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Abstract: 
Persistent connections address inefficiencies associated with 
multiple concurrent connections. They can improve response time 
when successfully used with pipelining to retrieve a set of objects 
from a Web server. In practice, however, there is inconsistent 
support for persistent connections, particularly with pipelining, 
from Web servers, user agents, and intermediaries. Web browsers 
continue to open multiple concurrent TCP connections to the same 
server.  
This paper proposes a new idea of packaging the set of objects 
embedded on a Web page into a single bundle object for retrieval 
by clients. Our analysis indicates that if embedded objects on a Web 
page are delivered to clients as a single bundle, the response time 
experienced by the clients is as good as or better than that provided 
by currently deployed mechanisms. We also show that, relative to 
the currently used retrieval methods, our approach reduces the load 
on the network and servers. The key contribution of our work is a 
mechanism that gives Web servers better control over the number 
and duration of TCP connections they support. Implementation of 
the mechanism requires no changes to the HTTP protocol.  

Keywords: Web Performance, HTTP, Persistent Connections, 
Delta Encoding  

Introduction  
The World Wide Web has significantly evolved over the past few 
years. The amount of offered content and the number of content 
consumers have grown exponentially, complexity and richness of 
content has increased, functionality and performance of Web 
servers and user agents has improved. Web transactions, carried 
over the HyperText Transfer Protocol (HTTP) [3,8] running on top 
of the Transmission Control Protocol (TCP) [21], account for 70-
75% of traffic on the Internet backbone, according to one study [5]. 
With the Web being the main application on the Internet, it is vital 
to ensure the efficient use of network (and server) resources by Web 
transfers while quickly delivering the requested content to end 
users. In this paper we propose a new idea of packaging the set of 
objects embedded on a Web page into a single bundle object for 
retrieval by clients. This idea is intended to address problems we 
see with current approaches for retrieving multiple objects needed 
to render a Web page.  

