
Towards a Highly-Scalable and Effective
Metasearch Engine�

Zonghuan Wu1, Weiyi Meng1, Clement Yu2, Zhuogang Li1
1Department of Computer Science

SUNY at Binghamton, Binghamton, NY 13902, meng@cs.binghamton.edu
2Department of Computer Science

University of Illinois at Chicago, Chicago, IL 60607, yu@eecs.uic.edu

ABSTRACT
A metasearch engine is a system that supports uni�ed access
to multiple local search engines. Database selection is one of
the main challenges in building a large-scale metasearch en-
gine. The problem is to eÆciently and accurately determine
a small number of potentially useful local search engines to
invoke for each user query. In order to enable accurate se-
lection, metadata that reect the contents of each search
engine need to be collected and used. In this paper, we
propose a highly scalable and accurate database selection
method. This method has several novel features. First, the
metadata for representing the contents of all search engines
are organized into a single integrated representative. Such a
representative yields both computation eÆciency and stor-
age eÆciency. Second, our selection method is based on a
theory for ranking search engines optimally. Experimental
results indicate that this new method is very e�ective. An
operational prototype system has been built based on the
proposed approach.

Keywords
Metasearch Engine, Resource Discovery, Database Selection,
Distributed Text Database

1. INTRODUCTION
The World Wide Web has become a vast information re-

source in recent years. By February of 1999, there were
already approximately 800 million publicly indexable pages
on the Web [16]. Finding desired data is one of the most
popular ways the Web is utilized. Many search engines have
been created to facilitate the retrieval of web pages. Each
search engine has a text database that is de�ned by the set

�This work is supported in part by the following NSF grants:
IIS-9902792, IIS-9902872, EIA-9911099, CCR-9816633 and
CCR-9803974.

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

of documents that can be searched by the search engine. In
this paper, a search engine and its database will be used
interchangeably. Usually, an index for all documents in the
database is created in advance. For each term which rep-
resents a content word or a combination of several (usually
adjacent) content words, this index can identify the docu-
ments that contain the term quickly. In this paper, we con-
sider only search engines that support vector space queries
(i.e., queries that can be represented as a set of terms with
no boolean operators). Less than 10% of all user queries use
boolean operators [11].
Several major search engines on the Web, for example

AltaVista, Google and NorthernLight, have been attempting
to index the entire Web and provide a search capability for
all web pages. However, these centralized search engines
su�er from a number of limitations [10]. For example, the
coverage of the Web by each of them is limited [14, 16]
due to various reasons such as robot exclusion and the lack
of appropriate links. As another example, as these major
search engines get larger, higher percentages of their indexed
information are becoming obsolete. More and more people
are having doubt about the scalability of the centralized
search engine technology for searching the entire Web.
On the other hand, there are tens of thousands or more

of special-purpose local search engines that focus on doc-
uments in con�ned domains such as documents in an or-
ganization or of a speci�c subject area. For example, the
Cora search engine (cora.whizbang.com) focuses on com-
puter science research papers and Medical World Search
(www.mwsearch.com) is a search engine for medical infor-
mation. Many organizations have their own search engines.
There is reason to believe that all these special-purpose
search engines combined together can provide a better cov-
erage of the Web than a few major search engines combined.
Thus, an alternative approach for providing the search ca-
pability for the entire Web is to combine all these special-
purpose search engines. This is the metasearch engine ap-
proach. A metasearch engine is a system that supports uni-
�ed access to multiple local search engines. It does not
maintain its own index on web pages but a sophisticated
metasearch engine often maintains characteristic informa-
tion about each underlying local search engine in order to
provide better service. When a metasearch engine receives
a user query, it �rst passes the query (with necessary refor-
matting) to the appropriate local search engines, and then

386



collects (sometimes, reorganizes) the results from its local
search engines. In addition to the potential of increased
search coverage of the Web, another advantage of such a
metasearch engine over a general-purpose search engine is
that it is easier to keep index data up to date as each local
search engine covers only a small portion of the Web. In ad-
dition, running a metasearch engine requires much smaller
investment in hardware (computers, storages, ...) in com-
parison to running a large general search engine such as
Google which uses thousands of computers.
There are several serious challenges to implement an ef-

fective and eÆcient metasearch engine. Among the main
challenges, the database selection problem is to identify, for
a given user query, the local search engines that are likely
to contain useful documents for the query. The objective of
performing database selection is to improve eÆciency as by
sending each query to only potentially useful search engines,
network traÆc and the cost of searching useless databases
can be reduced. In order to perform database selection well,
a representative for each database needs to be stored in the
metasearch engine to indicate the contents of the database.
The collection fusion problem is to retrieve documents from
selected databases and then merge these documents with
the objective of listing more useful documents ahead of less
useful ones. Various heterogeneities among multiple search
engines often make it very diÆcult to achieve a good fusion
[22]. A good metasearch engine should have the retrieval ef-
fectiveness close to that as if all documents were in a single
database while minimizing the access cost.
In this paper, we propose a new approach to perform

database selection and collection fusion. This method uses
the framework that was developed in [32, 35, 33] for rank-
ing databases optimally based on the similarity of the most
similar document in each local database (see Section 3 for
more information). The main contribution of this paper is
the development and the experiment of a new technique to
rank databases. This technique is based on a novel database
representative that has the following features. First, it is
highly scalable in terms of both computation and space.
In fact, it can scale to virtually unlimited number of lo-
cal databases. Second, it is an integrated representative for
all local databases in contrast to one representative for each
local database in existing approaches. Third, for single-term
queries, which occur frequently in the Internet environment,
this technique guarantees the correct selection of databases.
Our experimental results indicate that our new method is
not only very scalable but also very accurate. An opera-
tional prototype metasearch engine based on our method
has been implemented.
The rest of the paper is organized as follows. In Sec-

tion 2, related work is reviewed and compared. In Section
3, we review a framework of performing database selection
and collection fusion using the similarity of the most sim-
ilar document in each database. In Section 4, we present
our new technique based on this framework. Experimental
results will be presented in Section 5. We briey describe
our prototype system in Section 6. Finally, we conclude the
paper in Section 7.

