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ABSTRACT
Since WWW encourages hypertext and hypermedia docu-
ment authoring (e.g., HTML or XML), Web authors tend to
create documents that are composed of multiple pages con-
nected with hyperlinks or frames. A Web document may
be authored in multiple ways, such as (1) all information
in one physical page, or (2) a main page and the related
information in separate linked pages. Existing Web search
engines, however, return only physical pages. In this paper,
we introduce and describe the use of the concept of informa-
tion unit, which can be viewed as a logical Web document
consisting of multiple physical pages as one atomic retrieval
unit. We present an algorithm to eÆciently retrieve infor-
mation units. Our algorithm can perform progressive query
processing over a Web index by considering both document
semantic similarity and link structures. Experimental re-
sults on synthetic graphs and real Web data show the ef-
fectiveness and usefulness of the proposed information unit
retrieval technique.

Keywords
Web proximity search, link structures, query relaxation, pro-
gressive processing

1. INTRODUCTION
To �nd the announcements for conferences whose topics of

interests include WWW, a user may issue a query \retrieve
Web documents which contain keywordsWWW, conference,
and topics." We issued the above query to an Internet search
engine and surprisingly found that the returned results did
not include many relevant conferences. The main reason for
this type of false drops is that the contents of HTML docu-
ments are often distributed among multiple physical pages
and are connected through links or frames. With the cur-
rent indexing and search technology, many search engines
retrieve only those physical pages that have all the query
keywords. It is crucial that the structure of Web documents
(which may consist of multiple pages) is taken into consid-
eration for information retrieval.

�This work was performed when the author was with NEC
USA Inc.

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

In this paper, we introduce the concept of an information
unit, which can be viewed as a logical Web document, which
may consist of multiple physical pages as one atomic retrieval
unit. The concept of information units does not attempt to
produce additional results that are likely to be more than
users can browse. Instead, our approach is to keep those
exactly matched pages at the top of the ranked list, while
merging a group of partially matched pages into one unit in
a more organized manner for easy visualization and access
for the users. In other words, unlike the traditional keyword-
based query relaxation, the information unit concept enables
Web-structure based query relaxation in conjunction with
the keyword-based relaxation.
Let us denote the set of Web pages containing a given key-

word, Ki, as [Ri]. Furthermore, for a given [Ri], let us de�ne
[! Ri] as the set of Web pages that contain a link to at least
one of the pages in [Ri]. Similarly, let us denote [Ri !] as a
set of pages that are linked from at least one of the pages in
[Ri]. In the example in Figure 1, [R1], [R3 !], and [! R2]
represent fURL1; URL3; URL4; URL5g, fURL1; URL2g,
and fURL6; URL4; URL5; URL7g respectively.
Figure 2 illustrates the query results that are generated

progressively for a query with two keywords. In this �gure,
solid lines indicate reuse and dotted lines indicate derive.
We denote class 0 information units as documents which
contain both K1 and K2; class i information units are a pair
of documents such that one contains K1 and the other K2

and there is a path of length i between them. Note that (1)
the intermediate query results of Class 0, [R1] and [R2], are
reused (indicated by solid arrows) while processing the query
for Class 1; (2) [R1!] and [R2!] are derived using Class
0 results (indicated by dashed arrows); and (3) if necessary,
computation of ([R1!] \ [R2]) and ([R1] \ [R2!]) can be
parallelized.
Note, however, that this example considers only queries

with two keywords, which are very common. Processing
queries with three keywords is a substantial diÆcult task,
since this involves graphs instead of paths. A study [1] has
shown that most user queries on the Web typically involve
two words. With query expansion, however, query lengths
increase substantially. As a result, most existing search en-
gines on the Web do not provide query expansion functional-
ity. The information unit concept and technique provide an
alternative to query relaxation not by keyword semantics,
but by link structures.
This example highlights the three essential requirements

of information unit-based retrieval on the Web:
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Figure 2: Query plan for �nding information units
for queries with two keywords

� Users are not just interested in a single result, but the
top k results.

� While generating ith result, we want to reuse existing
i� 1 results.

� And, since the Web is large and usually a simple search
results in thousands of hits, preprocessing and any
computation which requires touching or enumerating
all pages is not feasible.

Note that this does not mean that we do not know of the
structure of the Web. In our implementation, we used a
Web index we maintain at NEC CCRL, to identify logical
Web documents. The index contains information regarding
the Web pages, as well as the incoming and outgoing links to
them. In this paper, we present our research on progressive
query processing for retrieving information units without
pre-computation or the knowledge of the whole search space.
We present experimental results on both synthetic graphs
and real Web data.
The rest of the paper is organized as follows. In Section 2,

we provide formal de�nitions of the more general problem of

information unit-based retrieval. In Section 3, we describe
the query processing techniques and generalize the frame-
work to more complex scenario. In Section 4 we describe
how our technique can be extended to deal with fuzziness in
keyword-based retrieval, such as partial match and di�erent
importance of query keywords. In Section 5 we present ex-
perimental results for evaluating the proposed algorithm on
actual Web data. In Section 6, we review related work and
compare it with our work. Finally, we present concluding
remarks in Section 7.

2. DATA AND QUERY MODELS FOR
RETRIEVAL BY INFORMATION UNIT

In this section, we describe the query model for informa-
tion unit-based retrieval and start with the de�nitions for
the terms used in the rest of the paper:

� TheWeb is modeled as a directed graphG(V; E), where
V is the set of physical pages, E is the hyper- or
semantic-links connecting these pages. We also de�ne
the undirected Web as Gu(V;Eu), where Eu is the
same as E except that the edges in Eu are undirected.

� The dictionary, D, is a �nite set of keywords that can
be used for querying the Web. A query, Q, which is a
list of keywords, is a subset of D; i.e., Q � D.

� There is a page-to-keyword mapping � : V ! 2D,
which lists the keywords in a given page. There is also
a keyword-to-page mapping � : D ! 2V , which lists
the set of Web pages that contain the keyword.

� Finally, we also assume that there is a cost function,
Æ : E ! real (or Æ : Eu ! real), which models the
distance of the pages from each other.

