
N for the Price of 1: Bundling Web Objects for More
Efficient Content Delivery*

Craig E. Wills
Computer Science Dept.

Worcester Polytechnic Institute
Worcester, MA 01609 USA

cew@cs.wpi.edu

Mikhail Mikhailov
Computer Science Dept.

Worcester Polytechnic Institute
Worcester, MA 01609 USA

mikhail@cs.wpi.edu

Hao Shang
Computer Science Dept.

Worcester Polytechnic Institute
Worcester, MA 01609 USA

hao@cs.wpi.edu

Abstract:
Persistent connections address inefficiencies associated with
multiple concurrent connections. They can improve response time
when successfully used with pipelining to retrieve a set of objects
from a Web server. In practice, however, there is inconsistent
support for persistent connections, particularly with pipelining,
from Web servers, user agents, and intermediaries. Web browsers
continue to open multiple concurrent TCP connections to the same
server.
This paper proposes a new idea of packaging the set of objects
embedded on a Web page into a single bundle object for retrieval
by clients. Our analysis indicates that if embedded objects on a Web
page are delivered to clients as a single bundle, the response time
experienced by the clients is as good as or better than that provided
by currently deployed mechanisms. We also show that, relative to
the currently used retrieval methods, our approach reduces the load
on the network and servers. The key contribution of our work is a
mechanism that gives Web servers better control over the number
and duration of TCP connections they support. Implementation of
the mechanism requires no changes to the HTTP protocol.

Keywords: Web Performance, HTTP, Persistent Connections,
Delta Encoding

Introduction
The World Wide Web has significantly evolved over the past few
years. The amount of offered content and the number of content
consumers have grown exponentially, complexity and richness of
content has increased, functionality and performance of Web
servers and user agents has improved. Web transactions, carried
over the HyperText Transfer Protocol (HTTP) [3,8] running on top
of the Transmission Control Protocol (TCP) [21], account for 70-
75% of traffic on the Internet backbone, according to one study [5].
With the Web being the main application on the Internet, it is vital
to ensure the efficient use of network (and server) resources by Web
transfers while quickly delivering the requested content to end
users. In this paper we propose a new idea of packaging the set of
objects embedded on a Web page into a single bundle object for
retrieval by clients. This idea is intended to address problems we
see with current approaches for retrieving multiple objects needed
to render a Web page.

Versions 0.9 and 1.0 of the HTTP protocol are based on the model
that uses a new TCP connection for each request/reply exchange
with the Web server. To speed up the retrieval of content, many
popular Web browsers open multiple concurrent TCP connections.
Such a model, whether implemented with serialized or concurrent
TCP connections, makes inefficient use of network and server
resources. The overhead of setting up and tearing down each TCP
connection contributes to router congestion. The operating system
of the Web server also incurs per connection overhead and
experiences TCP TIME_WAIT loading for each closed TCP
connection. Response latency is also affected when a new TCP
connection is created for each request and because each transfer
independently goes through the TCP slow start phase.
Early on in the development of the Web this inefficiency of the
simple HTTP model was realized and addressed by a number of
proposals [23,9,17] advocating the use of a single TCP connection
for multiple request/reply exchanges. Two new HTTP methods
were also suggested, GETALL and GETLIST, which could be used
to get all objects from a Web page in a single retrieval, and to get an
arbitrary list of objects from a server in a single request [20]. These
efforts contributed to the decision to adopt persistent connections as
default in the HTTP/1.1 protocol, which was recently standardized
by IETF [8,12].
HTTP/1.1 compliant clients and servers SHOULD (not MUST) (for
the definition of these terms as applied to standards see [4]) permit
persistent connections, although either side is allowed to terminate a
persistent connection at any time. Both clients and servers can also
indicate their unwillingness to hold a connection as persistent by
including a “Connection: close” header as part of the HTTP request
or reply respectively.
This flexibility in dealing with persistent connections was deemed
necessary, particularly for servers, during the development of the
HTTP/1.1 specification, but has led to mixed success in the current
use of persistent connections. Recent studies have shown that 70-
75% of Web servers at popular Web sites support HTTP/1.1
persistent connections, meaning that more than one object was
successfully retrieved over the same TCP connection [11,14].
However, support for persistent connections does not necessarily
lead to reduced retrieval times for a set of objects from a server. In a
recent study, one of the authors evaluated the impact of different
strategies for using TCP connections to retrieve multiple objects
from the same server on the end-to-end response time and found a
number of interesting results [14]. First, a single persistent
connection with serialized HTTP requests generally does not
provide better response time than parallel requests. Second, a single
persistent connection with pipelining generally provides better
response than parallel requests, but pipelining was only supported

*This work is partially supported by the National Science Foundation
Grant CCR-9988250.