2. RELATED WORK
In the last several years, a large number of research pa-

pers on issues related to metasearch engines or distributed
collections have been published (e.g., [1, 4, 6, 8, 9, 17, 19,
20, 21, 26, 27, 28, 32, 37]).
For database selection, most approaches rank the databases

for a given query based on certain usefulness measures. For
example, gGlOSS uses the sum of document similarities that
are higher than a threshold [8], CORI Net uses the proba-
bility that a database contains relevant documents due to
the terms in a given query [4], D-WISE uses the sum of
weighted document frequencies of query terms [37], Q-Pilot
uses the dot-product similarity between an expansion query
and a database description [27], and one of our approaches
uses the expected number of documents whose similarities
are higher than a threshold [20]. All these database ranking
methods are heuristics as they are not designed to produce
optimal orders based on some optimality criteria. In [35,
33], the measure used to rank a database is the similarity
of the most similar document in the database. It is shown
that ranking databases in descending order of the similarity
of the most similar document in each database is a necessary
and suÆcient condition to rank databases optimally for re-
trieving the m most similar documents across all databases
for any positive integer m. A necessary and suÆcient condi-
tion for ranking databases optimally was also given in [12].
However, [12] considered only the databases and queries that
are for structured data. In contrast, unstructured text data
are considered in [35, 33].
For collection fusion, most earlier approaches use weighted

allocation to retrieve documents, that is, retrieve propor-
tionally more documents from databases that have higher
ranking scores (e.g., CORI Net, D-WISE, ProFusion [7],
and MRDD [28]), and use adjusted local similarities of doc-
uments to merge retrieved documents (e.g., D-WISE, and
ProFusion). These approaches are all heuristics and are not
aimed at guaranteeing the retrieval of all potentially useful
documents for a given query. In [9, 20], to determine what
documents to retrieve from a local database, approaches are
proposed to �nd a tight local similarity threshold for the
local database based on a global similarity threshold. These
approaches aim at guaranteeing the retrieval of all poten-
tially useful documents from each selected database while
minimizing the retrieval of useless documents. The problem
with this type of approaches is that they must know what
local similarity function is used in each search engine but
the similarity function is usually proprietary. The Inquirus
metasearch engine [15] uses the real global similarities of
documents to merge retrieved documents. The advantage
is that high quality merging can be achieved. The disad-
vantage is that documents may need to be fetched to the
metasearch engine to enable the computation of their global
similarities. The collection fusion approach in [35, 33] uti-
lizes an estimated optimal database order to determine what
documents to retrieve and uses real global similarities to
merge retrieved documents.
The database selection and collection fusion framework

used in this paper is based on our previous work in [35,
33]. In a nutshell, this framework �rst tries to rank lo-
cal databases optimally using the necessary and suÆcient

387



condition mentioned above. Next, an algorithm is used to
determine what databases should be searched and what doc-
uments from each searched database should be returned to
the metasearch engine. Finally, the global similarities of re-
turned documents are used to merge all returned documents.
This framework will be reviewed in Section 3. The focus of
this paper is on improving the scalability of database se-
lection within this framework. Our main contribution in
this paper is that we have devised a new database selection
method. The new method can on one hand scale to virtually
unlimited number of local databases in a metasearch engine
in terms of both computation and space requirement and on
the other hand essentially maintain the retrieval accuracy of
the previous method. We believe that this is a major step
forward towards building a very large scale metasearch en-
gine. A recent whitepaper prepared by a working group on
resource discovery (database selection) asserted that there
are potentially one million repositories on the Web [24] and
called on the development of highly-scalable methods for
resource discovery.
Most existing systems/approaches consider only small-

scale metasearch engines that have from several to a few
hundred local search engines. It is unlikely that these ap-
proaches can scale to tens of thousands or more of local
search engines and at the same time achieve good e�ective-
ness. The reasons are as follows. First, existing methods
compare a given query against all database representatives
to perform database selection. This is computationally very
expensive as there are a large number of databases. Sec-
ond, based on existing methods [4, 8, 17, 21, 37], in order
to perform database selection well, a \detailed" represen-
tative for each database is needed. Here \detailed" means
that one or more pieces of statistical information for each
term appearing in a database are used. A detailed repre-
sentative for a database may have roughly 1% of the size
of that of the database. As a result, for a metasearch en-
gine with tens of thousands or more local search engines,
the total size of these representatives could be tens or even
thousands of times of that of an average database. Conse-
quently, the representatives may have to be stored on slower
storage devices, causing the database selection computation
to be slowed down.
In contrast, in this paper, we propose a novel integrated

representative for all databases, instead of a separate rep-
resentative for each database in all existing methods. The
size of the integrated database representative can be kept
below a few GBs, regardless of the number of databases
there might be in a metasearch engine. Moreover, only a
small constant number of databases needs to be considered
for each query during database selection. As a result, our
method is highly scalable in both computation and storage.
In addition, for typical Internet queries, our approach re-
trieves close to 100% of the most similar documents.
In [1], a theoretical framework was provided for achieving

optimal results in a distributed environment. Recent experi-
mental results reported in [2] show that if the number of doc-
uments retrieved is comparable to the number of databases,
then good retrieval e�ectiveness can be achieved; otherwise,
the performance deteriorates substantially. In contrast, our
method shows good experimental results in both situations

(see Section 5). In addition, our theory di�ers from that
given in [1] substantially.
In [30], experimental results were given to demonstrate

that it was possible to retrieve documents in distributed en-
vironments with essentially the same e�ectiveness as if all
data were at one site. However, the results depended on the
existence of a training collection which has similar coverage
of subject matters and terms as the collection of databases
to be searched. In the Internet environment where data are
highly heterogeneous, it is unclear whether such a training
collection can in fact be constructed. Even if such a collec-
tion can be constructed, the storage penalty could be very
high in order to accommodate the heterogeneity. In [31],
it was shown that by properly clustering documents it was
possible to retrieve documents in distributed environments
with essentially the same e�ectiveness as in a centralized en-
vironment. However, in the Internet environment, it is not
clear whether it is feasible to cluster large collections and to
perform re-clustering for dynamic changes. Our technique
does not require any clustering of documents.
Please see [23] for a more comprehensive review of other

work in the metasearch engine and distributed information
retrieval area.