We denote the set of Web pages containing a given key-
word, Ki 2 D, as [Ri]; i.e., [Ri] = �(Ki). Furthermore,

for a given [Ri], [
n! Ri] is de�ned as the set of Web pages

that can reach to at least one of the pages in [Ri] with a

path of length n. Similarly, we denote [Ri
n!] as a set of

pages that are reachable from at least one of the pages in
[Ri] with a path of length n. Finally, we de�ne [Ri]

n as

([Ri
n!] [ [

n! Ri]).
Given the Web, G = (V;E), its undirected version, Gu =

(V;Eu), and a query, Q = fK1; : : : ; Kng, an answer to Q
is a set of pages, VQ = fV1; : : : ; Vmg, that covers all the
keywords in the query; i.e.,

�(V1) [ : : : [ �(Vm) � fK1; : : : ; Kng:
A minimal answer to Q, then, is a set of pages, V m

Q such
that no proper subset, V 0 � V m

Q , of V m
Q is an answer to Q.

The cost of a minimal answer, �(V m
Q ), to Q is then the sum

of the edge costs of the tree with minimal cost in Gu that
contains all the vertices in V m

Q .
Let us assume that the user issues a query, Q, with four

keywords, i.e., Q = fK1; K2; K3; K4g. Let us also assume
that there are three possible answers, A, B, and C, to this
query as shown in Figure 3. In this �gure, the edge weights
may describe the importance of their association. Such as-
sociation could depend on the type of connections. For ex-
ample, the association or weights can be calculated based
on the number of actual links between the two pages.
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Figure 3: Three answers (A;B; and C) to query Q =
fK1; K2; K3; K4g.

The solid lines in this �gure denote the links that are going
to be used for computing the cost of the information units
(these are the lines on the smallest tree) and the dashed lines
denote the links that are being ignored since their cost is not
the minimum. For instance, there are at least two ways to
connect all three vertices in cluster A. One of these ways
is shown with dark lines, and the sum of the corresponding
edge weights is 12. Another possible way to connect all three
vertices would be to use the dashed edges with weights 7
and 8. Note that if we were to use the second option, the
total edge weights would be 15; i.e., larger than 12 that we
can achieve using the �rst option. Consequently, the cost
of the best minimal answer is 12, not 15. In this example,
�(A) = 5 + 5 + 2 = 12, �(B) = 1 + 1 + 1 + 1 + 3 = 7, and
�(C) = 2 + 3 = 5.
The above query formulation, when instantiated with two

keywords, can be easily solved by using the all-pairs short-
est path solution (however, this algorithm would require a
complete knowledge of the graph). In the next section, we
examine algorithms for query processing that �nd the results
by discovering the graph (or the Web) incrementally.

3. QUERY PROCESSING
Conventionally, answers to a Web query is an ordered list

of pages, where the order re
ects the rank of a page with
respect to the given query. Consequently, we expect that
the answers to an information unit query be an ordered set
of logical Web documents; i.e., an ordered list of sets of Web
pages. The ranks of the information units are computed
by aggregating the cost of the edges involved in the graph
representing the query result connected via link-in and link-
out pages as described in the previous section. There are
two ways to generate such an ordered list:

1. generate all possible results and, then, sort them based
on their individual ranks, or

2. generate the results in the decreasing order of their

individual ranks.

Clearly, the second option is more desirable since it gener-
ates the higher ranked results earlier thereby reducing the
delay in responding to the user query. Furthermore, users
on the Web in general specify queries in the form: \Give
me the top k answers." Hence, the second approach of pro-
gressive query processing is more desirable for Web based
applications. Another advantage of progressive query pro-
cessing is that in some applications such as the Web based
information systems, it is perhaps impossible to generate all
possible answers.
In this section, we develop a progressive query processing

algorithm for retrieving information units on the web. Since
the search space is very large, the progressive algorithm re-
lies on local information. The implication of relying on local
information to produce answers is that the ranking of query
results is approximate.

3.1 Abstract Formulation of the Problem
The problem of �nding the minimum weighted connected

subgraph, G0, of a given graph G, such that G0 includes all
vertices in a given subset R of G is known as the Steiner
tree problem1 [2]. An extension of this problem, where we
are given a set f[R1]; : : : ; [Rn]g of sets of vertices such that
the subgraph has to contain at least one vertex from each
group [Ri] is known as the group Steiner tree problem. The
problem of �nding the best answer with the minimal cost
information unit to a query, Q = fK1; : : : ; Kng, can be
translated into the problem of �nding minimum-weighted
group Steiner tree problem as follows: Let us be given an
undirected Web, Gu(V;Eu), and a query Q. Let also [Ri],
1 � i � n, be the set of vertices, vj 2 V , such that �(vj) \
fKig 6= ;. Let us assume that the corresponding minimum
weight group Steiner tree consists of a set of vertices, V s � V
and a set of edges Es � Eu. Then, the best answer with
the minimal cost, V m;b

Q , with respect to Q, is the maximal

subset of V s such that, for all vj 2 V m;b
Q , �(vj) \ Q 6= ;.

Both minimum weight Steiner tree [2] and minimum weight
group Steiner tree problems [3] are known to be NP-hard.
As a result of this NP-completeness result, the minimum

weight group Steiner tree problem (and consequently, the
minimum cost information unit problem) is not likely to
have a polynomial time solution, except in certain special
cases, such as when vertex degrees are bounded by 2 [4] or
the number of groups is less than or equal to 2, i.e, f[R1]g or
f[R1]; [R2]g. However, there are a multitude of polynomial
time approximation algorithms that can produce solutions
with bounded errors. The most recent of these solutions,
to our knowledge, is presented by Garg et al. [5]. This
particular algorithm provides a randomized O(log3V logn)-
approximation, where V is the number of vertices in the
graph and n is the number of groups. An earlier result, by
Bateman et al. [6] had a (1 + ln n

2
)
p
n performance guar-

antee, which is independent of V yet non-logarithmic in n.
However, since in the domain of Web querying, n is guaran-
teed to be much smaller than V , this earlier result is more
applicable.
Note, however, that none of the above algorithms satisfy

our essential requirements:

� We are not only interested in the minimum-weight
group Steiner tree. Instead, what we need is the kth

1If it exists, G0 is guaranteed to be a tree.
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minimum-weight group Steiner tree, where k � 1 is
the rank of the corresponding answer in the result.