Copyright is held by the author/owner(s).
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

257

by about 30% of the servers. Moreover, performance benefits are
lost if TCP connections must be re-established.
Overall, persistent connections address inefficiencies associated
with multiple concurrent connections, and when successfully used
with pipelining can improve the response time. In practice,
however, there is inconsistent support from Web servers, user
agents, and intermediaries for persistent connections, particularly
with pipelining. In this environment, browsers continue to open
multiple concurrent TCP connections to the same server [26,2],
which leads us to consider more efficient approaches for retrieving
multiple objects from a server.
This work proposes a new approach to the problem of delivering
multiple Web objects from a single server to a client. Our approach
is more efficient than using multiple concurrent TCP connections
and more deterministic than a persistent connection carrying a
variable number of client requests. The basic idea is for the servers
to group sets of related objects, such as objects needed to render a
Web page, into a new object, called a bundle, or a package. In its
simplest form, a bundle is a concatenation of a URL string, HTTP
headers and content for each of its constituent objects. Servers
advertise the availability of a bundle (or bundles) for each of their
container (HTML) pages via a new HTTP response header Bundles
(or perhaps via an HTML META tag). Clients understanding this
header can then choose to either issue a single HTTP request (over
an existing or a new TCP connection) and fetch the entire bundle or
to ignore the availability of the bundle and retrieve all remaining
objects for the container page as is currently done. Upon obtaining
the bundle, clients recover the objects encapsulated in it and cache
each of them using the supplied URLs and HTTP headers. As
clients render the page, the embedded objects should already be
cached, but if a bundle does not contain a complete list, then clients
simply retrieve the needed objects from the server as is currently
done.
An origin server or a server in a Content Distribution Network
(CDN) can use this approach to serve multiple objects grouped
together. In evaluating this approach, our focus has been on a set of
objects necessary to fully render a Web page. In general, bundles
could include objects that have some other form of relationship than
being part of the same page. For example, all “popular” images at a
site could be packaged into a bundle.
In the remainder of the paper we discuss the details of this approach
and examine its impact on the entities (network, servers, clients)
involved in the handling of the HTTP requests and responses. We
also evaluate the use of server side compression on the contents of
bundles and examine the interaction between our approach and
client side caching. We conclude with a summary of our findings
and a discussion of directions for future work.

Packaging Objects into Bundles
A common way to distribute software on the Internet is to package
a collection of related files into a single file, using tools such as tar
and gzip. We are also aware of Web sites that package a subset of
their content (mostly static resources) using similar techniques and
provide a pointer to the resulting file on their home pages (see [22]
as an example). We are unaware, however, of any work that has
proposed and evaluated a more selective and automated packaging
of related objects.

Basic Idea
The use of bundles is initiated by the content provider. In the
simplest case, an origin server creates a bundle of all of the

embedded objects contained on a Web page. The use of bundles is
independent of whether the container page itself is static or is
dynamically generated, assuming dynamically-generated content
uses the same set of embedded objects. Each object in a bundle is
represented by its URL, relevant metadata (HTTP headers) and
contents. HTTP headers associated with each object, local headers,
are specific to that object. For example, an object can have Content-
Length (used by the client in recovering the encapsulated objects) or
Last-Modified HTTP header associated with it. When a bundle is
requested by a client, the Web server also assigns it a set of HTTP
headers, as it would for any other object. In the context of bundles,
we will refer to such headers as global headers. In cases where
global headers have the same names as the local headers, the local
headers always take precedence over global headers. Otherwise,
individual objects within a bundle inherit the global headers. Since
all objects served by the same Web server naturally share some
common HTTP headers, such as Server or Date, serving a single
bundle instead of multiple individual objects results in a simple
header compaction mechanism. With many small objects included
in a bundle, byte savings could be significant.
For serving objects embedded in a Web page, a server can adopt a
convention that bundles have the same names as their respective
pages, except for the extension. For example, the bundle contains
the embedded objects for the page. Bundles could be dynamically
computed upon a client’s request or could be precomputed.
Dynamic construction of bundles is likely to incur substantial
overhead due to a Web server parsing the page to determine which
objects to include in the bundle. Precomputation avoids critical path
processing but requires additional storage at the server since both
bundled and original objects are stored. Popular objects, such as
logos embedded on all site pages, could be separated into a separate
“frequently-used object” bundle. Ultimately, servers decide if,
when, and how to construct bundles.
One approach for constructing bundles is to group objects on a
page, or across pages, based on their relationships and change
characteristics, as discussed in [28]. Such grouping is reminiscent of
the notion of volumes [15,13,6]. For example, static or infrequently
changing objects on a page can be packaged together. Frequently
changing objects on the same page can be organized into a separate
bundle--or not grouped at all. While clients need to retrieve more
than one bundle for a page in such cases, each bundle contains
objects with similar change characteristics and presumably cache
control directives.
While processing a request for a Web page that has an associated
bundle, a Web server includes an additional HTTP header in its
response, advertising the availability of bundles to the client. For
example, the server includes the “Bundles: home.bndl” header
when processing a request for home.html. If the requesting client
chooses to take advantage of the available bundle, it issues a single
HTTP request (over the existing or a new TCP connection) and
indicates its ability to accept a new content type, application/x-bndl.
Upon obtaining the bundle, the client extracts individual objects
from it and reconstructs their metadata. These objects can then be
stored in the local client cache (whether the client is a user agent or
a proxy cache). At this point, the client can discard the bundle itself,
although it may want to retain meta-information about the bundle
object for future retrievals (see Section 2.3). Clients that do not
support bundles, or choose to ignore them, fetch embedded objects
as usual. The use of bundles is optional for both clients and servers,
and it does not require any changes to the current method of content
retrieval.