Versions 0.9 and 1.0 of the HTTP protocol are based on the model 
that uses a new TCP connection for each request/reply exchange 
with the Web server. To speed up the retrieval of content, many 
popular Web browsers open multiple concurrent TCP connections. 
Such a model, whether implemented with serialized or concurrent 
TCP connections, makes inefficient use of network and server 
resources. The overhead of setting up and tearing down each TCP 
connection contributes to router congestion. The operating system 
of the Web server also incurs per connection overhead and 
experiences TCP TIME_WAIT loading for each closed TCP 
connection. Response latency is also affected when a new TCP 
connection is created for each request and because each transfer 
independently goes through the TCP slow start phase.  
Early on in the development of the Web this inefficiency of the 
simple HTTP model was realized and addressed by a number of 
proposals [23,9,17] advocating the use of a single TCP connection 
for multiple request/reply exchanges. Two new HTTP methods 
were also suggested, GETALL and GETLIST, which could be used 
to get all objects from a Web page in a single retrieval, and to get an 
arbitrary list of objects from a server in a single request [20]. These 
efforts contributed to the decision to adopt persistent connections as 
default in the HTTP/1.1 protocol, which was recently standardized 
by IETF [8,12].  
HTTP/1.1 compliant clients and servers SHOULD (not MUST) (for 
the definition of these terms as applied to standards see [4]) permit 
persistent connections, although either side is allowed to terminate a 
persistent connection at any time. Both clients and servers can also 
indicate their unwillingness to hold a connection as persistent by 
including a “Connection: close” header as part of the HTTP request 
or reply respectively.  
This flexibility in dealing with persistent connections was deemed 
necessary, particularly for servers, during the development of the 
HTTP/1.1 specification, but has led to mixed success in the current 
use of persistent connections. Recent studies have shown that 70-
75% of Web servers at popular Web sites support HTTP/1.1 
persistent connections, meaning that more than one object was 
successfully retrieved over the same TCP connection [11,14].  
However, support for persistent connections does not necessarily 
lead to reduced retrieval times for a set of objects from a server. In a 
recent study, one of the authors evaluated the impact of different 
strategies for using TCP connections to retrieve multiple objects 
from the same server on the end-to-end response time and found a 
number of interesting results [14]. First, a single persistent 
connection with serialized HTTP requests generally does not 
provide better response time than parallel requests. Second, a single 
persistent connection with pipelining generally provides better 
response than parallel requests, but pipelining was only supported 
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by about 30% of the servers. Moreover, performance benefits are 
lost if TCP connections must be re-established.  
Overall, persistent connections address inefficiencies associated 
with multiple concurrent connections, and when successfully used 
with pipelining can improve the response time. In practice, 
however, there is inconsistent support from Web servers, user 
agents, and intermediaries for persistent connections, particularly 
with pipelining. In this environment, browsers continue to open 
multiple concurrent TCP connections to the same server [26,2], 
which leads us to consider more efficient approaches for retrieving 
multiple objects from a server.  
This work proposes a new approach to the problem of delivering 
multiple Web objects from a single server to a client. Our approach 
is more efficient than using multiple concurrent TCP connections 
and more deterministic than a persistent connection carrying a 
variable number of client requests. The basic idea is for the servers 
to group sets of related objects, such as objects needed to render a 
Web page, into a new object, called a bundle, or a package. In its 
simplest form, a bundle is a concatenation of a URL string, HTTP 
headers and content for each of its constituent objects. Servers 
advertise the availability of a bundle (or bundles) for each of their 
container (HTML) pages via a new HTTP response header Bundles 
(or perhaps via an HTML META tag). Clients understanding this 
header can then choose to either issue a single HTTP request (over 
an existing or a new TCP connection) and fetch the entire bundle or 
to ignore the availability of the bundle and retrieve all remaining 
objects for the container page as is currently done. Upon obtaining 
the bundle, clients recover the objects encapsulated in it and cache 
each of them using the supplied URLs and HTTP headers. As 
clients render the page, the embedded objects should already be 
cached, but if a bundle does not contain a complete list, then clients 
simply retrieve the needed objects from the server as is currently 
done.  
An origin server or a server in a Content Distribution Network 
(CDN) can use this approach to serve multiple objects grouped 
together. In evaluating this approach, our focus has been on a set of 
objects necessary to fully render a Web page. In general, bundles 
could include objects that have some other form of relationship than 
being part of the same page. For example, all “popular” images at a 
site could be packaged into a bundle.  
In the remainder of the paper we discuss the details of this approach 
and examine its impact on the entities (network, servers, clients) 
involved in the handling of the HTTP requests and responses. We 
also evaluate the use of server side compression on the contents of 
bundles and examine the interaction between our approach and 
client side caching. We conclude with a summary of our findings 
and a discussion of directions for future work.  

Packaging Objects into Bundles  
A common way to distribute software on the Internet is to package 
a collection of related files into a single file, using tools such as tar 
and gzip. We are also aware of Web sites that package a subset of 
their content (mostly static resources) using similar techniques and 
provide a pointer to the resulting file on their home pages (see [22] 
as an example). We are unaware, however, of any work that has 
proposed and evaluated a more selective and automated packaging 
of related objects.  

Basic Idea  
The use of bundles is initiated by the content provider. In the 
simplest case, an origin server creates a bundle of all of the 

