
The Design and Implementation of the Redland RDF
Application Framework

David Beckett
Institute for Learning and Research Technology

University of Bristol, 8-10 Berkeley Square, Bristol, BS8 1HH, UK

ABSTRACT
Resource Description Framework (RDF) is a general descrip-
tion technology that can be applied to many application do-
mains. Redland is a 
exible and eÆcient implementation
of RDF that complements this power and provides high-
level interfaces allowing instances of the model to be stored,
queried and manipulated in C, Perl, Python, Tcl and other
languages. Redland is implemented using an object-based
API, providing several of the implementation classes as mod-
ules which can be added, removed or replaced to allow di�er-
ent functionality or application-speci�c optimisations. The
framework provides the core technology for developing new
RDF applications, experimenting with implementation tech-
niques, APIs and representation issues.

Keywords
RDF, metadata, application framework

1. INTRODUCTION
RDF[1] is a general purpose technology that enables the

description of resources on the web using URIs for iden-
tifying the resources and URIs for the properties that de-
scribe the resources. This design means that there is a large
range of applications that can use this generality customised
for their target domain. RDF and RDF Schemas[2] are de-
signed to work across domains and provide common facilities
for describing resources, collecting them in containers and
maintaining type and class relationships. The RDF speci�-
cations make very few restrictions on the kind of information
that can be recorded in order to provide an open description
technology for the web and thus the software systems that
implement them need to be very 
exible.

2. REQUIREMENTS FOR AN RDF
APPLICATION FRAMEWORK

Applications of a general description standard such as
RDF have a wide range of needs and ways that they would

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

use the technology although the information is processed,
manipulated and stored using the same RDF model. Thus
there may be substantial di�erences between application re-
quirements of an RDF system, and any one implementation
of such a system. In order that this interaction was made
more eÆcient, a way was needed of optimising how the RDF
system internals worked, depending on the application. This
led to the need for more than just an implementation of
RDF, but a framework around the RDF model that could
be 
exible enough to optimise for particular applications by
providing modules with di�erent implementations.
As of early 2000, the major deployed applications of RDF

were mostly either embedded inside products such as the
Mozilla [3] web browser or as separate systems like SiRPAC
[4] as used in the GINF project[5] and elsewhere. Mozilla
uses RDF extensively for representing the internal platform
data sources, as well as for con�guring the user interface.
This code in C++ is quite integral to Mozilla and diÆcult
to separate out in order to reuse, since it is optimised for
Mozilla's object and class systems. SiRPAC is a Java appli-
cation that grew from a parser into a more general applica-
tion from the GINF project. SiRPAC is easy to use in Java
applications but that is not the language used by most web
applications and hence not suitable for all uses.
The APIs provided by Mozilla, SiRPAC API and other

API proposals such as RADIX [6] share a core similarity in
the types of concepts that they present, although all of them
do so slightly di�erently. See [7] for a more detailed review
made in early April 2000.
There were other well-deployed applications and services

that used RDF internally such as rpm2html / rpm�nd [8]
(and related tools) used extensively for indexing Linux RPMs,
and the UK Mirror Service [9] which uses RDF for mirror
and content description, however, these mostly use the tree-
based XML DOM interface in custom ways for their appli-
cation rather than present any general RDF interface. This
also means that they didn't use a full expression of the RDF
model or syntax and more speci�cally didn't have full RDF
parsers.
RDF applications on the web or applications that wanted

to have RDF support needed more open libraries that were
portable, easy to con�gure, build and integrate into the
application. This meant that there was a need for a self-
contained, complete and industrial-strength library for RDF
that could easily be used with existing applications, and had
good integration capacities via APIs in major languages.
RDF requires XML for the syntax and since XML is now

a family of technologies that need to be processed, this can

449



be somewhat of a barrier to handle while also dealing with
RDF, all in one application. A toolset that presented a
higher level interface at the semantic level above XML and
RDF syntax would allow applications to work in the con-
cepts of the RDF world rather than get stuck in the detail
of XML.
The RDF Schema [2] was only recently a Candidate Rec-

ommendation at the time Redland was begun. It was un-
clear if it required any new special API support or concepts
and if these new concepts were more generally useful. It was
useful to provide an implementation that could experiment
with these APIs and concepts in order to determine such
requirements.
These needs mean there was a requirement for a new sys-

tem implementing a high-level interface for the RDF model
that was designed to be portable, integrate with applications
written in many languages, be modular so parts could be re-
placed, provide hooks for research on RDF itself, have suÆ-
cient stable interfaces, take on board existing best practice,
using standard programming metaphors so that it could be
used in di�erent ways and be a solid and industrial-strength
implementation.