� We would prefer to generate kth minimum-weight group
Steiner tree, after we generate (k � 1)th minimum-
weight group Steiner tree, re-using results of the some
of the earlier computation.

� Since the Web is large, we can not perform any pre-
processing or any computation which would require us
to touch or enumerate all pages on the Web.

The solution proposed by Garg et al., for instance, does
not satisfy any of these requirements: it can only provide
the best solution (k = 1), hence it is not a progressive al-
gorithm. Moreover, since it uses linear programming, it re-
quires enumeration of all vertices and the edges in the graph.
Besides such approximation algorithms which provide per-
formance guarantees, there are various heuristics proposed
for the group Steiner tree problem. Some of these heuristics
also provide performance guarantees, but these guarantees
are not as tight. Such heuristics include minimum spanning
tree heuristic [3], shortest path heuristic [3], and shortest
path with origin heuristic [4]. None of these heuristics, how-
ever, satisfy our kth minimum-weight result and progressive
processing requirements.

3.2 Algorithm for Information Unit Retrieval
In this section, we develop a heuristic query processing

algorithm, to retrieve information units, that adheres to the
stated requirements. Unlike the other minimum spanning
tree based algorithms, we do not generate the minimum
spanning tree for the entire graph (or the entire Web). Fur-
thermore, unlike other shortest-path based algorithms, we
refrain ourselves from generating all possible shortest paths.
Note that this does not mean that we do not know of the
structure of the Web. In fact, in our implementation, we
used the proposed algorithm in conjunction with a Web
search index we maintain at NEC CCRL. The search in-
dex contains information regarding the Web pages, as well
as the incoming and outgoing links to them.
The general idea of the algorithm is follows. Given a query

Q = fK1; K2; : : : ; Kmg, we identify the corresponding set
of pages R = f[R1]; [R2]; : : : ; [Rm]g such that Ki appears
in each page in [Ri]. The algorithm starts with a graph
represented by the vertices in R and then by exploring links
(incoming or outgoing) with the minimum cost. During this
exploration process, if we �nd a subgraph that satis�es the
query, we output that as a query result. The rank of the
query result is estimated by constructing a minimum cost
spanning tree over the subgraph such that all the solution
vertices are connected. Figure 4 depicts the essential parts
of this algorithm.
As shown in the �gure, the algorithm, RetrieveInforma-

tionUnit, assumes as input the graph, Gu = (V;Eu), the set
of initial pages R = f[R1]; [R2]; : : : ; [Rm]g corresponding to
the query such that Ki is contained in the pages in [Ri],
and a parameter k which indicates the upper limit on the
number of results that must be generated for query Q.
Lines 5-7 of Figure 4 are the initialization steps for the

control variables. The main loop is depicted in lines 8-35
of the algorithm. The algorithm e�ectively grows a forest
of MSTs. During each iteration of the loop, we choose a
function, chooseGrowthTarget (Figure 5), to choose among

di�erent ways to grow the forest. Note that depending on
the goal, we can use di�erent choice strategies. In this paper,
we describe two strategies: minimum edge-based strategy and
balanced MST strategy. These two strategies will result in
di�erent degree of error and complexities. In Sections 3.3.1
and 3.3.2, we evaluate the two strategies and discuss their
quality and cost trade-o�s.
Note that, in this algorithm, we assume that the costs of

all neighboring vertices to be given, but in the real imple-
mentation this cost can be computed on-the-
y. The cost
may be based on a variety of factors. For example, the
neighboring vertex is in the same domain versus outside the
domain or relevancy of links based on anchor text and/or
URL strings. Much research on this issue has been done in
the scope of eÆcient crawling [7].
After choosing an MST and an edge for growth, the al-

gorithm checks if (line 10) the inclusion of this edge causes
two MSTs to merge. If this is indeed the case, the algo-
rithm next checks if the resulting subgraph can satisfy the
query (lines 17-22). Essentially, this check determines if the
new MST has a set of vertices (pages) such that the pages
collectively include each keyword in the query Q. This step
ensures that we only consider newly produced query results.
The new query results are ranked by using the minimum
spanning tree of the connected subgraph. Finally, the newly
obtained (using subroutines EnumerateFirst and Enumer-
ateNext) query results are output (lines 25-31); the algo-
rithm terminates if k results are produced, otherwise the
algorithm continues by adding the next minimum cost edge
incident on the current set of vertices. In lines 33 and 34 the
algorithm inserts the new MST into the growth candidates
and prepares for a new iteration of the search.
Note that the minimum spanning tree computation (lines

11 and 14) of this algorithm is incremental. Since the al-
gorithm visits edges in the increasing order of the costs,
the tree is constructed incrementally by adding neighboring
edges while growing a forest (multiple trees); consequently,
it overcomes the weaknesses of both Kruskal's and Prim's
algorithm when applied to the group Steiner tree genera-
tion on the Web. In particular, the algorithm proposed here
does not require complete knowledge of the Web and it does
not get stuck at one non-promising seed by growing a single
tree. Next, we use an example to further illustrate the de-
tails of the algorithm. In this example, we will assume that
the chooseGrowthTarget subroutine simply chooses the least
cost edge for growth.
Figure 6(a) shows an undirected graph (the undirected

representation of theWeb and the keyword to page mapping,
�, for a query, Q, with four keywords, fK1; K2; K3; K4g.
Note that for illustration purposes we show all the vertices
(pages) in the example but they can be identi�ed dynami-
cally as the algorithm explores neighboring pages of the ini-
tial set of vertices represented by [R1]; [R2]; [R3]; and [R4]
(these vertices are shown by gray-�lled circles). Let us as-
sume that a user is interested in the best 2 \information
units" that match Q. Below, we provide a step-by-step de-
scription of the query execution process:

1. Figure 6(b) shows the �rst step in the algorithm. An
edge with the smallest cost has been identi�ed and the
endpoints of the edge is inserted into touchedV . Note
that in the �gure, all vertices in touchedV are sur-
rounded by a square and all edges included are shown
as darker lines.
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01MODULE RetrieveInformationUnit(Gu; [R1]; : : : ; [Rm]; k);
02BEGIN /* Compute the �rst k approximately optimal results for the given query Q = fK1; : : : ; Kmg */
03 Solution = �;
04 seed = [R1] [ � � � [ [Rm];
05 growingMSTs = f(V; E)jV = fvg and v 2 seed and E = ;g;
06 8Mi 2 growingMSTs cost(Mi) = 0;
07 growthCandidates = fhMi; ejijMi 2 growingMSTs and ej is incident on only one vertex on Mig;
08 WHILE (jSolutionj < k) DO
09 growthTarget = hM; ei = chooseGrowthTarget(growthCandidates);

e is of the form hva; vbi where va 2M and vb =2M*
10 IF 8Mj 2 growingMSTs vb =2Mj THEN
11 Insert vb and e into M

�; cost(M�) = cost(M) + cost(e);
12 Remove M from growingMSTs;
13 ELSE /*vb 2Mj*/
14 Merge M and Mj into M

� using edge e; cost(M�) = cost(M) + cost(Mj) + cost(e);
15 Remove M and Mj from growingMSTs;
17 i = 1;MoreResult = TRUE;
18 WHILE MoreResults ^ i � m DO /* Restrict the solution spaces to current subcomponents */
19 [Ri]

a = [Ri] \ vertices in M ; [Ri]
b = [Ri] \ vertices in Mj ;

20 IF ([Ri]
a [ [Ri]

b) = � THEN MoreResults = FALSE; END; /* IF */
21 i = i+ 1;
22 END; /* WHILE */
23 IF MoreResults THEN ResultV = EnumerateFirst([R1]

a; : : : ; [Rm]
a; [R1]

b; : : : ; [Rm]
b))

24 ELSE ResultV = ?; END; /* IF */
25 WHILE (ResultV 6= ?) DO
26 ResultGraph =M+ = TrimIncrementally(M�; ResultV );
27 Cost(ResultGraph) = Sum of edges in the ResultGraph;
28 Insert ResultGraph in Solution in the increasing order of Cost(ResultGraph);
29 IF jSolutionj � k THEN EXIT; END; /* IF */
30 ResultV = EnumerateNext();
31 END; /* WHILE */
32 END; /* IF */
33 Insert M� in growingMSTs;
34 Update growthCandidates;
35 END; /* WHILE */
36END RetrieveInformationUnit.

Figure 4: A generalized algorithm for progressive querying of information unit

2. Figure 6(c) shows the step in which the algorithm iden-
ti�es the �rst information unit. At this stage, the al-
gorithm �rst identi�es a new possible solution, and it
veri�es that the solution is within a single connected
subgraph as a whole. Next, the algorithm identi�es
the corresponding Steiner tree through a sequence of
minimum spanning tree computations and clean-ups
(these steps are not shown in the �gure). The result-
ing Steiner tree is shown with thicker lines. Note that
the dark nodes denote the physical pages which form
the information unit. Hence, at the end of this step,
the algorithm outputs the solution, which has the total
cost 8, as the �rst result.

3. Finally, Figure 6(d) shows the algorithm �nding the
second and last Steiner tree. In this step, the newly
added edge reduces the number of individual connected
components in the graph to one. Consequently, the al-
gorithm identi�es a new solution. The algorithm again
identi�es the corresponding Steiner tree through a se-
quence of minimum spanning tree computations and
clean-ups; these steps are shown in the Figure 7:

(a) Figure 7(a) shows the state of the graph at the be-
ginning of this step. Note that, the graph denoted
with darker lines is connected and subsumes all
vertices, denoted darker, in candidate1.

(b) Figure 7(b) shows the minimum spanning tree,
M�.

(c) Figure 7(c) shows the Steiner tree, M+, obtained
by removing the unnecessary vertices from M�.

At the end of this step, the algorithm outputs M+,
which has the total cost 16, as the second result. Since
the user was interested in only two results, the algo-
rithm terminates after this step.

3.3 Evaluation of the Algorithm
Since the proposed algorithm is based on local analysis

and incomplete information, it is not surprising that it has
limitations when compared to the optimal solution. Note
that the algorithm is polynomial whereas, as we discussed
earlier, �nding the optimal solution is NP-hard. We now
point to the cases in which the solution of our algorithm
di�ers from the optimal solution through a series of exam-
ples. In this section, in order to show the trade-o� between
quality and cost of the heuristic, we will use two di�erent
chooseGrowthTarget functions which will result in di�erent
degrees of error and complexities. These two functions are
shown in Figure 8. Intuitively, the �rst function chooses the
smallest weighted edge at each iteration, whereas the sec-
ond one aims at growing the MSTs at a balanced fashion.
In Section 5, we will provide experimental evaluations of the
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01MODULE chooseGrowthTarget(growthCandidates);
02BEGIN /* Choose among all available growth candidates using a utility metric.*/
03 /* i.e. Minimun Edge-based Strategy or Balanced MST Strategy */
04 : : :
05END chooseGrowthTarget.

01MODULE EnumerateFirst([R1 ]
a; : : : ; [Rm]

a; [R1]
b; : : : ; [Rm]

b);
02BEGIN /* Return a new information unit discovered by the merging of the two connected subcomponents CSa and CSb.

Also, set up the data structures that the subsequent EnumerateNext() calls will use to return the remaining
information units. The information units enumerated are in
([R1]

a � [R2]
b � : : :� [Rm]

b)
S

([R1]
a � [R2]

a � : : :� [Rm]
b)
S

: : :
S

([R1]
b � [R2]

b � : : :� [Rm]
a) */

03 : : :
04END EnumerateFirst.

01MODULE EnumerateNext();
02BEGIN /* Return a new information unit discovered by the merging of the two connected subcomponents CSa and CSb

using the data structures set up during a previous execution of EnumerateF irst() call.
03 : : :
04END EnumerateNext.