embedded objects contained on a Web page. The use of bundles is 
independent of whether the container page itself is static or is 
dynamically generated, assuming dynamically-generated content 
uses the same set of embedded objects. Each object in a bundle is 
represented by its URL, relevant metadata (HTTP headers) and 
contents. HTTP headers associated with each object, local headers, 
are specific to that object. For example, an object can have Content-
Length (used by the client in recovering the encapsulated objects) or 
Last-Modified HTTP header associated with it. When a bundle is 
requested by a client, the Web server also assigns it a set of HTTP 
headers, as it would for any other object. In the context of bundles, 
we will refer to such headers as global headers. In cases where 
global headers have the same names as the local headers, the local 
headers always take precedence over global headers. Otherwise, 
individual objects within a bundle inherit the global headers. Since 
all objects served by the same Web server naturally share some 
common HTTP headers, such as Server or Date, serving a single 
bundle instead of multiple individual objects results in a simple 
header compaction mechanism. With many small objects included 
in a bundle, byte savings could be significant.  
For serving objects embedded in a Web page, a server can adopt a 
convention that bundles have the same names as their respective 
pages, except for the extension. For example, the bundle contains 
the embedded objects for the page. Bundles could be dynamically 
computed upon a client’s request or could be precomputed. 
Dynamic construction of bundles is likely to incur substantial 
overhead due to a Web server parsing the page to determine which 
objects to include in the bundle. Precomputation avoids critical path 
processing but requires additional storage at the server since both 
bundled and original objects are stored. Popular objects, such as 
logos embedded on all site pages, could be separated into a separate 
“frequently-used object” bundle. Ultimately, servers decide if, 
when, and how to construct bundles.  
One approach for constructing bundles is to group objects on a 
page, or across pages, based on their relationships and change 
characteristics, as discussed in [28]. Such grouping is reminiscent of 
the notion of volumes [15,13,6]. For example, static or infrequently 
changing objects on a page can be packaged together. Frequently 
changing objects on the same page can be organized into a separate 
bundle--or not grouped at all. While clients need to retrieve more 
than one bundle for a page in such cases, each bundle contains 
objects with similar change characteristics and presumably cache 
control directives.  
While processing a request for a Web page that has an associated 
bundle, a Web server includes an additional HTTP header in its 
response, advertising the availability of bundles to the client. For 
example, the server includes the “Bundles: home.bndl”  header 
when processing a request for home.html. If the requesting client 
chooses to take advantage of the available bundle, it issues a single 
HTTP request (over the existing or a new TCP connection) and 
indicates its ability to accept a new content type, application/x-bndl. 
Upon obtaining the bundle, the client extracts individual objects 
from it and reconstructs their metadata. These objects can then be 
stored in the local client cache (whether the client is a user agent or 
a proxy cache). At this point, the client can discard the bundle itself, 
although it may want to retain meta-information about the bundle 
object for future retrievals (see Section 2.3). Clients that do not 
support bundles, or choose to ignore them, fetch embedded objects 
as usual. The use of bundles is optional for both clients and servers, 
and it does not require any changes to the current method of content 
retrieval.  
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Using Compression with Bundles  
An obvious extension of simply concatenating a set of objects 
together is to use a compression tool such as gzip to reduce the size 
of the bundle for transmission (potentially for storage as well). In 
the likely case that bundles contain primarily images, which are 
already compressed, opportunities for additional compression come 
mostly from textual HTTP headers within the bundle. In cases 
where bundles encapsulate textual objects, such as HTML frames, 
Cascading Style Sheets or scripts to be executed on the client side 
(JavaScript that is not part of HTML, for example), applying 
compression could significantly reduce the size of the bundle.  

Bundles and Caching  
A passive Web cache, whether it is a browser cache or a proxy 
cache, can only serve objects which have been previously retrieved, 
subject to per-object restrictions. The first retrievals of a Web page 
and its associated objects would all result in cache misses and hence 
the availability of a bundle containing all embedded objects for the 
page would be of value to the client. As the client subsequently 
retrieves the same or other bundles from the same server, the client 
might obtain objects that it already has in its cache. We see three 
approaches addressing this negative interaction between bundles 
and caching: validating individual objects, validating entire bundles, 
and delta encoding of bundles.  

Validating Individual Objects within a Bundle  
The HTTP response header, rather than simply advertising the 
bundle, as “Bundles: home.bndl,”  could also include a list of 
objects encapsulated in the bundle and their sizes, as  

Bundles: home.bndl (main.css size=sz1, img1.gif size=sz2, img2.gif 
size=sz3); 

This list allows a client cache to decide whether the new bundle 
contains enough new objects to warrant its retrieval. If not, the 
client should ignore the bundle and retrieve individual objects as 
needed. Servers could also include other validators, such as Last-
Modified or ETag, to aid clients in determining whether  new object 
retrievals are needed.  

Validating Entire Bundles  
In the second approach, a client cache retrieves a bundle object, 
extracts and stores its encapsulated objects, discards the bundle 
itself, but retains its HTTP headers, especially the ones used for 
cache validation. For example, if the Last-Modified or ETag 
headers are present, they could be subsequently used by the cache 
to issue a  GET If-Modified-Since (IMS) or a GET If-None-Match 
request to the server to verify the freshness of the bundle. If the 
bundle has not changed, the server will indicate so via the HTTP 
response status code 304 Not Modified. In this case, the client cache 
would have automatically validated multiple objects by issuing a 
single aggregate IMS request. If the bundle has changed, the server 
will reply with the HTTP response status code 200 OK followed by 
the body of the new bundle. If the bundle has changed due to only a 
subset of its encapsulated objects changing, its retrieval wastes 
resources. This problem leads to the third approach.  