3. DETAILED DESIGN
The RDF model is de�ned in the RDF Model and Syn-

tax Speci�cation [1] and unfortunately there is not suÆcient
space for a full introduction to the model in this paper, but
such an introduction can be found in [10]. In the formal de-
scription, RDF consists of a collection of statements, which
contain three parts (also called a triple or tuple):

1. Subject { what the statement is about

2. Predicate or Property

3. Object { the value of the statement, which can be a
literal string

Each of the parts of the statement (except for literals) can
be identi�ed by an URI allowing statements to be written
about any resource with a URI. Predicates are also identi�ed
by URIs thus new descriptive properties can be de�ned on
the web, as well as describing things on the web.
Although the statement collection is the formal descrip-

tion, this can also be represented as a graph of nodes (sub-
jects) and arcs (predicates) pointing to other nodes (objects)
or literals and this is an easier way to think about RDF { it
is a web of statements.
Redland needed to represent all the concepts in the model

and some additional ones including an expression of the
collection of statements { called a model in Redland, af-
ter SiRPAC. The Mozilla RDF API also includes concepts
such as a DataSource which are similar to the Redland model
and represent a source of statements, and a Composite Data-
Source which contains a set of DataSources and allows op-
erations over them, as if they were one DataSource. Mozilla
and SiRPAC both have similar interfaces for de/serialising
models to and from a sequence of statements as well as
dealing with the RDF XML syntax parsing. SiRPAC has
additional facilities providing Java Interfaces and common
Java metaphors such as producer/consumer for RDF and
Enumeration. Both RDF systems query the model in the
same two ways { asking for matching statements, called
statement-centric, or dealing with the model in terms of a

graph and asking questions relative to a node or arc, called
node-centric. There was no other query language syntax de-
�ned or consensus how results would be returned from such
a syntax.
RDF needed to be stored in a way that accommodated

the general case but was eÆcient for the kinds of queries
that particular applications might need. This was an area of
research that might require several storage implementations
for di�erent purposes. The storage also needed ways to be
able to use existing systems such as relational databases.
This has been investigated previously in [11] without a single
database schema emerging unanimously as the best answer;
not that this was unexpected for such a general application.
It was expected that RDF would provide services deliv-

ered via the web. These services may be not be on the same
system as the application so support of remote RDF models
that were manipulated or queried via what might be called
narrow interfaces was required. For example, the only in-
terface might be a request / response query over the remote
model and the result would be a sequence of statements that
matched, these statements forming a model of their own, or
representing a sub-model of the remote one.
Conversely, on systems where it is eÆcient to represent

many models and sub-models in the same storage system,
the results of queries might be best represented as models
in the same storage. For example, if a relational database
is made visible as an RDF model, and a query is performed
over it, it is not necessary to create a new stream of state-
ments for the resulting model since the relational database
can eÆciently express this as a view on the queried model.
This gives the requirement for support of model to model
operations without the need for serialising them.
Applications of RDF that were being designed and devel-

oped at this time required support for provenance tracking.
This is expressible in the standard RDF model and it was
not clear at that time if it needed special API support, so
this became another potential issue for investigation.
In summary, the detailed requirements as derived from

the analysis of the model, existing and future application
requirements were:

� Statement / graph Arc

� Statement parts { Subject, Predicate, Objects / graph
Nodes

� Model, Aggregate Model

� Storage for Models in memory and persistently

� Parser for the XML syntax

� Streams of Statements for de/serialising models

� Lists of Statement parts for walking RDF graphs

� Querying with 
exibility on query language and how
the results are returned

� Interfaces for models with statement streams and model-
to-model

� Industrial strength and solid system

� Use existing best practice in APIs, interface and im-
plementation

450



� Modules providing di�erent implementations of func-
tionality

� Any support that may be needed for provenance track-
ing

4. DESIGN – PATTERNS AND
IMPLEMENTATION LANGUAGE

This section provides an outline of the design, concepts
and programming models that were used to meet the re-
quirements and the detailed design.