01MODULE TrimIncrementally(T �

s ; ResultV );
02BEGIN /* Trim the minimum spanning tree to �nd a Steiner tree speci�ed by the vertices in ResultV .

Mark all the vertices in ResultV . Then remove all the unmarked leaves one by one.
The remaining graph is the Steiner tree.*/

03 : : :
04END TrimIncrementally.

Figure 5: The subroutines used by the algorithm
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Figure 6: Group Steiner tree heuristic execution

algorithm and investigate the degree of divergence of both
heuristics from the optimality.
The algorithm is complete in the sense that, given enough

time, it can identify all information units in a given graph
and sound in the sense that it does not generate incorrect
information units. The completeness is due to the fact that,
once an MST is generated, all information units on it are
discovered. Since, given enough time, the algorithm will
generate an MST that covers the entire graph, the algorithm
is complete. Note that completeness does not imply that the
information units will be discovered in the correct order.

3.3.1 Evaluation of the Minimum Edge-based
Strategy

Let us consider the graph shown in Figure 9(a). As per
the chooseGrowthTarget1 subroutine, the edges that will be
chosen will be hK1; xi, hK2; xi, and hK3; xi. Since the weight
of all three edges is the same, the order in which the edges
are included is non-deterministic and does not impact the
�nal outcome. The state of the graph will be as shown in
Figure 9(b). At this state, the algorithm will generate the
one and only one information unit for the three keywords;
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Figure 9: Sub-optimal solutions

the cost or rank associated with this information unit is the
sum of the weights of the three darkened edges which is 12.
However, there exists a Steiner tree of lower cost (actually
there are three possible Steiner trees: fhK1; K2i ; hK2; K3ig,
fhK2; K3i ; hK3; K1ig and fhK3; K1i ; hK1; K2ig each with
cost 10), which would have suÆced to form an information
unit. This example illustrates that the proposed algorithm
may not always generate optimal solutions.
Next consider the example illustrated in Figure 10(a) from

which we want to extract three keyword information units.
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Figure 7: Use of minimum spanning trees and cleanup operation for Steiner tree heuristic

01MODULE chooseGrowthTarget1(growthCandidates);
02BEGIN /* Let growthCandidates be fhMi; ejijMi 2 growingMSTs and ej is incident on only one vertex on Mig*/
03 return(hMi; eji) such that cost(ej) is minimum.
04END chooseGrowthTarget1 .

01MODULE chooseGrowthTarget2(growthCandidates);
02BEGIN /* Let growthCandidates be fhMi; ejijMi 2 growingMSTs and ej is incident on only one vertex on Mig*/
03 FORALL hMi; eji 2 growthCandidates DO
04 cost(hMi; eji) = cost(Mi) + cost(ej);
05 END; /* FORALL */
06 return(hMi; eji) such that cost(hMi; eji) is minimum.
07END chooseGrowthTarget2 .

Figure 8: Two subroutines for choosing among growthCandidates

Figure 10(b) illustrates the state of the system after the �rst
edge (with cost 2) is added by the algorithm. After this edge,
the next three edges that are included are all the edges of
cost 5 as shown in Figure 10(c). At this point, the algo-
rithm generates the information unit shown by the dotted
region and this information unit has cost 15 associated with
it. In the next step, the algorithm adds the edge with cost 6
connecting node v with the right hand side vertex with key-
word K3. As shown in Figure 10(d), the next information
unit is output after this step is shown by the dotted region.
However, the cost associated with this information unit is 13
which is smaller than the information unit that was gener-
ated earlier by the algorithm. This example illustrates that
the proposed algorithm may not generate the results in the
increasing order of the ranks.
Figure 11(a) shows the simplest case in which the heuristic

does not return best solutions. Figure 11(b) shows the worst
case scenario of quality estimation of the heuristic: when
cn > max(c1; : : : ; c(n�1))), the minimum spanning tree that
is grown between seed vertices v1 and vn (denoted with dou-
ble circles) does not pass over cn. Hence, if cn is also smaller

than
P(n�1)

i=1 ci, then the algorithm overestimates the cost of
the solution. When there are two groups, as in Figure 11(b),
the overestimation ratio, r, is

r =

P(n�1)
i=1 ci

cn
<

(n� 1)� cmax

cmax

= n� 1;

where n is the number of vertices in the group Steiner tree
and cmax is the cost of the most expensive edge in the re-

turned group Steiner tree. In general, when there are m
groups (note the similarity between Figure 11(c) and 9(b)),
the overestimation ratio becomes

r =

P(n�1)
i=1 ciP(m�1)
j=1 c�j

<
(n� 1)� cmax

(m� 2) � cmin + cmax

< n� 1;

where n is the number of vertices in the group Steiner tree,
c�j s are the costs of the edges on an optimal group steiner
tree connecting m vertices, cmin is the smallest cost of an
edge and cmax is the largest cost of an edge in the returned
group steiner tree.
Consequently, every solution, s, returned by the heuris-

tic has a corresponding range, [leastcost;maxcost], where
maxcost is the cost returned by the algorithm and leastcost
= maxcost

r
. Note that, consequently, the algorithm does

not guarantee a progressive order of the results as discussed
in earlier examples. In Section 5, we provide experimental
evaluation of the algorithm to see how much it diverges from
the optimal results. The results show that the divergence
in reality is much less compared to the worst case analy-
sis provided above (i.e., it is almost a constant factor) for
information unit retrieval purposes.
Complexity. Let us assume that the maximum number

of edges incident on a vertex is bounded by a constant ! (this
is a reasonable assumption on the Web). Let us also assume
that each of the �rst k results is embedded in a subgraph
of diameter d. In the worst case, the number of vertices
that will be touched by the edge-based growth strategy (es)
is �es = jseedj � 2d (on the Web, the size of a subgraph
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Figure 10: Out-of-order solutions
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Figure 11: (a) A case where the heuristic fails. (b) and (c) worst case quality estimation scenarios: (b) two
groups and cn > max(c1; : : : ; c(n�1))); (c) m groups, cmin is the smallest cost of an edge and cmax is the largest
cost of an edge in the returned group Steiner tree.

generally does not increase exponentially with its diameter;
this is a worst case �gure. Note also that for small diameters,
�es << jV j, where V is the set of all pages on the Web.)
The worst case execution time of the proposed algorithm,

then, is O(�es! log(�es!) + (k + 1)�es + klog(k)):

� Using a heap, maintaining the list of incident edges
(maximum number of edges is �es!) takes
O(�es! log(�es!)) time.