Delta Encoding of Bundles  
The third approach uses delta encoding. The idea of the technique, 
described by Williams et al. [27], is for the origin server (or proxy) 
to compute a difference (delta) between an old and a new copy of 
an object and communicate that difference to the client, provided 
that the client has an old copy of the object. The client can construct 

the new object by applying the delta to the old object. Mogul, et 
al. [18] quantified the benefits of end-to-end delta encoding and 
compression and proposed extensions to the HTTP protocol to 
support the technique. These extensions are detailed in the recently 
published Internet Draft [16].  
Since bundles are regular objects, the delta encoding technique can 
be uniformly applied to bundles just like it can be applied to any 
other object. Example delta encodings include those produced by 
UNIX diff -e or by vcdiff [10]. Delta encoding of bundles could also 
be implemented as a modified rsync mechanism [25]. This 
mechanism efficiently computes differences between two instances 
of the same file and is commonly used to update software packages 
produced with tools such as tar.  
Upon receiving the delta encoded response, the client first 
reconstructs the older version of the bundle based on the preserved 
meta data of the bundle and individual cached objects, and then 
applies the delta to the result to produce the new version of the 
bundle. Problems arise when one or more of the objects from the 
old bundle are evicted from the client’s cache, making the 
reconstruction of the old version of the bundle impossible. To 
address this problem, clients could cache bundle contents instead of 
discarding them or use a bundle-aware differencing algorithm.  
The output of a bundle-aware differencing algorithm, given a new 
and an old version of a bundle, encapsulates all objects in the new 
version that are not part of the old version, and all modified objects 
in the new version. The output also includes a list of objects that 
were part of the old version, but are not in the new version, to help 
clients differentiate between removed and unchanged objects. 
Given that bundles are likely to contain mostly images, computing 
differences on an object-by-object basis rather than byte-by-byte 
basis makes sense. When the client receives such a bundle-aware 
delta, all it needs to have in its cache are the unchanged objects 
from the old bundle. If some of them were evicted from the cache, 
the client can retrieve them individually.  
We now illustrate how bundle-aware deltas are specified within 
HTTP. Suppose a client obtained a bundle home.bndl from 
www.foo.com, cached all the objects encapsulated in it, discarded 
the bundle itself, and kept meta data for the bundle. If at a later time 
this client wants to obtain the current value of the bundle it can send 
the following request to the server (this example is adapted 
from [16]):  

GET /home.bndl HTTP/1.1 
Host: www.foo.com  
If-None-Match: Bundle-ETag1 
A-IM: diffe, vcdiff, bsync, gzip 

In this example, the client indicates that it has a cached copy of the 
bundle, identified by ETag with the value Bundle-ETag1. Delta 
encoding is considered to be an instance manipulation, and the A-
IM HTTP request header, short for Accept-Instance-Manipulation, 
indicates which delta encodings the client supports. The client can 
accept delta updates produced by UNIX diff -e and vcdiff. The 
bsync specification, short for “bundle sync,” represents the 
previously described bundle-aware encoding algorithm. To our 
knowledge, there is no existing tool that does the proposed bundle 
differencing, although similar distribution synchronization tools 
exist. The client also indicates that it can accept compressed 
responses using gzip, whether or not they were delta-encoded.  
If the entity tag for home.bndl has changed (say, to Bundle-ETag2), 
the server, if it supports delta encoding, will compute the difference 
between the current version of the bundle and the older one, whose 
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ETag value is Bundle-ETag1, and send the response to the client, as 
shown below:  

HTTP/1.1 226 IM Used 
Server: Delta-Aware Server/1.0 
ETag: Bundle-ETag2 
IM: bsync 
Date: Sun, 12 Nov 2000 10:00:00 GMT 
 
......delta between new and old bundle...... 

A new HTTP response code 226 IM Used is required to force 
HTTP/1.0 proxies to forward all instance-manipulated responses 
without storing them (other options are discussed in [16]). If the 
server does not support delta encoding or does not implement any 
of the algorithms supported by the client then it replies with the 
HTTP response code 200 OK and the body of the entire new 
bundle.  