3. A FRAMEWORK FOR DATABASE SE-
LECTION AND COLLECTION FUSION

A query in this paper is simply a set of words submit-
ted by a user. It is transformed into a vector of terms with
weights [25], where a term is essentially a content word and
the dimension of the vector is the number of all distinct
terms. When a term appears in a query, the component
(i.e., term weight) of the query vector corresponding to the
term is positive; if it is absent, the weight is zero. A doc-
ument is similarly transformed into a vector with weights.
The weight of a term in a query (document) is usually com-
puted based on the term frequency (tf) of the term in the
query (document) and the document frequency (df) of the
term [25, 34]. The weight factor based on the tf information
is the tf weight and the weight based on the df information is
the idf weight. The similarity between a query and a docu-
ment can be measured by the dot product of their respective
vectors. Often, the dot product is divided by the product
of the lengths of the two vectors to normalize the similarity
between 0 and 1. The similarity function with such a nor-
malization is known as the Cosine function [25, 34]. When
the idf weight of each term is computed based on the global
df of the term (i.e., the number of documents containing
the term across all databases), the computed similarities are
global similarities. Note that if there are no or little overlap
among local databases, the sum of local dfs of a term in
all local databases can be used as an approximation of the
global df of the term. If there are serious overlaps among
local databases, then a sampling technique such as that in
[3] can be extended to estimate the global df of a term.

Example 1. Let q = (q1; :::; qn) be a query, where qi is
the tf weight of term ti in q. Let gidfi be the global idf weight
of ti. Then the query vector is q

0 = (q1 �gidf1; :::; qn �gidfn).
Let d = (d1; :::; dn) be a document vector, where di is the
tf weight of ti in d. Then di=jdj is the normalized weight of

388



ti in d, where jdj is the length of d. Based on the Cosine
similarity function, the global similarity between query q
and document d is:

sim(q; d) =

Pn

i=1 qi � gidfi � di

jq0j � jdj

=
�
q1 � gidf1 �

d1
jdj

+ ::: + qn � gidfn �
dn
jdj

�
=jq0j (1)

In this section, we review a framework for database selec-
tion and collection fusion. This framework was �rst intro-
duced in [32, 35]. Suppose a user is interested in retriev-
ing the m most similar documents for a query q from N
databases D1; D2; : : : ; DN , where m is any positive integer.
This framework can be summarized into one de�nition on
optimal database ranking, a necessary and suÆcient condi-
tion for ranking databases optimally and an algorithm for
integrated database selection and collection fusion based on
ranked databases.

Definition 1. A set of N databases is said to be opti-
mally ranked in the order [D1; D2; :::; DN ] with respect to a
given query q if for any positive integer m, there exists a k
such that D1; D2; :::; Dk contain the m most similar docu-
ments and each Di, 1 � i � k, contains at least one of the
m most similar documents.

Intuitively, the ordering is optimal because whenever the
m most similar documents to the query are desired, it is
suÆcient to examine the �rst k databases. Note that the
ordering of the databases depends on the query q. For ease
of presentation, we shall assume that all similarities of the
documents with the query are distinct so that the set of the
m most similar documents to the query is unique.

Proposition 1. [33] Databases D1; D2; :::; DN are opti-
mally ranked in the order [D1; D2; :::; DN ] with respect to a
given query q if and only if msim(q;D1) > msim(q;D2) >
::: > msim(q;DN ), where msim(q;Di) is the global similar-
ity of the most similar document in database Di with the
query q.

Example 2. Consider three databases D1; D2 and D3. If
the global similarities of the most similar documents in the
databases D1; D2 and D3 to a given query are 0.6, 0.75 and
0.5, respectively. Then, the databases should be ranked in
the order [D2; D1; D3] for the query.

If not all similarities of the documents with the query
are distinct, Proposition 1 remains essentially true (need to
change all > to �) but the optimal order may no longer
be unique. In this case, if msim(q;D1) � msim(q;D2) �
::: � msim(q;DN ), then for every positive integer m, there
exists a k such that D1; D2; :::; Dk contain one set of m doc-
uments that have the highest similarities with q among all
documents and each Di, 1 � i � k, contains at least one
document in the set. It is possible that a document not in
the set has the same similarity as some documents in the
set.
Based on the optimal order of the databases [D1; : : : ; DN ],

an algorithm, known as OptDocRetrv, was developed to

perform database selection and collection fusion [35, 33].
This algorithm is sketched as follows. Suppose the �rst
s databases have been selected (s is 2 initially). Each of
these selected search engines returns the actual global simi-
larity of the most similar document to the metasearch engine
which computes the minimum, denote min sim, of these s
values. Each of the s search engines then returns to the
metasearch engine those documents whose global similar-
ities are greater than or equal to min sim. Note that at
most m documents from each search engine need to be re-
turned to the metasearch engine. If m or more documents
have been returned from the s search engines, then they
are sorted in descending order of similarity and the �rst m
documents are returned to the user. Otherwise, the next
database in the optimal order will be selected and the above
process is repeated until at least a total m documents are
returned to the user.
Note that in the above algorithm, collection fusion is based

on the actual global similarities of documents. It has been
shown [33] that if the databases are ranked optimally, then
algorithm OptDocRetrv will guarantee the retrieval of all the
m desired documents.
In order to apply this framework in practice, the follow-

ing two problems must be solved. First, we need to �gure
out how to obtain from any local database those documents
whose global similarities with a given query are greater than
or equal to a given threshold (e.g., the min sim in each it-
eration of OptDocRetrv). Note that local search engines
retrieve documents based on local similarity functions and
term statistics that may result in the local similarity of a
document being di�erent from the global similarity of the
document. This problem has been addressed in [20, 32] and
will not be discussed further in this paper. Second, Propo-
sition 1 cannot be used as is because we cannot a�ord to
search each database and obtain the global similarity of its
most similar document. Instead, for each database, we need
to estimate the required similarity. In [33, 35], an esti-
mation method that uses two types of database representa-
tives was proposed. There is a global representative for all
databases and it stores the global df for each term in these
databases. There is also a separate representative for each
database and it stores two pieces of information for each
term. This estimation method has a time complexity that
is linear in terms of the number of terms in a query. How-
ever, the query needs to be compared with each database
representative. Thus if the metasearch engine has a large
number of databases, this method does not scale very well
in terms of computation eÆciency and storage space.