4.1 Layering
Redland implements the RDF model, however, this might

mean di�erent things to applications, which understand more
or less of the detail of the model. Some applications require
only certain parts of the functionality and want to do the
rest themselves while others want to use Redland as a closed
system. These issues are addressed partially by modules {
see Section 4.3. In general, though, Redland is part of a
layered system with the application at the higher layers, in
which Redland might provide multiple lower layers, layers
that the application could interface to. It might be useful to
provide, for example, a schema-checking model rather than
one with no validation. This is performed by layering in-
side Redland where the schema-checking model uses a lower
layer model implementation in order to provide this. Other
examples of higher layers that could be provided include
models providing associative or bi-directional properties for
application speci�c purposes, checking trust models, digital
signatures or with transaction support.
Redland was designed to cover approximately the lower

four layers of the building blocks of the diagram shown in
Figure 1, based on one by Berners-Lee [12].

URIs (Unicode)

XML Namespaces XML Schema

RDF SchemaRDF Model

Ontology Support XML
Dsig

Logic

Proof

KRDublin
CoreP3P

XML standards (XML, XML Base, XPath, XInclude)

Figure 1: Redland provides RDF building blocks.

4.2 Objects
The target languages for using Redland were C for use

in compiled applications and languages used in many web
applications including at least Perl and Python. This meant
that the design had to be appropriate for object-based (Py-
thon), non object-based languages (C) and ones that can do
both (Perl). The object model is a clean way to specify and
implement the design, especially with the requirement for

modules (see below) and could be called from non object-
based languages if done carefully. Note that full object-
orientation with inheritance is not proposed here since that
is very hard to express in languages like C but an object-
based API using objects, methods and polymorphism.
C++ was an alternative implementation language but it

has less support in interfacing to scripting languages, is used
in only some applications, and is rather complex. It does
provide powerful techniques and support for memory man-
agement, OO and libraries that could have been used but
some of these would have been diÆcult to express in non-
OO scripting languages. The choice of C and C++ and its
consequences on the implementation are discussed further
in Section 6.10.

4.3 Modules
The 
exible architecture required that there were parts of

the system that could have multiple implementations for the
same interface. It was also desirable to be able at some point
to potentially support dynamic loading of modules at run
time on demand or automatically by the system following a
speci�c application request. This suggested the use of the
factory pattern where modules can register/de-register with
factories at any time. The factory need not be visible at the
application level with wrappers around them made via the
object constructors.

4.4 Portability
Portability was a major requirement so the system had

to be written in C, since virtually all major languages have
interfaces to C and indeed they are mostly all written in it.
This unfortunately meant a lot of support that is provided
by some of the target languages had to be implemented in-
ternally. Redland uses C function naming conventions to
provide the routines for the constructor, copy constructor,
destructor functionality as well as the general methods.

4.5 Interfaces and Implementation
In languages like Java, there is a clean interface / imple-

mentation separation but using C this had to be emulated
by conventions. A Redland class is de�ned as a public C
typedef struct representing the class and its public interface
(constructor, etc., methods) de�ned in a header �le along
with any public or private types, enumerations or constants.
The actual class implementation de�nition (C struct that
the typedef refers to) and internal de�nitions are not ex-
posed to applications and are only available internally when
Redland is compiled. The implementation of the class is de-
�ned in a C source �le and can include private static func-
tions either for internal implementations or to satisfy part
of a factory API.

4.6 Class Initialisation and Termination
Classes may need to be initialised at load time by what

are generally called static or class initialiser code. Redland
classes may have a class initialiser / termination pair of func-
tions which must be called before any object in the class is
created, and after the last object has been freed. This is
needed for many classes but especially those that implement
modules which need to be registered at load time, so that
they are ready to use when the application code starts and
can be de-registered when the application terminates.

451



5. REDLAND ARCHITECTURE
This section provides a description of the architecture that

was used to implement the detailed design and requirements
using the design patterns.

5.1 Redland Classes
The requirements, design and language having been cho-

sen, the classes listed in Table 1 were de�ned for Redland
covering the required concepts and the support facilities
needed. These were strongly in
uenced by the SiRPAC Java
interface [13], although 
attened to reduce the number of
classes and extended for the classes that are provided inter-
nally by Java such as URI. At the time of writing (February
2001) the Query, WWW and Serialiser classes are not im-
plemented.