� Since the spanning tree is incrementally constructed,
it takes O(�es) time to construct the trees.

� For k solutions it takes O(k�es) time to delete leaves
of the spanning trees to get the approximate Steiner
trees.

� It takes O(klog(k)) time to sort and return new results
identi�ed by the introduction of a new edge.

Note that, due to the large size of the Web, if the user
wants to get all possible results (k is very large, consequently
des is very large), even this polynomial worst-case time of
this algorithm may not be acceptable. To deal with this
problem, we can apply di�erent constraints to reduce the
execution time of the heuristic. These constraints include:

� Splitting theWeb into domains, and limiting the search
into only intra-domain Web documents. Since the in-
put graph is divided into multiple, relatively small,
sub-graphs, this signi�cantly reduces the search space.
As we pointed out in Section 1, the average size of a
domain is around 100 documents.

� Assigning an upper bound on the total cost or on the
number of vertices of an acceptable Steiner tree. For
example, we may restrict the search of related pages
to form an information unit within a radius of 2 links.

� Limiting the fan-out of every vertex in the graph to a
predetermined small constant. This causes the graph
to be sparse, thereby reducing the search time. Of
course, it is a major challenge to identify which of the
outgoing or incoming edges should be kept.

In Section 5, we provide experimental evaluation of the
complexity of the algorithm (in terms of edges and nodes vis-
ited during the execution). Empirical evaluation is needed
to determine the eÆcacy of the above constraints.

3.3.2 Evaluation of the Balanced MST based Strategy
In the previous section, we have seen that the overestima-

tion ratio is proportional to the number of vertices in the
MST. Consequently, in order to minimize the overestima-
tion ratio, it is important to prevent the formation of long
MSTs. Furthermore, in order to minimize the absolute value
of the overestimation, we need to prevent very large MSTs
to form. The next strategy that we describe improves on
the previous one on these aspects. Later in Section 4, we
show that the balanced MST based strategy is essential to
the extension for dealing with fuzziness in keyword-based
retrieval.
The subroutine chooseGrowthTarget2 performs a look

ahead before choosing the next MST. It identi�es all possi-
ble ways to grow the forest and it chooses the growth op-
tion where the operation will result in the smallest growth.
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Consequently, the minimum spanning trees are created in
the increasing order of their cost, however, since MST to
Steiner tree conversion is suboptimal, results may still be
suboptimal.
Let us reconsider the graph shown in Figure 9(a). As per

the chooseGrowthTarget2 subroutine, the edges that will be
chosen will again be hK1; xi, hK2; xi, and hK3; xi (only these
edges will result in an MST). However, we earlier have seen
that this selection is suboptimal. Consequently, since it is
based on MST, this second strategy does not necessarily
result in an optimal solution and the overestimation ratio
we found for the �rst strategy still holds.
This strategy prevents the formation of long chains and

instead favors the creation of balanced size minimum span-
ning tree clusters. Note that since the overestimation ratio
is proportional to the number of vertices in the MST, this
results in a reduction in the amount of overestimation. This
reduction is especially large when the edge weights in the
graph are mostly the same, as when two edges have the
same weight, the �rst strategy does not dictate a preference
among them.
Complexity. The complexity of the second strategy is

similar to the complexity of the �rst strategy: Let � be
equal to jseedj. As earlier, let us assume that the maximum
number of edges incident on a vertex is bounded by a con-
stant !. Let us also assume that each of the �rst k results
is embedded in a subgraph of diameter d. In the worst case,
the number of vertices that will be touched by the balanced
MST strategy (bs) is �bs = jseedj�2d. Then the complexity
of the algorithm is O(� log(�) + (k + 1)�bs + klog(k)):

� Using a heap structure, maintaining the list of the
MSTs (maximum number of MSTs is �) takes
O(�log(�)) time.

� Since the spanning tree is incrementally constructed,
it takes O(�bs) time to construct the trees.

� For k solutions it takes O(k�bs) time to delete leaves
of the spanning trees to get the approximate Steiner
trees.

� It takes O(klog(k)) time to sort and return new results
identi�ed by the introduction of a new edge.

Comparing the worst-case complexities of the balanced
MST strategy, O(� log(�) + (k + 1)�bs + klog(k)), and the
edge-based strategy, O(�es! log(�es!)+(k+1)�es+klog(k)),
is straightforward:

� � = jseedj is de�nitely smaller than �es�! = jseedj�
2d � !. Consequently, it is much cheaper to main-
tain the order of MSTs than to maintain the order of
incident edges.

� Sorting and returning newly found results takes the
same amount of time in both strategies.

� The amount of time spent for creating MSTs are the
same in both algorithms: �es = �bs = jseedj � 2d.

� The time spent for trimming MSTs are the same in
both algorithms: k � �es = k � �bs = k � jseedj � 2d.

Consequently, in the worst case, the complexity of the
balanced MST based growth strategy is less than the com-
plexity of the edge based strategy.

Note, however, among the four components that we iden-
ti�ed above, the time spent for creating the MSTs is the
most important one, as it describes the number of web-
pages that may need to be visited and processed (unless
the information is readily available as an index). For this
component, both strategies have the same worst-case com-
plexity O(�es) = O(�bs) = O(jseedj � 2d). On the other
hand, when the edge weights are distinct, edge-based strat-
egy can cover larger distances (d) without visiting all the
vertices in the same diameter, leading into a lower number
of page visits. When the edge weights are mostly the same,
on the contrary, the balanced MST-based strategy is likely
to eliminate the formation of unnecessarily long branches of
the MSTs, leading into a lower number of page visits.