258

Using Compression with Bundles
An obvious extension of simply concatenating a set of objects
together is to use a compression tool such as gzip to reduce the size
of the bundle for transmission (potentially for storage as well). In
the likely case that bundles contain primarily images, which are
already compressed, opportunities for additional compression come
mostly from textual HTTP headers within the bundle. In cases
where bundles encapsulate textual objects, such as HTML frames,
Cascading Style Sheets or scripts to be executed on the client side
(JavaScript that is not part of HTML, for example), applying
compression could significantly reduce the size of the bundle.

Bundles and Caching
A passive Web cache, whether it is a browser cache or a proxy
cache, can only serve objects which have been previously retrieved,
subject to per-object restrictions. The first retrievals of a Web page
and its associated objects would all result in cache misses and hence
the availability of a bundle containing all embedded objects for the
page would be of value to the client. As the client subsequently
retrieves the same or other bundles from the same server, the client
might obtain objects that it already has in its cache. We see three
approaches addressing this negative interaction between bundles
and caching: validating individual objects, validating entire bundles,
and delta encoding of bundles.

Validating Individual Objects within a Bundle
The HTTP response header, rather than simply advertising the
bundle, as “Bundles: home.bndl,” could also include a list of
objects encapsulated in the bundle and their sizes, as

Bundles: home.bndl (main.css size=sz1, img1.gif size=sz2, img2.gif
size=sz3);

This list allows a client cache to decide whether the new bundle
contains enough new objects to warrant its retrieval. If not, the
client should ignore the bundle and retrieve individual objects as
needed. Servers could also include other validators, such as Last-
Modified or ETag, to aid clients in determining whether new object
retrievals are needed.

Validating Entire Bundles
In the second approach, a client cache retrieves a bundle object,
extracts and stores its encapsulated objects, discards the bundle
itself, but retains its HTTP headers, especially the ones used for
cache validation. For example, if the Last-Modified or ETag
headers are present, they could be subsequently used by the cache
to issue a GET If-Modified-Since (IMS) or a GET If-None-Match
request to the server to verify the freshness of the bundle. If the
bundle has not changed, the server will indicate so via the HTTP
response status code 304 Not Modified. In this case, the client cache
would have automatically validated multiple objects by issuing a
single aggregate IMS request. If the bundle has changed, the server
will reply with the HTTP response status code 200 OK followed by
the body of the new bundle. If the bundle has changed due to only a
subset of its encapsulated objects changing, its retrieval wastes
resources. This problem leads to the third approach.

Delta Encoding of Bundles
The third approach uses delta encoding. The idea of the technique,
described by Williams et al. [27], is for the origin server (or proxy)
to compute a difference (delta) between an old and a new copy of
an object and communicate that difference to the client, provided
that the client has an old copy of the object. The client can construct