Redland Purpose

Class

Node RDF Model & Syntax graph nodes
Statement RDF Model & Syntax graph arcs

(statements, triples) [isa Resource]
Model Set of Statements usually held in a Storage
Storage Storage for Models (modular)
Stream Providing sequences of Statements from

Parsers, queries
Parser Syntax parsers delivering Stream of

Statements or writing to a Model (modular)
Serialiser* Serialises a model to a syntax (modular)
Query* Query adaptor classes for particular query

syntaxes (modular)
Iterator Enumerating lists (of Node) from queries
URI Provides URIs for Resources, Parsers, ...
WWW* Resolves URIs to get content from the web
World Redland environment startup/shutdown
Digest Content digests (modular)
Hash Key : Value maps with duplicates (modular)
List Provides support for lists in C

Table 1: Redland Classes

The classes are used and associated with each other as
shown in Figure 2. The support classes are used throughout
the rest of the classes as needed. The Stream classes are used
whenever a sequence of statements is accepted or generated
by the Model, Storage or Parser classes. The Model class
uses Stream for performing the serialising/de-serialising the
Model and returns lists of statements from queries. The
Parser class only uses it to provide a sequence of statements
as the result of a parse.
At the simplest level each Model object has a one-to-one

mapping to the Storage object that represents it. The func-
tionality for aggregate Models is present in the Model class
so that higher level Models can have sub-models and in that
case there is no 1-to-1 mapping to a Storage but the higher
level Model will have a set of sub-Models or some other re-
lationship. For example, a higher level Model representing
a remote information resource may not have a Storage but
use some other way to present the Model interface.

5.2 Modular Classes
Each of the modular classes has an internal factory that

allows the module implementations of the class to regis-
ter/deregister themselves. The factory creates these classes

Node Node Node

1−to−1

contains 1
(predicate)

has 0 or more
(statements)

Stream Parser

URI

Digest Hash

List

Iterator

Support Classes
(used throughout)

Model

Statement

Storage

contains 1
(subject)

contains 1
(object)

Query*

Serialiser*

WWW*

Figure 2: Redland Class Diagram

for the application via the constructor for the modular class.
The modules can have optional implementation of methods
for the factory so that the factory can either do the default
action itself or implement it another way.
The Digest class is provided to allow several message or

content digest algorithms to be used with some of the RDF
concepts in order to be used for applications like digital sig-
natures or computationally generating identi�ers from say,
literal strings. The digest classes provided were MD5 (al-
ways), RIPME160 and SHA1.
The Hash class abstracts Key : Value mapping (with du-

plicates) which can be used for many purposes including
storage of statements in persistent hashes and other inter-
nal uses. The implemented hashes were in-memory (always),
GNU DBM hash (optional) and versions of Berkeley DB
(BDB)/Sleepycat DB.
The Storage class abstracts the storage of models { the

Model class passes on most of its methods to its associ-
ated storage. The implementations of the class currently
include an in-memory one (always) and one that uses mul-
tiple Hashes to store the Statements, either in-memory or
persistently via BDB. This implementation is discussed in
more detail in Section 6.2. This class could have been called
database or datastore but that would have been confusing
since only one of the implementation modules of the class
might have been a true relational database.
The Parser class provides a common interface to modules

that parse various syntaxes to deliver an RDF model. The
Serialiser class does the reverse and generates syntax from
a model. See Section 6.4 for more detailed information on
the issues with these classes.
The Query class is an adaptor class that provides support

for particular query syntaxes for Storages. It takes a query
as a literal string or as a Model along with a URI to identity
the query language. This URI allows the query class to de-
termine if either there is an adaptor class for the language or
the storage natively knows it. In the former case, when the
storage module does not understand the syntax, the adaptor
class rewrites it into a standard query for matching State-

ments and submits it to the Storage. In the latter case,
the query, which need not be written in a statement-centric
way, can be directly handled by the Storage. This makes the

452



query process a lot more eÆcient since the query does not
need to be rewritten, several layers of system are skipped,
and the results do not need to be rewritten as Statements
but can be delivered in a Model. This is possbile since the
application and the storage module both understand this
special optimisation, represented by the URI. For example,
the query could be in an SQL-like syntax such as in [14] and
a relational back-end could handle it very easily without the
need to rewrite the syntax into a statement-centric format
and thus loose the chance for query optimisation. At the
time of writing (February 2001) the Query class is not im-
plemented and only the statement and node-centric queries
can be performed.

5.3 Data Flow and Flow of Control
Data 
ows inside Redland mostly from arguments passed

via method calls into the implementing classes and possibly
onwards to factories and modules. However, when Redland
is connecting objects that are more naturally both working
in parallel, such as a parser and a consumer of the statements
generated, some other abstractions are needed. Stream and
Iterator are used to provide this transfer of data and 
ow of
control for sequences of Statements and Nodes respectively.
These classes are reader driven or pulled, since Redland is
intended to be used as a library inside an application which
will generally be calling Redland to read data rather than
pushing data for Redland to process. Redland does not do
much processing in one go (apart from parsing) so the pull
model is quite natural to use in this way.
When parsing the syntaxes, most of the current parsers

need to be active, pulling data from their data sources (�les
or URI s) and so are naturally pushing data to the appli-
cation. To help handle this, Redland wraps these callbacks
and turns the data push into a Stream pull.

