mobile web clients grows, so grows

the need for web sites to cater to visitors o� the desktop and
o� broadband network connections. This paper provides
evidence that web site personalizers are an e�ective means of
retargeting existing content to mobile clients in a way that is
adapted for each visitor and that requires no additional work
from the web site designer. We underscore the following
contributions of our work:

� We propose a precise and broadly-encompassing de�-
nition of the automatic web site personalization prob-
lem, extending previous proposals;

� We apply the ideas of web site personalizers to au-
tomatically produce adapted web content for mobile
visitors;

� We introduce a model with which we calculate the ex-
pected utility of a web site, a model that is �tted to
each individual visitor to the site;

� We propose heuristic methods to trade o� the precision
of approximating expected utility with the computa-
tional expense in measuring it;

� We describe Proteus, an implemented web site per-
sonalizer, with which we evaluated our approach; and

� We present experimental evidence indicating that our
web site personalization method improves the user ex-
perience for mobile web visitors, by reducing the time
and e�ort required to attain their information-seeking
goals.

Acknowledgements
The authors cannot o�er enough thanks to the people who
supported us in our work: Cathy Anderson, Adam Carl-
son, Oren Etzioni, Zack Ives, Tessa Lau, and Steve Wolf-
man. This research was funded in part by an NSF CA-
REER award to the second author, National Science Foun-
dation grants #IRI-9303461, #IIS-987218, #IIS-9978567,
and #IIS-9874759, OÆce of Naval Research grant #N0014-
98-1-0147, and a grant from the Royalty Research Fund.

9. REFERENCES
[1] AvantGo, Inc. AvantGo. http://www.avantgo.com/.

[2] R. Barrett, P. P. Maglio, and D. C. Kellem. How to
personalize the web. In Proceedings of ACM CHI 1997
Conference on Human Factors in Computing Systems,
1997.

[3] T. W. Bickmore and B. N. Schilit. Digestor:
Device-independent access to the world wide web. In
Proceedings of the Sixth International World Wide
Web Conference, 1997.

[4] D. Billsus, M. J. Pazzani, and J. Chen. A learning
agent for wireless news access. In Proceedings of the
2000 Conference on Intelligent User Interfaces, 2000.

[5] I. V. Cadez, D. Heckerman, C. Meek, P. Smyth, and
S. White. Visualization of navigation patterns on a
web site using model based clustering. In Proceedings
of the Sixth International Conference on Knowledge
Discovery and Data Mining, 2000.

[6] Digital Paths LLC. DPWeb.
http://www.digitalpaths.com/prodserv/
dpwebdx.htm.

[7] M. Fernandez, D. Florescu, J. Kang, A. Levy, and
D. Suciu. Catching the boat with Strudel: Experiences
with a web-site management system. In Proceedings of
ACM SIGMOD Conference on Management of Data,
1998.

[8] A. Fox and E. Brewer. Reducing WWW latency and
bandwidth requirements by real-time distillation. In
Proceedings of the Fifth International World Wide
Web Conference, 1996.

[9] J. Freire and B. Kumar. Web services and information
delivery for diverse environments. In Proceedings of
the VLDB Workshop on Technologies for E-Services,
2000.

574

[10] ILINX, Inc. Palmscape 3.0.
http://www.ilinx.co.jp/en/products/ps.html.

[11] T. Joachims, D. Freitag, and T. Mitchell.
WebWatcher: A tour guide for the World Wide Web.
In Proceedings of the Fifteenth International Joint
Conference on Arti�cial Intelligence, 1997.

[12] R. L. Keeney and H. Rai�a. Decisions with Multiple
Objectives: Preferences and Value Trade-O�s. Wiley,
New York, NY, 1976.

[13] J. Kleinberg. Authoritative sources in a hyperlinked
environment. In Proc. 9th ACM-SIAM Symposium on
Discrete Algorithms, 1998.

[14] H. Lieberman. Letizia: An agent that assists web
browsing. In Proceedings of the Fourteenth
International Joint Conference on Arti�cial
Intelligence, 1995.

[15] P. P. Maglio and R. Barrett. Intermediaries
personalize information streams. Communications of
the ACM, 43(8), 2000.

[16] I. Mani and M. Maybury. Advances in Automatic Text
Summarization. MIT Press, 1999.

[17] H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1:259{289,
1997.