the new object by applying the delta to the old object. Mogul, et
al. [18] quantified the benefits of end-to-end delta encoding and
compression and proposed extensions to the HTTP protocol to
support the technique. These extensions are detailed in the recently
published Internet Draft [16].
Since bundles are regular objects, the delta encoding technique can
be uniformly applied to bundles just like it can be applied to any
other object. Example delta encodings include those produced by
UNIX diff -e or by vcdiff [10]. Delta encoding of bundles could also
be implemented as a modified rsync mechanism [25]. This
mechanism efficiently computes differences between two instances
of the same file and is commonly used to update software packages
produced with tools such as tar.
Upon receiving the delta encoded response, the client first
reconstructs the older version of the bundle based on the preserved
meta data of the bundle and individual cached objects, and then
applies the delta to the result to produce the new version of the
bundle. Problems arise when one or more of the objects from the
old bundle are evicted from the client’s cache, making the
reconstruction of the old version of the bundle impossible. To
address this problem, clients could cache bundle contents instead of
discarding them or use a bundle-aware differencing algorithm.
The output of a bundle-aware differencing algorithm, given a new
and an old version of a bundle, encapsulates all objects in the new
version that are not part of the old version, and all modified objects
in the new version. The output also includes a list of objects that
were part of the old version, but are not in the new version, to help
clients differentiate between removed and unchanged objects.
Given that bundles are likely to contain mostly images, computing
differences on an object-by-object basis rather than byte-by-byte
basis makes sense. When the client receives such a bundle-aware
delta, all it needs to have in its cache are the unchanged objects
from the old bundle. If some of them were evicted from the cache,
the client can retrieve them individually.
We now illustrate how bundle-aware deltas are specified within
HTTP. Suppose a client obtained a bundle home.bndl from
www.foo.com, cached all the objects encapsulated in it, discarded
the bundle itself, and kept meta data for the bundle. If at a later time
this client wants to obtain the current value of the bundle it can send
the following request to the server (this example is adapted
from [16]):

GET /home.bndl HTTP/1.1
Host: www.foo.com
If-None-Match: Bundle-ETag1
A-IM: diffe, vcdiff, bsync, gzip

In this example, the client indicates that it has a cached copy of the
bundle, identified by ETag with the value Bundle-ETag1. Delta
encoding is considered to be an instance manipulation, and the A-
IM HTTP request header, short for Accept-Instance-Manipulation,
indicates which delta encodings the client supports. The client can
accept delta updates produced by UNIX diff -e and vcdiff. The
bsync specification, short for “bundle sync,” represents the
previously described bundle-aware encoding algorithm. To our
knowledge, there is no existing tool that does the proposed bundle
differencing, although similar distribution synchronization tools
exist. The client also indicates that it can accept compressed
responses using gzip, whether or not they were delta-encoded.
If the entity tag for home.bndl has changed (say, to Bundle-ETag2),
the server, if it supports delta encoding, will compute the difference
between the current version of the bundle and the older one, whose

259

ETag value is Bundle-ETag1, and send the response to the client, as
shown below:

HTTP/1.1 226 IM Used
Server: Delta-Aware Server/1.0
ETag: Bundle-ETag2
IM: bsync
Date: Sun, 12 Nov 2000 10:00:00 GMT

......delta between new and old bundle......

A new HTTP response code 226 IM Used is required to force
HTTP/1.0 proxies to forward all instance-manipulated responses
without storing them (other options are discussed in [16]). If the
server does not support delta encoding or does not implement any
of the algorithms supported by the client then it replies with the
HTTP response code 200 OK and the body of the entire new
bundle.

Interaction with Content Distribution
The final issue we address is the interaction of the use of bundles
with the distribution of Web content across multiple servers. Results
obtained in November, 1999, showed a relatively small fraction
(15%) of 700 popular Web sites using more than one server to serve
content for their home pages [14]. However, in August, 2000, we
did a follow-up study of the home pages for 312 popular sites (not a
strict subset of the previous set) and found that 63% of these sites
used more than one server to serve the objects on the home page.
We address the apparent disconnect between this trend to distribute
content and our proposal of consolidating it in two ways.
First, the distribution of a relatively small number of objects to
different servers does not appear to be a good idea in terms of
performance, regardless of whether bundles are available or not.
Each new server requires a new DNS lookup on the part of the
client as well as opening a new TCP connection.
Second, if many objects are served by auxiliary servers, for instance
by a special “image server” at a site or by a CDN server, then these
objects are good candidates to be packaged together into a single
object. A bundle can be retrieved from a CDN server just as it can
be from an origin server. A bundle could also contain objects
assigned to multiple servers if these objects were all under the
control of a single content provider.

Performance Impact
The previous section discusses how bundles can be constructed and
used by Web clients and servers. This section examines the
performance implications that the use of bundles could have on the
network, servers, and clients. Bundles are unlikely to find wide
adoption unless shown to be beneficial to both clients and servers.

Impact on Servers
HTTP uses TCP as its transport protocol. As a connection-oriented
protocol, TCP maintains state at each end point of the connection
thus placing per-connection memory overhead on each peer host.
With a large number of simultaneously active TCP connections, a
Web server’s memory requirements can grow large. A more
significant per-connection overhead occurs when a host performs an
active close on the TCP connection. After sending the final TCP
ACK, that host must keep the closed connection in the
TIME_WAIT state for twice the Maximum Segment Lifetime
(MSL) [24]. MSL is specified as 2 minutes [21], but commonly
used values are 30 seconds, 1 and 2 minutes [24]. Consequently, the