Interaction with Content Distribution  
The final issue we address is the interaction of the use of bundles 
with the distribution of Web content across multiple servers. Results 
obtained in November, 1999, showed a relatively small fraction 
(15%) of 700 popular Web sites using more than one server to serve 
content for their home pages [14]. However, in August, 2000, we 
did a follow-up study of the home pages for 312 popular sites (not a 
strict subset of the previous set) and found that 63% of these sites 
used more than one server to serve the objects on the home page. 
We address the apparent disconnect between this trend to distribute 
content and our proposal of consolidating it in two ways.  
First, the distribution of a relatively small number of objects to 
different servers does not appear to be a good idea in terms of 
performance, regardless of whether bundles are available or not. 
Each new server requires a new DNS lookup on the part of the 
client as well as opening a new TCP connection.  
Second, if many objects are served by auxiliary servers, for instance 
by a special “image server”  at a site or by a CDN server, then these 
objects are good candidates to be packaged together into a single 
object. A bundle can be retrieved from a CDN server just as it can 
be from an origin server. A bundle could also contain objects 
assigned to multiple servers if these objects were all under the 
control of a single content provider.  

Performance Impact  
The previous section discusses how bundles can be constructed and 
used by Web clients and servers. This section examines the 
performance implications that the use of bundles could have on the 
network, servers, and clients. Bundles are unlikely to find wide 
adoption unless shown to be beneficial to both clients and servers.  

Impact on Servers  
HTTP uses TCP as its transport protocol. As a connection-oriented 
protocol, TCP maintains state at each end point of the connection 
thus placing per-connection memory overhead on each peer host. 
With a large number of simultaneously active TCP connections, a 
Web server’s memory requirements can grow large. A more 
significant per-connection overhead occurs when a host performs an 
active close on the TCP connection. After sending the final TCP 
ACK, that host must keep the closed connection in the 
TIME_WAIT state for twice the Maximum Segment Lifetime 
(MSL) [24]. MSL is specified as 2 minutes [21], but commonly 
used values are 30 seconds, 1 and 2 minutes [24]. Consequently, the 

local port number used by the connection that is currently in 
TIME_WAIT state cannot be reused for 1 to 4 minutes. In HTTP, 
Web servers are the ones normally closing the connection. 
Therefore, depending on the local port range made available by the 
operating system (it is not always 1024-65535), and the client 
request rate, servers might be unable to open new TCP connections, 
even if few are currently active. HTTP throughput reductions of up 
to 50% have been reported [7]. TIME_WAIT loading of busy Web 
servers is studied in [7].  
Intuitively, it is clear that Web servers should benefit from 
maintaining fewer TCP connections. Yet experience shows that 
support for persistent connections is not always implemented in 
Web server software or is deliberately turned off. The latter might 
be explained by the fact that lifetime of a persistent connection is 
non-deterministic--Web servers and clients are free to close a 
persistent connection when they deem necessary. The default 
connection-per-request model of HTTP/1.0, on the other hand, is 
deterministic--a server closes the connection after forwarding the 
response to the client. Our proposal utilizes a single TCP 
connection to effectively retrieve multiple objects while allowing 
the server to deterministically close the connection.  
In addition to per-TCP connection overhead, Web servers also incur 
per HTTP request and per HTTP response overheads. Each HTTP 
request must be parsed, possibly logged, each HTTP response must 
be generated, including the HTTP response headers. Depending on 
the configuration and load, a Web server might need to fork a new 
process to service an incoming request.  
Consider a Web server serving a Web page with n embedded 
objects under three different scenarios, as shown in Table 1. Under 
the connection-per-request model, used by HTTP/1.0 and HTTP/1.1 
without persistent connection support, the number of TCP 
connections, HTTP requests and HTTP responses directly depends 
on n. With the persistent connections, the number of HTTP requests 
and responses is still proportional to n. Only when bundles are used 
the number of connections and requests needed to retrieve a Web 
page is constant.  
   