6. IMPLEMENTATION
This section describes the detail of implementing the classes

in Redland including the storage classes and the ways used
to help make Redland work better with applications.

6.1 Model and Storage

Model

Hash

BDB Hash

In−memory Hash

... others ...

Hashes Storage

In−memory Storage

Storage

... others ...

Application Code Extended Models
Models over
Models

Figure 3: Redland Model Layers

The Model class is the main application interface for Red-
land as shown in Figure 3. Despite this, most of the func-
tionality of the class is provided by other classes. Storage

deals with all statement-centric and node-centric queries of
the model andQuery handles the other query syntaxes. This
makes the Model class rather light but it is the key interface
for the application, and it is here where functionality for
model layering is provided and convenience methods can be
easily added.
The Storage class implements managing the storage mod-

ules via a factory and also handles optional parts of the stor-
age module API by converting between internal interfaces.
From the application point of view, this is never visible al-
though some operations on theModel may be observed to be
slower. For example, a storage module may implement only
the required statement query methods and not the node
based query methods in which case Storage will translate
between these.

6.2 Storage Modules
The main storage implementation for Redland is using

multiple Hashes to store the statements. This is based on
previous work done by the Mozilla project and Guha [15],
as well as internal projects at ILRT. A Hash in Redland is
a map of a key to a value with duplicates allowed. In this
implementation, Statements are stored using three Hashes,
whether in memory or using a persistent hash (such as BDB)
as described in Table 2.

Hash Key Value Optimises node-

centric query

SP2O Subject and Object Get targets of
Predicate (source, arc)

PO2S Predicate Subject Get sources of
and Object (arc, target)

SO2P Subject and Predicate Get arcs of
Object (source, target)

Table 2: Multiple Hash Storage

The hashes are used both for the statement queries and
the node centric ones. The former are provided by serialis-
ing the hash and �ltering via the querying statement. This
can be very slow for large models so the node-centric indexes
are used when only one of the elements of the statement is
blank. Node-centric queries mean querying using the Model

relative to a particular resource node or arc. The SP2O hash
�nds outgoing nodes from a resource with a given arc, the
PO2S hash �nds incoming nodes with a given arc and desti-
nation and the SO2P hash �nds the arcs between two given
nodes. These combinations of indexes have been found to be
quite useful in experiments and testbeds implemented pre-
viously at ILRT, without the need to have full combination
of indexes.
There are other potentially useful hashes that might be

maintained including incoming and outgoing arcs indexed
for particular nodes. These choices might be suitable for an
option on the storage hash or for user con�guration of which
statement parts are indexed. The current hash storage mod-
ule has hooks for such a facility but no current interface to
it.

453



In the future it may be that application-speci�c indexes
will be added to the hashes for optimising queries or proper-
ties that are used a lot. The rdf:type property is one that can
be refered to often in applications that ask a lot of schema
or RDF typing queries and could be worth optimising for. It
could either be done at the storage level or higher up where
the type system calls might be intercepted by the model and
handled in a di�erent way more appropriate for type hierar-
chies and detecting loops. This is an example of where the

exibility of the application framework can provide di�erent
ways to handle application requirements, without making
changes to any application interface.

6.3 Statements and Nodes
Statements contain three Node objects representing the

di�erent parts of the RDF statement and these Nodes have
two main types { Resources which have URIs and Liter-
als. In Redland, literals include the string content, the
xml:lang and xml:space properties and whether the content
is XML content (as declared by the RDF parseType Literal
attribute). RDF statements are RDF resources in the RDF
model and in Redland Statements can be used wherever a
resource Node can be used.
Node objects are used many times inside the applica-

tions to represent resources with URIs and thus need to
be handled eÆciently so that it is easy and quick to cre-
ate, destroy and manipulate them. For this purpose, an
internal node factory is used to ensure that references to a
node with a particular URI are shared, using simple ref-
erence counting (a similar factory is also used for the URI
class). The RDF model and schema pre-de�nes concepts
such as rdf:type which are used internally but are also of-
ten used in application code. These concept resources are
pre-de�ned in Redland so that applications can easily refer
to these dynamically-created nodes in compiled code. This
also makes it easier for Redland or modules to check and
optimise for special use of RDF internal concepts, such as
typing, where additional functionality might be wanted { for
example, checking that there are no loops in the type tree.