4. A NEW DATABASE RANKING METHOD
In this section, we propose our new method for database

selection based on the framework described in Section 3. A
key step is to rank databases according to the global simi-
larity of the most similar document in each database. Pre-
vious methods tried to estimate the similarity of the most
similar document in each database directly. A substantial
amount of information about each database is needed to en-
able accurate estimation. The new method takes a di�erent
approach. Instead of using the similarity of the most similar
document to rank databases, we rank the databases based

389



on a di�erent measure. This new method has two appealing
features. First, the measure can be obtained using less in-
formation than estimating the similarity of the most similar
document. Our novel integrated representative makes ob-
taining the measure highly scalable. Second, the ranking of
databases based on the new measure matches very well with
that based on the similarity of the most similar document
as indicated by our experimental results to be reported in
Section 5.

4.1 The New Ranking Measure
Consider a term ti and a local database Dj . Let mnwi;j

and anwi;j be the maximum normalized weight and the av-
erage normalized weight of ti in Dj , respectively. mnwi;j

is de�ned as follows. First, if d = (d1; :::; di; :::; dn) is a
document in Dj , where di is the weight of term ti, then
di=jdj is the normalized weight of ti in d, where jdj is the
length of d. Next, mnwi;j is the maximum of the normal-
ized weights of ti in all documents in database Dj , that is,

mnwi;j = max
d2Dj

n di
jdj

o
. Similarly, anwi;j is simply the av-

erage of the normalized weights of ti over all documents in
Dj , including documents not having term ti. Let gidfi be
the global inverse document frequency weight of ti.
Consider a given user query q. Suppose the query vector of

q is q0 = (q1�gidf1; : : : ; qn�gidfn) (see Example 1). Then the
global similarity of the most similar document of database
Dj with respect to q can be estimated by [33]:

max
1�i�n

n
qi �gidfi �mnwi;j +

nX
k=1
k 6=i

qk �gidfk �anwk;j

o
=jq0j (2)

By comparing Formula (1) and Formula (2), the intuition
for having this estimate can be described as follows. The
most similar document in a database is likely to have the
maximum normalized weight on one of the query terms, say
term ti. This yields the �rst half of the above expression
within the braces. For each of the other query terms, the
document takes the average normalized value. This yields
the second half. Then, the maximum is taken over all i,
since the most similar document may have the maximum
normalized weight of any one of the n query terms. Nor-
malization by the query norm, jq0j, yields a value less than
or equal to 1. We shall drop jq0j for ease of presentation.
This will not have any impact as the relative similarity val-
ues of the most similar documents of the di�erent databases
are not changed.
Through a large number of experiments, we observed that

the maximum normalized weight of a term is typically much
larger than the average normalized weight of the term as the
latter is computed over all documents including those not
containing the term. This feature implies that in formula
(2), if all query terms have the same tf weight (a reasonable
assumption as in a typical query, each term appears once),

gidfi � mnwi;j is likely to dominate
nX

k=1; k 6=i

gidfk � anwk;j ,

especially when the number of terms, n, in a query is small
(which is typically true in the Internet environment [11, 13]).
In other words, whether database Dj is going to be ranked

high (i.e., whether it's going to have a large similarity of the
most similar document) with respect to a given query q is

largely determined by the value of max
1�i�n

n
qi�gidfi�mnwi;j

o
.

The above discussion is summarized below. For a given
term ti and database Dj , let ami;j = gidfi �mnwi;j be the
adjusted maximum normalized weight of term ti in Dj . Let
ti; i = 1; :::; k, be the k terms in a query q. We de�ne the
ranking score (or rs for short) of database Dj with respect
to q as follows:

rs(q;Dj) = max
1�i�k

fqi � ami;jg (3)

The ranking score de�ned above will be our new measure
to rank databases. Note that the above formula has a lin-
ear time complexity in terms of the number of terms in
the query. In the rest of the paper, we will attempt to es-
tablish, by both theory and experimental results, that by
ranking databases based on their ranking scores for short
queries (typical of Internet queries [11, 13]), the ranking is
very close to the optimal ranking based on the similarity of
the most similar document in each database.

4.2 Integrated Representative of Databases
In order to compute the ranking score of a database with

respect to any given query, the adjusted maximum normal-
ized weight of each term in the database needs to be obtained
and stored. If all documents in a database are accessible,
then the needed statistical information can be easily ob-
tained. There are several situations in which the documents
in a database can be accessible. First, the database is un-
der the control of the developer of the metasearch engine
such as in the case of an Intranet environment. Second, the
documents can be independently obtained. For example, the
search engine at www.binghamton.edu/search/ is for search-
ing all Web pages at Binghamton University. But these Web
pages can also be independently obtained by using a Web
spider (robot) starting with the home page of the univer-
sity (www.binghamton.edu). Third, a local search engine is
cooperative. For example, in metasearch engine NCSTRL
(Networked Computer Science Technical Reference Library,
cs-tr.cs.cornell.edu), all local databases must sign up to join
the metasearch engine. In this case, the metasearch en-
gine may simply request/require each local search engine to
provide the statistical information needed for database se-
lection. Clearly, there will be cases where the documents
of a database cannot be independently obtained and a local
search engine is un-cooperative. In these cases, a technique
known as query sampling [5] could be adopted to estimate
the needed statistics. For the rest of this this paper, we as-
sume that the adjusted maximum normalized weights have
already been obtained.
If we follow the example of existing approaches, we would

create a separate database representative for each database.
In this case, the representative for database D would contain
the adjusted maximum normalized weight for each term in
D. When a query is received by the metasearch engine, the
query information and the representative of each database
will be used to compute the ranking score of each database.
After the databases are ranked, the OptDocRetrv algo-