Table 1: TCP Connections and HTTP Requests/Responses 
Resulting From the Retrieval of a Web Page with n Embedded 

Objects 

  Number of 

Scenario Conns Reqs/Resps 

Connection-per-Request n + 1 n + 1 

Persistent Connection 1 n + 1 

Bundle Retrieved 1-2 2 
 
 
Additional overhead is incurred at the servers because bundles must 
be created for appropriate Web pages, which requires tracking 
changes to these Web pages. Storage to maintain the bundles is also 
required. If delta encoding of these bundle objects is supported, then 
deltas between different versions need to be maintained. Web 
servers can control these costs by grouping objects in bundles 
according to object change characteristics. The set of rarely 
changing objects on a page would form one group. Frequently 
changing objects contained within a Web page can either be 
grouped in their own bundle or not grouped at all. In the latter case, 
clients retrieve these objects individually as is currently done.  
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Impact on the Network  
Each TCP connection places load on the network. Reducing the 
number of TCP connections required to retrieve all objects on a 
Web page, and therefore increasing the goodput, is a direct 
contribution towards making the Internet and Web server sites less 
congested. In that respect, the use of bundles is as beneficial as the 
use of persistent connections.  
Each HTTP request/response exchange also places load on the 
network. Consider a client retrieving a Web page with n embedded 
objects. Currently, irrespective of whether persistent TCP 
connection or pipelining is used, the client issues n separate and 
identical (except for the URL) HTTP requests. Examining the 
HTTP request headers generated by two popular Web browsers, 
Netscape Communicator 4.75 (NSC) and Microsoft Internet 
Explorer 4.0 (MSIE), we see that NSC generates 257 and MSIE 
generates 320 request bytes, not counting the size of the URL 
string, for each of these n requests. We do not consider the overhead 
introduced by these requests to be a serious issue for clients and 
servers, but using only one request to retrieve n objects--our 
approach--provides a way to lower the bandwidth requirements and 
particularly the amount of processing done by routers.  

Impact on Clients  
The primary objective of Web clients (browsers) is to retrieve and 
render Web pages as fast as possible. The two most popular Web 
browsers, NSC and MSIE, indicate their willingness to keep 
connections persistent: MSIE sends “HTTP/1.1”  string in its HTTP 
request, and NSC sends “Connection: Keep-Alive”  header, which 
was introduced as a way to support persistent connections with 
HTTP/1.0. In practice, however, browsers routinely open a number 
of concurrent connections--4, 6 and more [26,2]--even to the same 
Web server, to retrieve objects necessary to render a Web page. Our 
own investigation, performed by collecting traces of browser 
requests to real Web servers with WinDump [29], and analyzing 
them with tcptrace [19] and Perl scripts, revealed cases of a 
browser opening up to 17 concurrent TCP connections to a server.  
Given this aggressive client behavior, it is important to understand 
the potential impact that the use of bundles could have on reducing 
client-perceived latency. To investigate this issue, we used data 
collected during the previous study on end-to-end Web 
performance [14] to estimate the time it would take to download all 
embedded objects on a Web page if they were packaged into a 
bundle. The available data contains the times it took nine clients, 
spread around the world, to download all embedded objects from 
the home page of 700 popular server sites in November 1999.  
Five clients were located in the USA at AT&T Research Labs in 
New Jersey, Worcester Polytechnic Institute (WPI) in Worcester, 
Mass., the University of Kentucky, Hewlett-Packard Labs in Palo 