6.4 Parsers and Serialisers
The RDF Model and Syntax Speci�cation [1] de�nes a syn-

tax for RDF in XML and this needs to be parsed in order
to create or add content to models. The Parser class pro-
vides access to parsers for this syntax. When development
on Redland was begun there were parsers in C, Java, Prolog
and other languages, but it was not clear how they com-
pared. Modules were written to wrap the Java parser and
call the C one plus allow room for more parsers to be added
later if necessary. The interface that these external parsers
o�er is usually a triple of subject, predicate and object with
a heuristic having to be used to guess(!) the type of the
object { literal or string { in some cases. This has improved
since with the addition of a newer C parser called Repat by
Jason Diamond which has a better interface.
The XML syntax is just one potential source of RDF mod-

els from a syntax or encoding format and in order to han-
dle that, this class allows modules to register themselves as
handling particular MIME types or handling a syntax con-
forming to a URI. This 
exibility means that, for example,
modules could be added that extracted or synthesised RDF
metadata from image formats such as PNG and JPEG or
interpreted MP3 ID3 tags as RDF properties.

Serialisers take a model and emit syntax, either for the
purposes of creating a stand alone document representing
a Model for for other purposes such as delivering as a ser-
vice. For example, there could be an HTML serialisation
that used some policy to 
atten the RDF graph into a tree
rendered as lists.

6.5 URI and WWW
These modules abstract URIs and provide ways to resolve

them via HTTP or other requests. These requests are han-
dled by the WWW module that provides a simple interface
and a way to return the results. This module is one that is
likely to be replaced when Redland is embedded inside an
existing web application since it will already have probably
better functionality to do this. It also would be a big prob-
lem if Redland blocked an entire application while it waited
for I/O from the web.

6.6 Target Language Interfaces
The Perl and Python language interfaces were both writ-

ten using the same interface generation tool called SWIG
[16]. It takes a de�nition of the Redland C interface and
automatically generates equivalent functions in the target
language via some glue code. These simple functions were
then used to create classes in the target languages, calling
the Redland C functions inside the methods to perform the
actual methods and class operations. The target language
classes directly paralleled the Redland classes, with slight
changes to accommodate target language metaphors, inter-
faces and types.

6.7 Features
Application-level access was provided to options, alterna-

tive implementations and functionality checking of modules
with the features concept. A feature is a key : value pair
that can be queried or set for the modules, where the keys
are URIs describing the feature. This is modelled after the
Java Properties class and a similar technique on the SAX
XML parser. An example of where this is used is in the
parser modules to indicate or set whether a parser supports
the aboutEach and aboutEachpre�x attributes, which are
not commonly supported.

6.8 Configuration, Building and Installation
Management

Redland uses the GNU automake and autoconf tool suite
to handle the complex con�guration needs of providing a
portable system that is easy to use despite having many
modular parts. The tool suite tests for features on the op-
erating system that it is installed on and can then include
them at con�gure time if they are present. autoconf also
provides user con�guration control by options, and these are
processed by Redland to select the modules, BDB installa-
tions, XML and RDF parsers and other features that are
required. The tools �nally handle compiling and installing
Redland into the standard places for C header �les, libraries
and documentation.
On Linux, further support is provided by Redland to cre-

ate RPM packages of Redland that can be installed by users
or developers without the need to compile it. This can be
automated by package management tools so Linux tools that
depend on Redland could install it without any user involve-
ment.

454



6.9 Infrastructure
Redland also includes some infrastructural support such

as a debugging memory allocation tracker that can be re-
moved from application code and linked with the applica-
tion's own memory management routines; error and warning
handlers that can be customised by the application; func-
tions for manipulating temporary �les and simple parsers for
con�guration strings used as parameters for some construc-
tor and class initialisation calls. The latter could have used a
Hash object but that might be impossible when con�guring
Redland before the Hash class has been initialised.

6.10 Consequences of Implementing in C
The use of C for the reasons given above in Section 4 { in-

terfacing, performance, portability does have several down-
sides. The resulting code ends up rather low level and tricky
since all memory allocation and string handling has to be
done by hand. If Redland had been implemented in C++
it could have taken advantage of C++'s built-in support for
the above plus objects, interfaces, templates and libraries.
However, it would have been more diÆcult to embed in pure
C applications, since C calling C++ is rather unusual.
There are also some related technologies such as the OMG

Interface Description Language (IDL) that could have been
used to de�ne the interface to Redland but at the time of
writing (February 2001) the CORBA language mapping has
no support for Perl which was a key implementation require-
ment. This would have limited the deployment languages to
those supported, which also excluded some other potential
targets such as Tcl (non-OO version).
However, there is a way around this due to the design of

Redland and the heritage of C++. Redland was written in
C but implemented in a C++-compatible way and it can be
compiled as C++. Thus it is easy to add a set of thin C++
wrapper classes to provide a C++ interface { similar to the
way that SWIG adds wrapper classes for the scripting inter-
faces. This would create a C++ interface that could then
be used for providing CORBA object brokers or brokens for
similar systems.