390



rithm reviewed in Section 3 can be used to select databases
and retrieve documents.
The above database representative stores only one piece

of information per term and is already more scalable than
most existing database selection approaches (e.g., [4, 8, 17,
21]) in terms of the storage space required. For metasearch
engines that have up to a few hundreds of local databases,
we probably can a�ord to have a separate representative
for each database and store all of them in the metasearch
engine. However, if our goal is to build a metasearch engine
that may have hundreds of thousands of local search engines
so that the entire Web can be potentially searched by the
metasearch engine, then it may not be feasible to have a
separate representative for each search engine. Computing
hundreds of thousands of ranking scores for each query is
very time consuming. Our solution to this problem is to
create a novel integrated representative for all databases.
For a given positive integer r and term ti, let LAM(ti; r)

contain the r largest ami;j 's over all Dj 's. In other words,
LAM(ti; r) contains only the r largest adjusted maximum
normalized weights of ti across all local databases. The inte-
grated representative that we propose for all local databases
is as follows. For each term ti, a set of up to r pairs of the for-
mat (didi;j ; ami;j) is kept in the integrated representative,
where ami;j 2 LAM(ti; r) and didi;j is the identi�er of the
database having ami;j . Thus, for each term, the r largest
adjusted maximum normalized weights and their site ids are
stored. The idea is to store only the information associated
with the most important databases for each potential query
term.
When evaluating a query q using the integrated database

representative, we compute the ranking scores for only those
databases whose id appears in at least one LAM(ti; r), where
ti is a query term. Thus, for a query having k terms, at most
k � r ranking scores are computed. This is independent of
the number of databases. In the Internet environment, k is
usually very small (k = 2.2 on the average [13]). The value
of r is also a small constant (see next paragraph). As a
result, our proposed method is highly scalable in terms of
computation.
One way to determine the value r is as follows. If the

metasearch engine is designed to search no more than u
search engines for any given query (a small u, say 20, will
be suÆcient for most users if relevant search engines can
be selected), then r can be set to u. The above integrated
representative can scale to virtually unlimited number of
local databases in terms of storage. The reason is as fol-
lows. First, suppose a rough bound of the number of distinct
terms, say M = 10 millions, exists regardless of the number
of local databases participating in the metasearch engine.
Next, for each term, only a small constant number (2 � r) of
quantities (r largest adjusted maximum normalized weights
and r database identi�ers) are stored in the representative.
Therefore, the total size of this representative is bounded by
(10 +4 � 2 � r) �M bytes, assuming that each term occupies
10 bytes on the average and each quantity occupies 4 bytes.
When r = 20 and M = 10; 000; 000, (10 + 4 � 2 � r) �M =
1.7 GB, well within the memory capacity of a well equipped
server. In practice, there may not be a clear bound to the
number of distinct terms and there may be more than M

terms. However, the scalability of this approach is still very
good as it stores only a small constant number of quantities
for each term regardless of how many databases may contain
the term. In contrast, in non-integrated representatives, the
number of pieces of information stored for each term is a
constant factor of the number of databases. In summary,
our integrated representative approach is highly scalable in
both computation and storage.
Intuitively, a database selection method is e�ective if the

most desired documents are contained in a relatively small
number of databases selected by this method. In Section 5,
we will conduct experiments to evaluate the e�ectiveness of
our method based on more rigorous measures. The propo-
sition below shows that for any single-term query (which
constitutes about 30% of all Internet queries [11]), the lo-
cal databases selected by the integrated representative are
guaranteed to contain the m most similar documents in all
databases with respect to the query when m � r.

Proposition 2. For any single-term query, if the num-
ber of documents desired by the user, m, is less than or
equal to r | the number of adjusted maximum normalized
weights stored in the integrated representative for the query
term | then all the m most similar documents to the query
are contained in the r local databases whose adjusted max-
imum normalized weights for the query term are stored in
the integrated representative.

Proof: Note that the maximum normalized weight of the
(single) query term in each database is also the similarity
of the most similar document in the database with respect
to the query. This means that for any single term query, if
we rank the databases in descending order of the maximum
normalized weights of the term, the databases will be ranked
optimally for the query. Note that the order based on the
maximum normalized weights will be identical to that based
on the adjusted maximum normalized weights as the two
types of weights di�er only by the gidf weight of the term.
However, for a single term, the gidf weight is a constant
for all documents. Since the r adjusted maximum normal-
ized weights stored in the integrated representative for the
query term are the largest, the corresponding r databases
will be ranked ahead of other databases. Meanwhile, the m
most similar documents with respect to the query will be
contained in no more than m databases. Since r � m, the
r databases must contain the m most similar documents to
the query.
Please note that the gidf weights are useful only when

there are multiple terms in a query.
The above estimation is based on the assumption that

terms are independently distributed. This assumption is not
entirely realistic. For example, the two terms \computer"
and \algorithm" may appear together more frequently in
documents in a database than that expected if the two terms
were independently distributed in the database. One way
to remedy this assumption is to recognize dependent adja-
cent terms and treat them as new terms. This is similar
to recognizing phrases. Due to space limitation, discussions
on recognizing dependent adjacent terms and incorporating
them into the above approach will not be provided in this
paper (interested readers please see [29]).