Alto, Calif., and the AT&T Center for Internet Research at ICSI in 
Berkeley Calif. The other clients were located at the University of 
Western Australia, a private site in Cape Town, South Africa, an 
academic network site in Trondheim, Norway, and a commercial 
site in Santiago, Chile. The 700 popular server sites were derived 
from popularity lists of MediaMatrix, Netcraft, 100Hot, Fortune500 
and Global500.  
Four protocol options were used: serial requests over non-persistent 
connections, up to four parallel requests over non-persistent 
connections, serial requests over a persistent connection, and 
pipelined requests over a persistent connection. The data also 
contains sizes for all retrieved objects and HTTP response headers. 
In addition to this data set, we obtained more data by having one 
client, located at WPI, run every six hours during a five-day period 
in November, 2000, on the set of 100 popular sites identified by 
100Hot [1]. We collected data using the same methodology and 
software as was used in [14] and labeled results from this client 
“wpi100”  in this paper.  
For each Web page in the data set, the size of the bundle is 
computed as the sum of header and content sizes for all objects 
embedded on that page. To estimate the time it takes to download a 
bundle of a given size from a given server, ideally one would 
retrieve a static object, such as an image, of a similar size from that 
server. However, since bundles contain multiple objects, their size 
is substantially larger than that of the individual objects. The 
existing data set did not have objects large enough to represent the 
bundle object.  
Instead, we estimated the download time of a bundle using detailed 
timing information stored in the existing data for each object 
retrieval. This information includes the time elapsed between when 
the first and the last bytes of a response were received by the client. 
Using this data, we computed the byte rate of the TCP connection 
for the largest object in each bundle, and used the result to estimate 
the download time for the bundle. While this is not an ideal 
approach, it provides a reasonable estimate of the latency that 
would be experienced by clients who opted to retrieve a bundle. 
Furthermore, we believe the estimate is a conservative one, because 
the byte rate of larger objects would be less influenced by TCP 
slow-start.  
Table 2 shows measured and estimated latencies experienced from 
nine client sites. This list also includes the “wpi100”  client. Table 2 
includes measured retrieval times for only those servers that 
supported pipelining and served more than one object over a single 
connection. As reported in [14], servers in that category represented 
only about 30% of all servers serving more than one object. In the 
wpi100 results we found this value to be 39%. Numbers in 
parentheses are ratios of the numbers in the respective column to 
the parallel retrieval results. 
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As reported in [14], the pipelining results are generally better for 
the set of servers that support it. The table also shows the 
estimated time to download the bundle object for each of these 
servers. As shown, the download time for the bundle object is 
competitive with pipelining and generally better than parallel 
retrievals except for the clients in Australia and South Africa. In 
addition, we looked at the results for all servers, irrespective of 
whether they supported pipelining, and also broke down the 
results based on the number of objects to be retrieved. The results 
are consistent with those in shown in Table 2. We expected that 
retrieval of a single bundle would show improved performance if 
more objects need to be retrieved, but the results do not support 
this hypothesis.  

Impact of Data Compression  
Table 2 also shows estimated download times of compressed 
bundles. We assume compression is done off-line and does not 
increase retrieval latency. We estimated the sizes for compressed 
objects by compressing a sample set of objects and their HTTP 
headers using gzip. For headers we saw a reduction of 20% for the 
first set of HTTP headers in the bundle with more extensive 
reduction of 80% for subsequent headers, as duplication in headers 
occurs. As expected, we found a small amount of compression 
available in image contents, with approximately a 6% reduction if 
multiple images were contained within a bundle. For textual 
objects, such as scripts and style sheets, we estimated a 75% 
reduction due to compression in our experiments.  
Using these reduction percentages and the object types from our 
original results we estimated the sizes of compressed bundles and 
used the same methodology as before to estimate the download time 
for objects of these sizes. The last two columns in Table 2 show the 
results. Because bundles contain a large number of images, the 
amount of compression is relatively small--in the range of 20-30%. 
All bundles show some amount of compression due to the reuse of 

headers amongst all of the bundled objects. Despite the relatively 
small estimated compression, the download times for these 
compressed bundles are almost always better than for parallel 
retrievals and often better than when compared to the pipelined 
retrieval results.  
While both the sizes and download times of compressed bundles are 
estimates, the results show promising response time for clients. 
Retrieval of compressed bundles does result in additional 
processing for the client, but tools such as gzip allow 
decompression to be done as the stream of content is received at the 
client.  

Interaction with Client Caching  
We examined the frequency at which the set of bundled objects 
changed at each server. For this study we used only the results from 
the wpi100 client. Retrievals were done every six hours from each 
of the servers to both assess any time-of-day effects on the 
download results and to allow us to gauge the frequency with which 
the set of embedded objects on these pages change. In terms of 
time-of-day effects, we did not find any patterns where the retrieval 
of a bundle object performed better at peak versus off-peak time.  
Estimating the number of embedded objects that could be reused, 
we assumed that an embedded object was reusable if an object of 
the same name had been retrieved in a previous time period and if 
the size of the previously retrieved object matched the size of the 
current object. While this approach ignores cache control directives 
and the possibility of a changed object retaining the same size, it is 
a reasonable first-cut estimate. What we found was that on the first 
download of a Web page the average number of embedded objects 
on the page was approximately 12 and the average bundle size 
31192 bytes. After the first retrieval, the average number of new (or 
changed) objects was 0.5 with an average size of 2689 bytes.  
These reuse results are similar to those found in [14] and indicate 
that the set of embedded objects does not change frequently. These 

Table 2: Results for Servers that Support Persistent Connections with Pipelining. All Retrival Times in Seconds (Ratio against 
Parallel Retrieval). 