4. DEALING WITH PARTIAL MATCHES
AND FUZZINESS IN RETRIEVAL

In this section, we describe how to extend the algorithm
to deal with fuzzy and partial keyword-based retrieval prob-
lems. More speci�cally, we address the following issues:

� Disjunctive queries: In this paper, we have formulated
the Web query as a set of keywords, denoting a con-
junctive query asking for all keywords. One extension
to our system is to handle disjunctive queries. A dis-
junctive query is a query where any one of the key-
words is enough to satisfy the query criterion. Com-
binations of conjunctions and disjunctions can also be
handled through queries in conjunctive normal or dis-
junctive normal forms. The actual process for han-
dling combinations of conjunctions and disjunctions is
not discussed further in this paper.

� Partial matches (or missing keywords): In some cases,
a user may issue a conjunctive query and may be will-
ing to accept query results which do not have all the
query terms. Clearly, for such a query, the user will
prefer results which contains more keywords to the re-
sults which contain less keywords. One solution to
such an extension is to translate a conjunction query
Q to a disjunctive query Q0. This formulation, how-
ever, would not penalize results with missing keywords.
Hence, the query processing algorithm needs to be
modi�ed so that the results with partial matches are
ranked lower than the results with all the query terms.

� Similarity-based keyword matching and keyword: Be-
cause of the mismatch between authors' vocabularies
and users' query terms, in some cases, users may be
interested in not only results which exactly match with
the query terms, but also results which contains key-
words related to the query terms. For example, a log-
ical document which contains keywords, \Web" and
\symposium" may be an acceptable result to a query
Q = fweb; conferenceg by keyword semantical relax-
ation. In this case, we assume that there is a similarity
function, � : D�D! [0:0::1:0], where D is the dictio-
nary, that describes the similarity of keywords. Such
similarity functions have been studied elsewhere [8].

� Keyword importance: In the problem formulated in
this paper, we assumed that each keyword in a given
query, Q, is of the same importance. However, in some
cases, we may want to give preference to some of the
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1. VP = V ; Eu
P = Eu;

2. �P = �; �P = �; ÆP = Æ;
3. For every vertex, vi 2 V , do

(a) For every keyword, Kj 2 Q, do
i. If, Kj =2 �(vi), then

A. Create a new vertex vi;j ;
B. �P (vi;j) = fKjg;
C. �P (Kj) = �P (Kj) [ fvi;jg;
D. Create a new edge, ei;j , between vi and

vi;j ;
E. ÆP (ei;j) = �;
F. Add vi;j in VP ;
G. Add ei;j in Eu

P ;

4. Return Gu
P (VP ; E

u
P ).

Figure 12: Partial match transformation

keywords. For example, for a query Q with the key-
words fY2K, solution, providerg, the keyword Y2K
may be more important than the two other terms. We
can also assume that there is an importance function,

 : D ! [0:0::1:0], where D is the dictionary, that
describes the importance of the keywords for a given
query.

We now describe the proposed solutions.

4.1 Partial Matches (Missing Keywords)
In order to consider query results which contain only a

partial set of query terms, we need to adapt our technique
to include group Steiner trees that do not fully cover all
keywords. Instead of modifying the algorithm, we apply a
graph transformation, TP , to the original graph representa-
tion of the Web, Gu(V;Eu), so that the algorithm in Section
3.2 can be used to handle partial matches. The transforma-
tion assumes that the second growth strategy is used by the
algorithm.
The transformation, TP , takes an undirected graph

Gu(V;Eu);

and a value of �, as input and returns a graph Gu
P (VP ; E

u
P )

on which the problem of �nding the minimal partial an-
swer with the best score to a query can be translated into
the problem of �nding minimum-weighted group Steiner tree
problem de�ned on the undirected graph Gu

P (VP ; E
u
P ). The

value of � describes the penalty for each missing keyword.
The transformation, TP , is described in Figure 12. The
input to the transformation are Gu(V;Eu) and a query,
Q = fK1; K2; : : : ; Kng.
Description of the transformation: Let us assume

that the set of nodes that contain keyword, Kj , is denoted as
Rj . The transformation attaches to each node, vi 2 V , a set
of pseudo nodes fvi;j jvi =2 Rjg. It updates the keyword/page
mappings, �P and �P , such that the only keyword that the
new pseudo node contains is Kj . The transformation, then,
updates the distance function, ÆP , such that the distance
between vi and each new vertex, vi;j , is �.
Note that the order in which these results will be discov-

ered depends on the value of �, which describes the penalty
for each missing keyword and how important of exact match.
In Figure 13, we show a query example where the value of
� is assigned as 4. Based on the progressive processing of
the algorithm in Section 3.2, the system produces query re-
sults in Figures 13(a) and 13(b) before the result in Figure

13(c). However, if we assign value of � to 7, the system will
produce the result in Figure 13(c) �rst.

4.2 Fuzzy Keyword Matching
Both fuzzy keyword matching and keyword importance

require preference-based processing: In the case of fuzzy
keyword matching, we are given a set of keywords and we
want to accept the result even if some of the keywords are
not exactly matching, but are similar. Of course, we are
trying to maximize the overall similarity. In the case of
importance-based retrieval, on the other hand, each keyword
has a di�erent importance and we are trying to maximize
the overall importance of the keywords. To handle this, we
again use a graph transformation, TS , to handle similarity-
and importance-based processing. The details of the trans-
formation is beyond the scope of this paper.

5. EXPERIMENTAL EVALUATION
As discussed in Section 3, the proposed heuristic does not

always generate information units with their optimal cost
and it can also provide out-of-order solutions. However, if we
consider the fact that the underlying problem of �nding an
information unit in the Web is NP-hard and that the graph
has to be constructed incrementally, this is not unexpected.
In this section, we use empirical analysis to evaluate the
overall quality of the proposed algorithm.