391



5. EXPERIMENTAL RESULTS
In this section, we report some experimental results. 221

databases are used in our experiments. These databases are
obtained from �ve TREC document collections created by
NIST (National Institute of Standards and Technology of
the US). The �ve collections are CR (Congressional Record
of the 103rd Congress), FR (Federal Register 1994), FT (ar-
ticles in Financial Times from 1992 to 1994), FBIS (articles
via Foreign Broadcast Information Service) and LAT (ran-
domly selected articles from 1989 & 1990 in Los Angeles
Times). These collections are partitioned into databases
of various sizes ranging from 222 documents (about 2 MB)
to 7,760 documents (about 20 MB). A total of more than
558,000 documents (� 2 GB in size) are in these databases.
There are slightly over 1 million distinct terms in these
databases.
1,000 Internet queries by real users are used in our ex-

periments. These queries were collected at Stanford Univer-
sity for evaluating the performance of the gGlOSS database
selection method [8]. The 1,000 queries used in our ex-
periments are the �rst 1,000 queries, each having no more
than 6 terms, from among about 6,600 queries available.
Among the 1,000 queries, 2 queries have no terms (after
stopwords are removed), 343 queries are single-term queries,
323 queries have two terms, 185 queries have three terms,
94 queries have four terms, 29 queries have 5 terms and 24
queries have six terms. The query length distribution of the
1,000 test queries matches very well with that of over 50,000
queries submitted to the Excite search engine and analyzed
in [11]. Another observation made in [11] is that about 97%
of all Internet queries have no more than 6 terms. TREC
collections come with about 400 queries. The reason that
we did not use TREC queries is that their average length is
much longer than that of typical Internet queries.
The performance measures of a method to search for the

m most similar documents in a set of databases are given as
follows. The �rst two measures indicate e�ectiveness (qual-
ity) of retrieval while the last two measures reect eÆciency
of retrieval.

1. The percentage of correctly identi�ed databases, that
is, the ratio of the number of databases which contain
one or more of the m most similar documents and are
searched by the method over the number of databases
which contain one or more of the m most similar doc-
uments. This percentage is denoted cor iden db.

2. The percentage of correctly identi�ed documents, that
is, the ratio of the number of documents retrieved
among the m most similar documents over m. This
percentage is denoted by cor iden doc.

3. The database search e�ort is the ratio of the number of
databases searched by the algorithm over the number
of databases which contain one or more of the m most
similar documents. This ratio is denoted by db e�ort.
The ratio is usually more than 1.

4. The document search e�ort is the ratio of the number
of documents received by the metasearch engine over
m. This is a measure of the transmission cost. This
ratio is denoted by doc e�ort.

For a given set of queries, the measures reported in this
paper are averaged over all queries in the set that contain at
least one real term. In all experiments, r = m will be used,
wherem is the number of documents desired by the user and
r is the number of adjusted maximum normalized weights
stored in the integrated representative for each term.
We also experimented with the following parameter �.

The original algorithm OptDocRetrv terminates when at least
m documents have been returned to the metasearch engine
by local search engines (see Section 3). We use � to control
when to terminate algorithm OptDocRetrv. Speci�cally, �
could be chosen to be greater than m | the number of de-
sired documents. For example, when � = 2m, the algorithm
will not stop until at least 2m documents have been returned
to the metasearch engine by local search engines. From these
2m (or more) documents, the most similar m documents are
presented to the user. By experimenting with di�erent �,
we would like to see whether more desired documents can
be retrieved when larger � values are used and what are the
trade-o�s.
The experimental results are shown in Figures 1 to 4.

0.75

0.8

0.85

0.9

0.95

1

2 4 6 8 10 12 14 16 18 20

m

cor iden db

beta = 1:0m

3

3 3
3 3 3 3 3 3 3

3

beta = 1:5m

+
+ + + + + + + + +

+
beta = 2:0m

2

2 2
2 2 2 2 2 2 2

2

Figure 1: Result for cor iden db

The experimental results can be summarized as follows.

1. When � = m, as m varies from 2 to 20, on the av-
erage, 86.4% to 92.3% of correct databases are iden-
ti�ed and 86.4% to 92.7% of correct documents are
identi�ed while the number of databases searched is
no more than the number of databases containing all
desired documents and the number of documents re-
trieved is only at most 1.1% beyond the desired num-
ber of documents. The performance tends to improve
for all measures when m increases.

To appreciate the good performance of this method,
let us consider the case when m = 2. The user wants
to �nd the 2 most similar documents from more than
558,000 documents stored in 221 databases for each
query. Our method searches approximately only 2
databases and transmits approximately only 2 docu-
ments to the metasearch engine for each query on the
average. Yet 86.4% of the desired documents are found
by our method.

392



0.75

0.8

0.85

0.9

0.95

1

2 4 6 8 10 12 14 16 18 20

m

cor iden doc

beta = 1:0m
3

3 3
3 3 3 3 3 3 3

3

beta = 1:5m

+

+ + + + + + + + +

+
beta = 2:0m

2

2
2 2 2 2 2 2 2 2

2

Figure 2: Result for cor iden doc

2. When � increases, more correct databases and doc-
uments can be identi�ed at the expense of search-
ing more databases and retrieving more documents.
Speci�cally, comparing with the performance of � =
m, when � = 1:5m, approximately 2 more percent-
age of correct databases and documents can be iden-
ti�ed on the average while searching approximately
27% more databases and retrieving approximately 45%
more documents. When � = 2m, approximately 3.5
more percentage of correct databases and documents
can be identi�ed on the average while searching ap-
proximately 50% more databases and retrieving ap-
proximately 80% more documents.

For applications where �nding a high percentage of
correct documents is essential, searching a small num-
ber of additional databases and retrieving a small num-
ber of documents may be worthwhile.