7. REDLAND APPLICATIONS
Redland is still under development and just over 6 months

old (February 2001) however the majority of the core work
has been implemented and it has been tested extensively
over that period. It has now reached the stage of being
stable, reliable and has had several public beta releases. Two
applications have been written by the author to demonstrate
the code in use on the web.

7.1 RDF Demonstration of Model with
Persistent Store

Redland was used via the Perl language interface to pro-
vide a web accessible demonstration of using Redland to
work with the RDF model, allowing users to submit RDF
content to a persistent store, make queries, follow the re-
sults and try di�erent parsers that Redland supported {
5 at present. These parsers showed di�erences in what
RDF/XML they handle which was useful feedback into is-
sues of the syntax and parsing.
The database was tested with a copy of the Open Direc-

tory data dumped as `RDF' [17] (after cleaning syntax mis-
takes) and 1.3M statements were stored using BDB hashes
on disk. This was not the full data set since the data dump

still contained syntax errors (not well formed XML) around
2M lines into the 12M lines of output. The resulting RDF
statements could be returned from a query at a rate of ap-
prox. 1800 statements per second from a relatively busy
disk.

7.2 RSS 1.0 Demonstration
RSS is RDF Site Summary and is a lightweight metadata

format that allows content to be simply described primar-
ily for syndication, aggregration and other purposes such
as building portals. The RSS 1.0 [18] speci�cation takes
an older version of the format and re-introduces it as an
RDF application (in earlier versions it was RDF). The Red-
land demonstration uses the RDF model as the RSS model
and de�nes some application speci�c methods that the RSS
model concepts may have. It was a simple and quick job
to add a wrapper Perl class that read the RSS content (in
RDF/XML format) into a model and provide convenience
interfaces for the RSS concepts. The resulting model was
then rendered in a simple HTML output format.

7.3 WSE Demonstration
The Web Search Environments (WSE) project funded by

ILRT uses Redland to provide RDF interfaces over three
systems, with speed and 
exibility. A non-RDF database
over approximately 110,000 web pages from a web crawler
is linked with an RDF database of 40,000 structured records
and a third RDF database of relationships between the web
pages. The resulting system stores 1.5M RDF statements
using nearly 2Gb of BDB hashes is quick to search and can
answer several thousand queries per second. This work was
only �rst demonstrated shortly before the �nal deadline for
this paper so accurate numbers are not available.

8. CONCLUSIONS AND FUTURE WORK
The RDF open directory test processed 100Mb of RDF

data and consistently used 0.3Mb while running and after
that returned all of that to the system with no memory
loss. This was due to the extreme care taken while writing
Redland to make sure that no resources were lost. This
ensures it can run in long-running processes such as web
services or daemons and be a good neighbour. Redland runs
in a small amount of memory because during con�guration
it dynamically links to the maximum it can with existing
system modules that provide digests, hashes (BDB), XML
parsers (such as libxml, expat) so that the total memory
(code and data) used by the Redland is minimised.
The RSS and RDF web demonstrations show that Red-

land provides a high-level interface to RDF that can allows
the easy creation of RDF web services. These could eas-
ily be rewritten to provide some web-based services such as
XML-RPC [19] or SOAP [20] using tools that are emerging
for those protocols or from a C++ interface that could be
created using the method described in Section 6.10.
The compile and install out-of-the-box provided by the au-

tomake and autoconf tool con�guration makes building and
installing Redland a three line job for most systems and this
has been con�rmed on �ve major Unix / POSIX architec-
tures with di�erent compilers, word lengths and endianness
showing Redland is quite portable even at this early stage.
The development of Redland continues to complete and

extend the functionality described here plus new develop-
ments on a Java interface (test code work), some convienence

455



methods for handling RDF containers, and experimentaton
with extracting RDF from other formats such as XHTML
and embedded in images. The author has also recently writ-
ten a new RDF XML-syntax parser which works better with
Redland and participates with other RDF application au-
thors on compatibility issues and web service interfaces.
Redland implements a powerful modular, object-based li-

brary for manipulating the RDF Model and parts { state-
ments, resources and literals. It provides equivalent and
consistent APIs in the C, Python and Perl languages (as
well as Tcl recently added). Redland contains modules for
multiple parsers for reading RDF/XML and other syntaxes,
storage for the models in memory and persistently and 
exi-
bility to extend or modify it using layering, modules and/or
factories.
Redland is Free Software (LGPL/GPL) and Open Source

software (MPL) and available at
http://purl.org/net/redland/
along with links to the demonstrations.