local port number used by the connection that is currently in
TIME_WAIT state cannot be reused for 1 to 4 minutes. In HTTP,
Web servers are the ones normally closing the connection.
Therefore, depending on the local port range made available by the
operating system (it is not always 1024-65535), and the client
request rate, servers might be unable to open new TCP connections,
even if few are currently active. HTTP throughput reductions of up
to 50% have been reported [7]. TIME_WAIT loading of busy Web
servers is studied in [7].
Intuitively, it is clear that Web servers should benefit from
maintaining fewer TCP connections. Yet experience shows that
support for persistent connections is not always implemented in
Web server software or is deliberately turned off. The latter might
be explained by the fact that lifetime of a persistent connection is
non-deterministic--Web servers and clients are free to close a
persistent connection when they deem necessary. The default
connection-per-request model of HTTP/1.0, on the other hand, is
deterministic--a server closes the connection after forwarding the
response to the client. Our proposal utilizes a single TCP
connection to effectively retrieve multiple objects while allowing
the server to deterministically close the connection.
In addition to per-TCP connection overhead, Web servers also incur
per HTTP request and per HTTP response overheads. Each HTTP
request must be parsed, possibly logged, each HTTP response must
be generated, including the HTTP response headers. Depending on
the configuration and load, a Web server might need to fork a new
process to service an incoming request.
Consider a Web server serving a Web page with n embedded
objects under three different scenarios, as shown in Table 1. Under
the connection-per-request model, used by HTTP/1.0 and HTTP/1.1
without persistent connection support, the number of TCP
connections, HTTP requests and HTTP responses directly depends
on n. With the persistent connections, the number of HTTP requests
and responses is still proportional to n. Only when bundles are used
the number of connections and requests needed to retrieve a Web
page is constant.

Table 1: TCP Connections and HTTP Requests/Responses
Resulting From the Retrieval of a Web Page with n Embedded

Objects

 Number of

Scenario Conns Reqs/Resps

Connection-per-Request n + 1 n + 1

Persistent Connection 1 n + 1

Bundle Retrieved 1-2 2

Additional overhead is incurred at the servers because bundles must
be created for appropriate Web pages, which requires tracking
changes to these Web pages. Storage to maintain the bundles is also
required. If delta encoding of these bundle objects is supported, then
deltas between different versions need to be maintained. Web
servers can control these costs by grouping objects in bundles
according to object change characteristics. The set of rarely
changing objects on a page would form one group. Frequently
changing objects contained within a Web page can either be
grouped in their own bundle or not grouped at all. In the latter case,
clients retrieve these objects individually as is currently done.

260

Impact on the Network
Each TCP connection places load on the network. Reducing the
number of TCP connections required to retrieve all objects on a
Web page, and therefore increasing the goodput, is a direct
contribution towards making the Internet and Web server sites less
congested. In that respect, the use of bundles is as beneficial as the
use of persistent connections.
Each HTTP request/response exchange also places load on the
network. Consider a client retrieving a Web page with n embedded
objects. Currently, irrespective of whether persistent TCP
connection or pipelining is used, the client issues n separate and
identical (except for the URL) HTTP requests. Examining the
HTTP request headers generated by two popular Web browsers,
Netscape Communicator 4.75 (NSC) and Microsoft Internet
Explorer 4.0 (MSIE), we see that NSC generates 257 and MSIE
generates 320 request bytes, not counting the size of the URL
string, for each of these n requests. We do not consider the overhead
introduced by these requests to be a serious issue for clients and
servers, but using only one request to retrieve n objects--our
approach--provides a way to lower the bandwidth requirements and
particularly the amount of processing done by routers.

Impact on Clients
The primary objective of Web clients (browsers) is to retrieve and
render Web pages as fast as possible. The two most popular Web
browsers, NSC and MSIE, indicate their willingness to keep
connections persistent: MSIE sends “HTTP/1.1” string in its HTTP
request, and NSC sends “Connection: Keep-Alive” header, which
was introduced as a way to support persistent connections with
HTTP/1.0. In practice, however, browsers routinely open a number
of concurrent connections--4, 6 and more [26,2]--even to the same
Web server, to retrieve objects necessary to render a Web page. Our
own investigation, performed by collecting traces of browser
requests to real Web servers with WinDump [29], and analyzing
them with tcptrace [19] and Perl scripts, revealed cases of a
browser opening up to 17 concurrent TCP connections to a server.
Given this aggressive client behavior, it is important to understand
the potential impact that the use of bundles could have on reducing
client-perceived latency. To investigate this issue, we used data
collected during the previous study on end-to-end Web
performance [14] to estimate the time it would take to download all
embedded objects on a Web page if they were packaged into a
bundle. The available data contains the times it took nine clients,
spread around the world, to download all embedded objects from
the home page of 700 popular server sites in November 1999.
Five clients were located in the USA at AT&T Research Labs in
New Jersey, Worcester Polytechnic Institute (WPI) in Worcester,
Mass., the University of Kentucky, Hewlett-Packard Labs in Palo