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16 18 20

m

db e�ort

beta = 1:0m

3 3 3 3 3 3 3 3 3 3

3

beta = 1:5m

+ + + + + + + + + +

+
beta = 2:0m

2 2 2 2 2 2 2 2 2 2

2

Figure 3: Result for db e�ort

3. From Figure 3, we observe that db e�ort can can be
less than 1. This means that the average number of
databases searched can be less than the number of
databases containing all the most similar documents.
The reason of this phenomenon is explained as follows.
Note that databases are ranked based on their rank-

ing scores (see Formula (3)). Since the ranking may be
imperfect, the databases may not be ranked optimally.
As a result, a non-desired database (i.e., it does not
contain one of the m most similar documents), say D0,
may be ranked ahead of some desired database(s). Let
d0 be most similar document in D0 with actual global
similarity s0. According to algorithm OptDocRetrv,
whenD0 is encountered, documents from all previously
examined databases (including D0) that have similar-
ities � s0 will be returned to the metasearch engine.
Since d0 is not a desired document, its similarity s0 can
be rather low and as a result, it is possible to �ndm or
more documents from previously examined databases
with similarities � s0. This causes the retrieval al-
gorithm to terminate prematurely without searching
other databases (including desired databases ranked
behind D0). If all the desired databases are ranked
ahead of all other databases, then db e�ort will be at
least 1.

4. From Figure 4, we observe that when � = 2m, doc e�ort
is less than 2. This is due to the fact that for a number
of queries, very few documents in the entire collection
have positive similarities with these queries. In gen-
eral, if for each query there are at least � documents
with positive similarities in the searched databases,
then we should have doc effort � 2.

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16 18 20

m

doc e�ort

beta = 1:0m

3 3 3 3 3 3 3 3 3 3

3

beta = 1:5m

+
+ + + + + + + + +

+
beta = 2:0m

2
2 2 2 2 2 2 2 2 2

2

Figure 4: Result for doc e�ort

The above experimental results indicate that our database
selection and document retrieval method can achieve close
to the ideal performance as though all documents were at
one site and in one database.
From Proposition 2 we know that our proposed method

will guarantee the correct retrieval of the m most similar
documents for single-term queries if m � r. Our experi-
mental results indicate that our method performs very well
even for multi-term queries. In general, our method tends to
perform better for shorter queries. Table 1 lists the results
for queries of di�erent lengths (i.e., the number of terms in
a query) when m = 10 and � = m. The results for other
cases are very similar. The total number of queries in Table
1 is 885 instead of 1,000. The reason is that 115 of the orig-

393



inal 1,000 queries do not share any common terms with the
databases used in our experiments.

query

length

#of

queries
cor iden db cor iden doc db effort doc effort

1 235 1.00 1.00 1.00 1.00

2 321 0.94 0.94 0.99 1.00

3 183 0.85 0.85 0.96 1.01

4 93 0.80 0.81 0.95 1.01

5 29 0.71 0.71 0.88 1.00

6 24 0.74 0.75 0.93 1.05

Table 1: Results for Queries of Di�erent Lengths

when m = � = 10

6. A PROTOTYPE SYSTEM
Based on the metasearch algorithm we described in the

previous sections, we have implemented a demonstration
prototype metasearch engine called CSams (Computer Sci-
ence Academic MetaSearch engine; URL:
http://slate.cs.binghamton.edu:8080/CSams/). The system
has 104 databases with each containing Web pages from
a Computer Science department in a US univerity. These
Web pages are fetched using a Web spider (robot) we imple-
mented. Duplicate Web pages are identi�ed and removed.
Each database is treated like a search engine in the demo
system. From the Web interface, the user can enter search
terms. The user can also indicate how many documents
are desired, whether or not you want search statistics (e.g.,
cor iden db and cor iden doc) to be reported, whether or
not you want the combined-term method (not discussed in
this paper) be used. After a query is processed, the result-
ing page will display the desired number of most similar
documents found by our metasearch algorithm. For each
retrieved document, its rank, document id, corresponding
database id, global similarity and the URL will be displayed.
In addition, when the option \Display Search Statistics" is
selected, some rank numbers will be displayed in bold red
color but some rank numbers will not have any color. This
is explained as follows. Suppose a user wants to retrieve
the 10 most similar web pages (across all databases). A
number in red indicates that the corresponding web page is
indeed among the actual 10 most similar web pages to the
query based on the ideal ranking. Ideal ranking is obtained
based on that all documents are placed into a single collec-
tion and every document in the collection can be ranked.
When a query is received by CSams and when the option
\Display Search Statistics" is selected, two evaluations are
actually performed. The �rst is based on the metasearch en-
gine approach (i.e., database selection and collection fusion
are performed) and the second is based on the ideal ranking.
The e�ectiveness of a metasearch engine is good if the rank
numbers of all or nearly all returned documents are red.

7. CONCLUDING REMARKS
In this paper, we proposed a new method to solve the

database selection problem in a metasearch engine environ-
ment. The new approach signi�cantly improved the scala-
bility of previous methods in both computation and space.
Speci�cally, the new method uses an integrated database
representative that can on one hand scale to unlimited num-

ber of databases and on the other hand permits eÆcient se-
lection of promising databases for any given query. Experi-
mental results indicate that very good retrieval accuracy can
be achieved by the proposed solution. A prototype system
based on the proposed method has been implemented (see
http://slate.cs.binghamton.edu:8080/CSams/).
The retrieval accuracy can be further improved by taking

into consideration certain dependencies among terms into
our solution. For example, we can recognize dependent ad-
jacent term pairs and treat each such a pair of terms as a
new term. To incorporate the new terms into our solution,
we need to compute and store the r largest adjusted maxi-
mum normalized weights for each new term in the integrated
database representative. Our experiments [29] indicate that,
with the new terms taken into account, when the number
of desired documents m varies from 2 to 20, on the aver-
age, 95.4% to 97.7% of correct databases are identi�ed and
95.3% to 97.6% of correct documents are identi�ed. The
improvements over not considering the new terms vary from
5.3 to 8.8 percentage points for cor iden db and from 5.2 to
8.9 percentage points for cor iden doc.
One of the issues we are currently studying is how to adopt

the query sampling technique proposed in [5] to estimate
the adjusted maximum normalized weight of a term from
an un-cooperative search engine. A pilot study has been
carried out to estimate a related statistic (i.e., the maximum
normalized weight) and preliminary results indicate that the
technique is promising [18].

Acknowledgement: We would like to thank L. Gravano
and H. Garcia-Molina for providing us with the set of Inter-
net queries used in the experiments.

8. REFERENCES
[1] C. Baumgarten. A Probabilistic Model for Distributed

Information Retrieval. ACM SIGIR, 1997.