[18] B. Mobasher, H. Dai, T. Luo, Y. Sun, and J. Zhu.
Combining web usage and content mining for more
e�ective personalization. In Proceedings of the
International Conference on E-Commerce and Web
Technologies (ECWeb), 2000.

[19] M. J. Pazzani and D. Billsus. Adaptive web site
agents. In Proceedings of the Third International
Conference on Autonomous Agents, 1999.

[20] M. Perkowitz and O. Etzioni. Adaptive web sites: an
AI challenge. In Proceedings of the Fifteenth
International Joint Conference on Arti�cial
Intelligence, 1997.

[21] M. Perkowitz and O. Etzioni. Towards adaptive web
sites: Conceptual framework and case study. Arti�cial
Intelligence Journal, 118(1{2), 2000.

[22] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, NY,
1983.

[23] Qualcomm, Inc. Eudora Internet Suite 5.0.
http://www.eudora.com/internetsuite/
eudoraweb.html.

APPENDIX

A. USER STUDY QUESTIONS

� \What is the top editor's choice for hdevicei at cnet.com?",
where hdevicei was one of: a \semipro" digital camera;
an ultralight laptop; a Palm OS handheld; a CD-RW;
a at panel display.

� \What is the best price for hdevicei at cnet.com?",
where hdevicei was one of: a \semipro" digital camera;
an ultralight laptop; a Palm OS handheld; a CD-RW;
a at panel display.

� \What is the current stock value of htickeri? Start at
�nance.yahoo.com", where htickeri is in the set MSFT,
YHOO, AMZN, ATHM, PALM, HAND, OMNY,
AVGO, MCOM, RIMM, INSP, EBAY.

� \What is the 52-week range for htickeri? Start at
�nance.yahoo.com", where htickeri is in the set MSFT,
YHOO, AMZN, ATHM, PALM, HAND, OMNY,
AVGO, MCOM, RIMM, INSP, EBAY.

� \What stocks were hupgraded/downgradedi to a hstrong
buy, buy, hold, selli rating today? Start at �nance.
yahoo.com"

� \Find the research pro�le for hcompanyi. Start at �-
nance.yahoo.com" hcompanyi is one of: Microsoft, Ya-
hoo, Amazon.com, Excite@Home, Palm, Handspring,
OmniSky, AvantGo, Metricom, Research In Motion,
InfoSpace, eBay.

� \What is the average analyst rating (recommenda-
tion) for hcompanyi. Start at �nance.yahoo.com" where
hcompanyi is one of: Microsoft, Yahoo, Amazon.com,
Excite@Home, Palm, Handspring, OmniSky, AvantGo,
Metricom, Research In Motion, InfoSpace, eBay.

� \Find hitemi for sale and report the highest bid (or
report that none is for sale). Start at www.ebay.com.".
hitemi was one of: an Olympus D-340R digital camera;
a Nikon Coolpix 950; a Nikon Coolpix 990, a Palm
Vx, a Samsung Syncmaster 150mp at panel display,
a Pentax K-mount wide-angle lens, a Pentax K-mount
70-200 zoom lens, a Pentax K-mount telephoto (300mm
or longer) lens; a 1900 Morgan Dollar; a 1938 Walking
Liberty half-dollar, S mint mark; a 1976 proof quarter-
dollar, S mint mark; a US commemorative \Hudson"
half dollar circa 1935.

� \hWhen/Wherei is the lecture for CSE hclassi? Start
at www.cs.washington.edu", where hclassi was one of:
505, 531, 533, 573, 589, 594.

� \Is hroomi available at htimei on hdatei? hroomi was
either Sieg 322 or Sieg 114 and htimei, ranged from 9:00
to 4:00 (by hour), and hdatei ranged from November
13th to November 17th.

� \What oÆce is hpersoni in? Start at www.cs.washington.
edu", where hpersoni was one of sixteen selected gradu-
ate students or faculty at the University of Washington.

� \What is the topic of the upcoming colloquium, if any?
Start from www.cs.washington.edu."

� \Is the colloquium in Sieg or in Kane, if any? Start
from www.cs.washington.edu."

� \What is the top breaking news for today at cnn.com?"

� \What is the top business news for today at cnn.com?"

� \What's the latest news about htopici at cnn.com?",
where htopici was chosen from: the �rst resident mis-
sion to the International Space Station (ISS); violence
in the Mideast; the attack on the USS Cole; the U.S.
presidential race; the Microsoft hacker attack; the Sin-
gapore Airlines plane crash in Taiwan.

575