Alto, Calif., and the AT&T Center for Internet Research at ICSI in
Berkeley Calif. The other clients were located at the University of
Western Australia, a private site in Cape Town, South Africa, an
academic network site in Trondheim, Norway, and a commercial
site in Santiago, Chile. The 700 popular server sites were derived
from popularity lists of MediaMatrix, Netcraft, 100Hot, Fortune500
and Global500.
Four protocol options were used: serial requests over non-persistent
connections, up to four parallel requests over non-persistent
connections, serial requests over a persistent connection, and
pipelined requests over a persistent connection. The data also
contains sizes for all retrieved objects and HTTP response headers.
In addition to this data set, we obtained more data by having one
client, located at WPI, run every six hours during a five-day period
in November, 2000, on the set of 100 popular sites identified by
100Hot [1]. We collected data using the same methodology and
software as was used in [14] and labeled results from this client
“wpi100” in this paper.
For each Web page in the data set, the size of the bundle is
computed as the sum of header and content sizes for all objects
embedded on that page. To estimate the time it takes to download a
bundle of a given size from a given server, ideally one would
retrieve a static object, such as an image, of a similar size from that
server. However, since bundles contain multiple objects, their size
is substantially larger than that of the individual objects. The
existing data set did not have objects large enough to represent the
bundle object.
Instead, we estimated the download time of a bundle using detailed
timing information stored in the existing data for each object
retrieval. This information includes the time elapsed between when
the first and the last bytes of a response were received by the client.
Using this data, we computed the byte rate of the TCP connection
for the largest object in each bundle, and used the result to estimate
the download time for the bundle. While this is not an ideal
approach, it provides a reasonable estimate of the latency that
would be experienced by clients who opted to retrieve a bundle.
Furthermore, we believe the estimate is a conservative one, because
the byte rate of larger objects would be less influenced by TCP
slow-start.
Table 2 shows measured and estimated latencies experienced from
nine client sites. This list also includes the “wpi100” client. Table 2
includes measured retrieval times for only those servers that
supported pipelining and served more than one object over a single
connection. As reported in [14], servers in that category represented
only about 30% of all servers serving more than one object. In the
wpi100 results we found this value to be 39%. Numbers in
parentheses are ratios of the numbers in the respective column to
the parallel retrieval results.

261

As reported in [14], the pipelining results are generally better for
the set of servers that support it. The table also shows the
estimated time to download the bundle object for each of these
servers. As shown, the download time for the bundle object is
competitive with pipelining and generally better than parallel
retrievals except for the clients in Australia and South Africa. In
addition, we looked at the results for all servers, irrespective of
whether they supported pipelining, and also broke down the
results based on the number of objects to be retrieved. The results
are consistent with those in shown in Table 2. We expected that
retrieval of a single bundle would show improved performance if
more objects need to be retrieved, but the results do not support
this hypothesis.

Impact of Data Compression
Table 2 also shows estimated download times of compressed
bundles. We assume compression is done off-line and does not
increase retrieval latency. We estimated the sizes for compressed
objects by compressing a sample set of objects and their HTTP
headers using gzip. For headers we saw a reduction of 20% for the
first set of HTTP headers in the bundle with more extensive
reduction of 80% for subsequent headers, as duplication in headers
occurs. As expected, we found a small amount of compression
available in image contents, with approximately a 6% reduction if
multiple images were contained within a bundle. For textual
objects, such as scripts and style sheets, we estimated a 75%
reduction due to compression in our experiments.
Using these reduction percentages and the object types from our
original results we estimated the sizes of compressed bundles and
used the same methodology as before to estimate the download time
for objects of these sizes. The last two columns in Table 2 show the
results. Because bundles contain a large number of images, the
amount of compression is relatively small--in the range of 20-30%.
All bundles show some amount of compression due to the reuse of

headers amongst all of the bundled objects. Despite the relatively
small estimated compression, the download times for these
compressed bundles are almost always better than for parallel
retrievals and often better than when compared to the pipelined
retrieval results.
While both the sizes and download times of compressed bundles are
estimates, the results show promising response time for clients.
Retrieval of compressed bundles does result in additional
processing for the client, but tools such as gzip allow
decompression to be done as the stream of content is received at the
client.