[2] C. Baumgarten. A Probabilistic solution to the
selection and fusion problem in distributed
Information Retrieval, ACM SIGIR Conference, 1999.

[3] K. Bharat, and A. Broder. A Technique for Measuring
the Relative Size and Overlap of Public Web Search
Engines. 7th WWW Conference, April 1998.

[4] J. Callan, Z. Lu, and W. Croft. Searching Distributed
Collections with Inference Networks. ACM SIGIR,
1995.

[5] J. Callan, M. Connell, and A. Du. Automatic
Discovery of Language Models for Text Databases.
ACM SIGMOD, 1999.

[6] D. Dreilinger, and A. Howe. Experiences with Selecting
Search Engines Using Metasearch. ACM TOIS, 15(3),
July 1997, pp. 195-222.

[7] Y. Fan, and S. Gauch. Adaptive Agents for
Information Gathering from Multiple, Distributed
Information Sources. 1999 AAAI Symposium on
Intelligent Agents in Cyberspace.

[8] L. Gravano, and H. Garcia-Molina. Generalizing
GlOSS to Vector-Space Databases and Broker
Hierarchies. VLDB, 1995.

[9] L. Gravano, and H. Garcia-Molina. Merging Ranks
from Heterogeneous Internet Sources. VLDB, 1997.

394



[10] D. Hawking, and P. Thistlewaite. Methods for
Information Server Selection. ACM Transactions on
Information Systems, 17(1), January 1999.

[11] B. Jansen, A. Spink, J. Bateman, and T. Saracevic.
Real Life Information Retrieval: A Study of User
Queries on the Web. ACM SIGIR Forum, 32:1, 1998.

[12] T. Kirk, A. Levy, Y. Sagiv, and D. Srivastava. The
Information Manifold. AAAI Spring Symposium on
Information Gathering in Distributed Heterogeneous
Environments. 1995.

[13] S. Kirsch. The Future of Internet Search: Infoseek's
Experiences Searching the Internet. ACM SIGIR
Forum, 32:2, pp. 3-7, 1998.

[14] S. Lawrence, and C. Lee Giles. Searching the World
Wide Web. Science, 280, April 1998.

[15] S. Lawrence, and C. Lee Giles. Inquirus, the NECi
Meta Search Engine. Seventh International World
Wide Web Conference, 1998.

[16] S. Lawrence, and C. Lee Giles. Accessibility of
Information on the Web. Nature, 400, July 1999.

[17] K. Liu, C. Yu, W. Meng, W. Wu, and N. Rishe. A
Statistical Method for Estimating the Usefulness of
Text Databases. IEEE TKDE (to appear).

[18] K. Liu, C. Yu, and W. Meng. Discovering the
Representative of a Search Engine. Technical Report,
DePaul University, 2000.

[19] U. Manber, and P. Bigot. The Search Broker.
USENIX Symposium on Internet Technologies and
Systems, 1997.

[20] W. Meng, K. Liu, C. Yu, X. Wang, Y. Chang, N.
Rishe. Determine Text Databases to Search in the
Internet. VLDB, 1998.

[21] W. Meng, K. Liu, C. Yu, W. Wu, and N. Rishe.
Estimating the Usefulness of Search Engines. ICDE,
1999.

[22] W. Meng, C. Yu, and K. Liu. Detection of
Heterogeneities in a Multiple Text Database
Environment. CoopIS, 1999.

[23] W. Meng, C. Yu, and K. Liu. Building E�ective and
EÆcient Metasearch Engines. Submitted to ACM
Computing Surveys (under revision).

[24] Resource Discovery in a Globally-Distributed Digital
Library. Working Group Report, 1999
(http://www.iei.pi.cnr.it/ DELOS/ NSF/
resourcediscovery.htm)

[25] G. Salton and M. McGill, Introduction to Modern
Information Retrieval. New York: McGraw-Hill, 1983.

[26] E. Selberg, and O. Etzioni. The MetaCrawler
Architecture for Resource Aggregation on the Web.
IEEE Expert, 1997.

[27] A. Sugiura, and O. Etzioni. Query Routing for Web
Search Engines: Architecture and Experiments.
WWW9 Conference, 2000.

[28] E. Voorhees, N. Gupta, and B. Johnson-Laird. The
Collection Fusion Problem. TREC-3, 1995.

[29] Z. Wu, W. Meng, C. Yu, and Z. Li. Towards a
Highly-Scalable and E�ective Metasearch Engine.
Technical Report, Dept. of CS, SUNY at Binghamton,
2001.

[30] J. Xu, and J. Callan. E�ective Retrieval with
Distributed Collections. ACM SIGIR Conference,
pp. 112-120, Melbourne, Australia, 1998.

[31] J. Xu and B. Croft. Cluster-based Language Models for
Distributed Retrieval, ACM SIGIR, 1999.

[32] C. Yu, K. Liu, W. Wu, W. Meng, and N. Rishe.
Finding the Most Similar Documents across Multiple
Text Databases. IEEE ADL'99, 1999.

[33] C. Yu, K. Liu, W. Meng, Z. Wu, and N. Rishe. A
Methodology for Retrieving Text Documents from
Multiple Databases. IEEE Transactions on Knowledge
and Data Engineering (to appear).

[34] C. Yu, and W. Meng. Principles of Database Query
Processing for Advanced Applications. Morgan
Kaufmann Publishers, San Francisco, 1998.

[35] C. Yu, W. Meng, K. Liu, W. Wu, and N. Rishe.
EÆcient and E�ective Metasearch for a Large Number
of Text Databases. CIKM'99, 1999.

[36] C. Yu, W. Meng, K. Liu, W. Wu, and N. Rishe.
EÆcient and E�ective Metasearch for Text Databases
Incorporating Linkages among Documents. ACM
SIGMOD Conference, 2001 (to appear).

[37] B. Yuwono, and D. Lee. Server Ranking for
Distributed Text Resource Systems on the Internet.
DASFAA'97, 1997.

395