      Est. Parallel Pipeline Est. Size of Est. 

Client Server Bundle Bundle Retrieval Retrieval Compressed Compressed 

Site Measurements Size Time Time Time Bundle Time 

aciri 223 33812 1.32 (0.7) 1.82 (1.0) 1.23 (0.7) 27207 1.07 (0.6) 

att 167 27065 1.05 (0.7) 1.56 (1.0) 1.15 (0.7) 21294 0.82 (0.5) 

aust 206 32516 10.89 (1.3) 8.47 (1.0) 7.36 (0.9) 26068 8.71 (1.0) 

chile 207 33029 7.77 (1.0) 7.57 (1.0) 6.63 (0.9) 26517 6.50 (0.9) 

hp 204 32991 1.42 (0.9) 1.55 (1.0) 1.17 (0.8) 26763 1.21 (0.8) 

norway 133 16164 1.98 (0.9) 2.29 (1.0) 1.86 (0.8) 11102 1.64 (0.7) 

safrica 209 28343 16.47 (1.3) 12.31 (1.0) 12.38 (1.0) 22045 12.84 (1.0) 

uky 200 35360 3.76 (0.6) 6.05 (1.0) 3.04 (0.5) 28541 3.34 (0.6) 

wpi 198 33161 4.23 (0.6) 6.62 (1.0) 4.08 (0.6) 26838 3.51 (0.5) 

wpi100 1227 31192 0.57 (0.7) 0.78 (1.0) 0.71 (0.9) 23402 0.49 (0.6) 
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results are good from a server standpoint because the set of 
embedded objects is relatively constant and new bundle objects 
would need to be recomputed relatively infrequently.  
However, these results also show that if a client caches the set of 
objects it has previously retrieved for a page via a bundle object 
then it should not retrieve the entire bundle object for the page on 
subsequent accesses. In this case, the client would either retrieve 
individual objects as needed or use one of the approaches discussed 
in Section 2.3 to validate the previous bundle object as still fresh or 
retrieve just the delta-encoded updates.  

Summary and Future Work  
In this paper we have described a new approach to retrieving 
multiple Web objects. In our approach, servers package related 
objects at a site into a bundle object, which can be obtained by 
clients using a single HTTP request/response exchange. This 
approach lessens the need for clients to use parallel requests or try 
and maintain persistent connections with the server because fewer 
objects need to be retrieved.  
We compared each of the three existing content retrieval 
approaches--parallel connections, persistent connections, persistent 
connections with pipelining--to our approach, from the standpoint 
of their performance impact on clients, servers and the network. 
Our analysis indicates that if embedded objects on a Web page are 
packaged and delivered to clients as a single bundle object, the 
response time experienced by the clients is as good as or better than 
that provided by currently deployed mechanisms. We have also 
shown that, relative to the currently used retrieval methods, our 
approach reduces the load on the network and servers.  
The key contribution of our work is a mechanism that gives Web 
servers better control over the number and duration of TCP 
connections they support. We feel that our approach brings together 
the simplicity and determinism of the request-per-connection model 
and performance advantages of persistent connections. Our 
technique should be particularly useful for serving the most 
frequently accessed content at a site. The use of bundles allows 
small, relatively static, objects to be grouped to reduce requests and 
more efficiently use a single TCP connection. Its implementation 
requires no changes to the HTTP protocol.  
Many directions for future work are possible. First, we need to 
better estimate the time to download bundle objects from Web sites. 
This direction will involve locating larger objects at these sites and 
using their download time to better estimate the retrieval time for 
bundles. We also need to explore different compression and delta 
encoding algorithms for reducing the amount of content needed to 
be sent by a server to a client. We need to implement the bsync 
bundle-aware delta encoding mechanism. The idea of bundles could 
also be combined with prefetching as servers identify groups of 
objects that are most likely to be used. Finally, we need to work on 
standardizing how bundles are computed along with how their 
existence is known to Web servers.  
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