Interaction with Client Caching
We examined the frequency at which the set of bundled objects
changed at each server. For this study we used only the results from
the wpi100 client. Retrievals were done every six hours from each
of the servers to both assess any time-of-day effects on the
download results and to allow us to gauge the frequency with which
the set of embedded objects on these pages change. In terms of
time-of-day effects, we did not find any patterns where the retrieval
of a bundle object performed better at peak versus off-peak time.
Estimating the number of embedded objects that could be reused,
we assumed that an embedded object was reusable if an object of
the same name had been retrieved in a previous time period and if
the size of the previously retrieved object matched the size of the
current object. While this approach ignores cache control directives
and the possibility of a changed object retaining the same size, it is
a reasonable first-cut estimate. What we found was that on the first
download of a Web page the average number of embedded objects
on the page was approximately 12 and the average bundle size
31192 bytes. After the first retrieval, the average number of new (or
changed) objects was 0.5 with an average size of 2689 bytes.
These reuse results are similar to those found in [14] and indicate
that the set of embedded objects does not change frequently. These

Table 2: Results for Servers that Support Persistent Connections with Pipelining. All Retrival Times in Seconds (Ratio against
Parallel Retrieval).

 Est. Parallel Pipeline Est. Size of Est.

Client Server Bundle Bundle Retrieval Retrieval Compressed Compressed

Site Measurements Size Time Time Time Bundle Time

aciri 223 33812 1.32 (0.7) 1.82 (1.0) 1.23 (0.7) 27207 1.07 (0.6)

att 167 27065 1.05 (0.7) 1.56 (1.0) 1.15 (0.7) 21294 0.82 (0.5)

aust 206 32516 10.89 (1.3) 8.47 (1.0) 7.36 (0.9) 26068 8.71 (1.0)

chile 207 33029 7.77 (1.0) 7.57 (1.0) 6.63 (0.9) 26517 6.50 (0.9)

hp 204 32991 1.42 (0.9) 1.55 (1.0) 1.17 (0.8) 26763 1.21 (0.8)

norway 133 16164 1.98 (0.9) 2.29 (1.0) 1.86 (0.8) 11102 1.64 (0.7)

safrica 209 28343 16.47 (1.3) 12.31 (1.0) 12.38 (1.0) 22045 12.84 (1.0)

uky 200 35360 3.76 (0.6) 6.05 (1.0) 3.04 (0.5) 28541 3.34 (0.6)

wpi 198 33161 4.23 (0.6) 6.62 (1.0) 4.08 (0.6) 26838 3.51 (0.5)

wpi100 1227 31192 0.57 (0.7) 0.78 (1.0) 0.71 (0.9) 23402 0.49 (0.6)

262

results are good from a server standpoint because the set of
embedded objects is relatively constant and new bundle objects
would need to be recomputed relatively infrequently.
However, these results also show that if a client caches the set of
objects it has previously retrieved for a page via a bundle object
then it should not retrieve the entire bundle object for the page on
subsequent accesses. In this case, the client would either retrieve
individual objects as needed or use one of the approaches discussed
in Section 2.3 to validate the previous bundle object as still fresh or
retrieve just the delta-encoded updates.

Summary and Future Work
In this paper we have described a new approach to retrieving
multiple Web objects. In our approach, servers package related
objects at a site into a bundle object, which can be obtained by
clients using a single HTTP request/response exchange. This
approach lessens the need for clients to use parallel requests or try
and maintain persistent connections with the server because fewer
objects need to be retrieved.
We compared each of the three existing content retrieval
approaches--parallel connections, persistent connections, persistent
connections with pipelining--to our approach, from the standpoint
of their performance impact on clients, servers and the network.
Our analysis indicates that if embedded objects on a Web page are
packaged and delivered to clients as a single bundle object, the
response time experienced by the clients is as good as or better than
that provided by currently deployed mechanisms. We have also
shown that, relative to the currently used retrieval methods, our
approach reduces the load on the network and servers.
The key contribution of our work is a mechanism that gives Web
servers better control over the number and duration of TCP
connections they support. We feel that our approach brings together
the simplicity and determinism of the request-per-connection model
and performance advantages of persistent connections. Our
technique should be particularly useful for serving the most
frequently accessed content at a site. The use of bundles allows
small, relatively static, objects to be grouped to reduce requests and
more efficiently use a single TCP connection. Its implementation
requires no changes to the HTTP protocol.
Many directions for future work are possible. First, we need to
better estimate the time to download bundle objects from Web sites.
This direction will involve locating larger objects at these sites and
using their download time to better estimate the retrieval time for
bundles. We also need to explore different compression and delta
encoding algorithms for reducing the amount of content needed to
be sent by a server to a client. We need to implement the bsync
bundle-aware delta encoding mechanism. The idea of bundles could
also be combined with prefetching as servers identify groups of
objects that are most likely to be used. Finally, we need to work on
standardizing how bundles are computed along with how their
existence is known to Web servers.

Acknowledgements
The authors thank Jeffrey Mogul and Balachander Krishnamurthy
for comments on the original idea, and Mark Allman for answering
questions regarding his recent paper. Authors are also grateful to the
National Science Foundation for providing partial support for this
research.