9. ACKNOWLEDGMENTS
Thanks to Nicky Ferguson for letting me work on this as

part of the Web Search Environments (WSE) project and
the other researchers working on RDF at the Institute for
Learning and Research Technology (ILRT), University of
Bristol and HP Labs, Bristol.

10. REFERENCES
[1] O. Lassila, R.R. Swick (eds): Resource Description

Framework (RDF) Model and Syntax Speci�cation, W3C
Recommendation, 22 February 1999, http://www.w3.org/
TR/REC-rdf-syntax
[2] D. Brickley, R.V. Guha (eds): Resource Description

Framework (RDF) Schema Speci�cation 1.0, W3C Candi-
date Recommendation, 27 March 2000,http://www.w3.org/
TR/2000/CR-rdf-schema-20000327/
[3] D. Brickley et al.: Mozilla - Resource Description Frame-

work (RDF), http://www.mozilla.org/rdf/doc/
[4] J. Saarela, S. Melnik et. al: SiRPAC - Simple RDF

Parser & Compiler,
http://www.w3.org/RDF/Implementations/SiRPAC/
[5] S. Melnik: Generic Interoperability Framework (GINF)

project, Digital Libraries Project, Database Group, Stan-
ford University, http://www-diglib.stanford.edu/diglib/
ginf/
[6] R. Daniel: RADIX A proposal for an RDF API, post-

ing to WWW-rdf-interest list, December 1999, http://www.
mailbase.ac.uk/lists/rdf-dev/1999-06/0002.html

[7] P. Hannappel: Summary of Recent Discussions about
an Application Programming Interface for RDF, University
of Essen, Germany, April 2000, http://nestroy.wi-inf.
uni-essen.de/rdf/sum rdf api/
[8] D. Veillard: rpm2html: a generator of Web pages for

RPM package, http://rpmfind.net/linux/rpm2html/
[9] D. Beckett: Deploying RDF in a Large Scale Mir-

ror Service, WWW9 Developer's Day Semantic Web Track,
http://purl.org/net/dajobe/talks/www9/
[10] E. Miller: An Introduction to the Resource Descrip-

tion Framework, Dlib Magazine, May 1998, ISSN 1082-9873,
http://www.dlib.org/dlib/may98/miller/05miller.html
[11] S. Melnik: Storing RDF in a relational database,

http://www-db.stanford.edu/~melnik/rdf/db.html
[12] T. Berners-Lee: Building the future, slide in XML

and the Web , XML World 2000, Boston, 6 September 2000,
http://www.w3.org/2000/Talks/0906-xmlweb-tbl/slide9-6.
html
[13] S. Melnik: An API for RDF, 2000, http://www-db.

stanford.edu/~melnik/rdf/api.html
[14] D. Brickley, L. Miller: RDF, SQL and the Semantic

Web - a case study, ILRT, October 2000, http://www.ilrt.
bris.ac.uk/discovery/2000/10/swsql/
[15] R.V. Guha: RDFDB - An RDF Database, http://

www.guha.com/rdfdb/

[16] D.M. Beazley: SWIG : An Easy to Use Tool for In-
tegrating Scripting Languages with C and C++, 4th An-
nual Tcl/Tk Workshop, Monterey, CA. July 6-10, 1996,
http://www.swig.org/
[17] Open Directory RDF Dump,

http://directory.mozilla.org/rdf.html
[18] R. Dornfest (ed): RSS 1.0 Speci�cation, http://

purl.org/rss/1.0/, 19 December 2000
[19] D. Winer: XML-RPC Speci�cation, http://www.xmlrpc.

org/spec, 23 November 1999
[20] D. Box et al: Simple Object Access Protocol (SOAP)

1.1, W3C Note, http://www.w3.org/TR/SOAP/, 8 May 2000.

11. VITAE
David Beckett is a Technical Researcher working at the

Institute for Learning and Research Technology, University
of Bristol, since June 2000 and has been researching resource
discovery on the Internet with metadata such as IAFA Tem-
plates, Dublin Core and RDF since 1993.

456