Bibliography
1. 100hot.com.
2. M. Allman. A Web Server’s View of the Transport Layer.

Computer Communication Review, 30(5), Oct. 2000.
3. T. Berners-Lee, R. T. Fielding, and H. F. Nielsen. Hypertext

Transfer Protocol--HTTP/1.0. RFC 1945, May 1996.
4. S. Bradner. Key words for use in RFCs to indicate requirement

levels. RFC 2119, IETF, Mar. 1997.
5. K. C. Claffy, G. J. Miller, and K. Thompson. The Nature of

the Beast: Recent Traffic Measurements from an Internet
Backbone. In Proceedings of the INET '98 Conference,
Geneva, Switzerland, July 1998. Internet Society. < Inet98
papers outreach www.caida.org>A>.

6. E. Cohen, B. Krishnamurthy, and J. Rexford. Improving end-
to-end performance of the Web using server volumes and
proxy filters. In ACM SIGCOMM'98 Conference, September
1998.

7. T. Faber, J. Touch, and W. Yue. The TIME-WAIT state in
TCP and Its Effect on Busy Servers. In Proceedings of the
IEEE Infocom '99 Conference, pages 1573-1583, New York,
NY, March 1999. IEEE.

8. R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L.
Masinter, P. J. Leach, and T. Berners-Lee. Hypertext Transfer
Protocol--HTTP/1.1. RFC 2616, June 1999.

9. J. Gettys and H. F. Nielsen. Smux protocol specification. W3C
Working Draft, July 1998.

10. D. Korn and K.-P. Vo. The VCDIFF Generic Differencing and
Compression Data Format. Internet Draft draft-korn-vcdiff-
02.txt, Nov. 2000.

11. B. Krishnamurthy and M. Arlitt. PRO-COW: protocol
compliance on the Web. In Proceedings of the USENIX
Symposium on Internet Technology and Systems, San
Francisco, California, USA, Mar. 2001. USENIX Association.

12. B. Krishnamurthy, J. C. Mogul, and D. M. Kristol. Key
Differences Between HTTP/1.0 and HTTP/1.1. In Eighth
International World Wide Web Conference, Toronto, Canada,
May 1999.

13. B. Krishnamurthy and C. E. Wills. Piggyback server
invalidation for proxy cache coherency. In Seventh
International World Wide Web Conference, pages 185-193,
Brisbane, Australia, Apr. 1998.

14. B. Krishnamurthy and C. E. Wills. Analyzing Factors That
Influence End-to-End Web Performance. In Proceedings of the
Ninth International World Wide Web Conference, Amsterdam,
Netherlands, April 2000.

15. J. Mogul. An alternative to explicit revocation?, Jan 1996.
16. J. Mogul, B. Krishnamurthy, F. Douglis, A. Feldmann, Y.

Goland, A. van Hoff, and D. Hellerstein. Delta encoding in
HTTP, Oct 2000.

17. J. C. Mogul. The case for persistent-connection HTTP. In
Proceedings of the ACM SIGCOMM '95 Conference. ACM,
Aug. 1995.

18. J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy.
Potential benefits of delta-encoding and data compression for
HTTP. In ACM SIGCOMM'97 Conference, September 1997.

19. S. Ostermann. tcptrace.

263

20. V. N. Padmanabhan and J. C. Mogul. Improving HTTP
latency. In Second International World Wide Web Conference,
Chicago, Illinois, USA, Oct. 1994.

21. J. Postel. Transmission Control Protocol. RFC 793, Sept.
1981.

22. National janet web caching service. Look for a local copy of
this web site at the bottom of the page.
< wwwcache.ja.net>A>.

23. S. E. Spero. SCP--Session Control Protocol V 1.1.
24. W. R. Stevens. TCP/IP Illustrated, Volume 1, The Protocols,

volume 1. Addison-Wesley, Reading, MA, nov 1994.
25. Tridgell and P. Mackerras. The rsync algorithm, Nov. 1998.

< rsync.samba.org>A>.

26. Z. Wang and P. Cao. Persistent Connection Behavior of
Popular Browsers. Research Note, Dec. 1998.

27. S. Williams, M. Abrams, C. R. Standbridge, G. Abdulla, and
E. A. Fox. Removal Policies in Network Caches for World-
Wide Web Documents. In Proceedings of the ACM
SIGCOMM Conference, pages 293-305, August 1996.

28. C. E. Wills and M. Mikhailov. Studying the Impact of More
Complete Server Information on Web Caching. In
Proceedings of the 5th International Web Caching and
Content Delivery Workshop, Lisbon, Portugal, May 2000.

29. WinDump: tcpdump for Windows. < windump netgroup-
serv.polito.it>A>.

264