5.1 Evaluation Criterion
One of the �rst experiments we conduct is on a set of syn-

thetic graphs that are generated randomly. The parameters
of these synthetic graphs are listed in Table 1. In order to
have a yardstick to compare our results, we �rst perform an
exhaustive search to �nd all information units along with
their optimal costs. Next, we run our algorithm incremen-
tally. We visualize the results of this experiment in three
ways.
In the �rst measure, we compute the average cost of infor-

mation units under both schemes (exhaustive and heuristic)
as a function of top k results where k is varied from 10 to
100 in the increments of 10. This plot indicates the devia-
tion or dispersion error of the heuristic. Note that since the
heuristic generates sub-optimal results, and once a solution
is generated it is never revised, we are bound to have some
error even after exploring the entire graph.
The second plot in this experiment shows the percentage

of nodes and edges used in generating top-k results. This
plot allows us to measure the eÆciency of progressive query
processing.
The third plot shows the recall ratio, which captures the

performance of the top-k results produced by the proposed
algorithm. The recall ratio is computed as a percentage
of information units in the answer set generated from the
heuristic when compared to that from the exhaustive search.
For example, if the query top-5 returns the 1st, 2nd, 3rd,
5th, and 7th information units (as ranked by the exhaustive
search), the recall ratio is 80% since the heuristic missed the
4th information unit. This is similar to the recall measure
used by information retrieval. Unfortunately, it penalizes
the results by not giving any credits for the 7th result, which
can also be of some values.
Thus, we also visualize another parameter called adjusted

recall ratio. The adjusted recall better re
ects the utility
of the results for information unit retrieval. The adjusted
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Figure 13: Examples of query results considering partial matches (� = 4)

Description Name Value
Number of Nodes NumNodes 100/500/1000
Number of Edges NumEdges 440/2461/4774
Minimum Node Degree MinDegree 4
Maximum Node Degree MaxDegree 12
Minimum Edge Weight MinWeight 1
Maximum Edge Weight MaxWeight 5
Number of Keyword 3
Occurrence of each kwd. 10

Table 1: Parameters used to generate the synthetic
graphs

recall is calculated as follows: Obviously, since the query re-
sults is supposed to be a sorted list of information units, the
information retrieval system should be penalized by provid-
ing the 5th information unit instead of the 4th information
unit. Therefore, we give partial credit, 4

5
, for such recall

instead of giving full credit of 4
4
. Second, we should give the

7th information unit partial credit. In this example, we give
a score of 5

7
. Note that this formulation has a nice prop-

erty: If the 6th information unit was returned as the last
result, the system would give a score of 5

6
. This is appropri-

ate since the 6th information unit is of more value than the
7th information unit. Similarly, if the 8th information unit
was returned, the system will give a score of 5

8
. This is also

appropriate since the 8th information unit is of more value
than the 7th information unit. The adjusted recall ratio for
the top k results is calculated as follows:

1

k
�

kX
i=1

i

ranki
;

where ranki is the actual rank of the ith result.
Let the user ask for the top 4 solutions and let the rank

of the results returned by the algorithm be f2; 3; 5; 6g.
� Recall ratio: The algorithm returns 2 out of the re-
quired 4 solutions. Hence the recall ratio is 50%.

� Adjusted recall ratio: The adjusted recall ratio is:

1

4
�
�
1

2
+

2

3
+

3

5
+

5

6

�
= 65%

The experiments are conducted for graphs of three dif-
ferent sizes: 100 nodes, 500 nodes, and 1000 nodes. The

degree of each node (the total number of incoming and out-
going edges to a node) is uniformly distributed between
MinDegree and MaxDegree. Similarly, edge costs uni-
formly varies between MinWeight and MaxWeight. The
values we chose for each of these parameters is shown in
Table 1. Note that we conducted all our experiments for
three keywords since it is infeasible to conduct the exhaus-
tive search that we use for comparison for a larger number
of keywords. The number of occurrences of each keyword in
the graph is set to 10. The above set up allows us to empir-
ically evaluate the sub-optimality of the proposed heuristic
when compared to the exhaustive search.
In the second experiment, instead of using synthetic data,

we conducted experiments with real Web data. We down-
loaded the pages from www-db.stanford.edu/people/. The
graph corresponding to the Web data consists of 236 nodes
and 414 edges2. The weight associated with each edge was
set to 1. On this data, we ran a three-keyword query involv-
ing keywords: fUllman;Hector;Widomg. The reason for
this choice was that the above three keywords had a reason-
able number of occurrences in the graph: 14, 7, 7, respec-
tively. In the next subsection, we summarize our �ndings
with regard to these experiments.

5.2 Experimental Results on Synthetic Graphs
The experiment results show that, in a neighborhood with

100 nodes, it takes on the order of 300ms (only 10-20ms of
which is the system time) to generate the top 10 retrieval re-
sults. When the user request is increased to top-25 retrieval,
it takes on the order of 1700ms (only 20-30ms of which is the
system time) to generate the results. Note that, since the
process is progressive, top-25 generation time can be hidden
while user is reviewing the top-10 results list.
Figures 14, 15, and 16 depict the result of performing

three keyword queries over the 100 node, 500 node, and 1000
node synthetic graphs, respectively. Figures 14(a), 15(a),
and 16(a) report the average cost of the information unit in
the answer set of size from 10 to 100 in the increments of 10.
As expected, due to the sub-optimal nature of the proposed
heuristic, the average cost of information units is inferior to
the one produced by the exhaustive search. In the case of
100 node graph the cost in
ation is within two times the op-
timal cost and in the case of 500 nodes it is approximately
1:5 times the optimal cost. For 1000 nodes graph the cost

2Presentation slides and technical reports in postscript for-
mat were excluded.
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in
ation is also around three times the optimal cost. We ex-
pect if the variability of the weights of the edges is reduced,
the in
ation in the cost will become narrower. In fact, we
observe this e�ect on the experiments that we run on real
data (Section 5.3).
In Figures 14(b), 15(b), and 16(b), we report the per-

centage of nodes and edges visited to generate the answer
sets under the proposed heuristic. Note that for the exhaus-
tive search, the entire graph needs to be examined for each
solution to ensure the minimal cost requirements (certain
optimizations are, of course, possible). In contrast, we see
that in the case of 100 nodes, we only explore about 45% of
the nodes to produce up to 100 answers. The more dramatic
observation is that only about 10% of edges are explored by
the heuristic to produce top-100 answers. Note that to pro-
duce top-10 answers, the heuristic explores 30% of the nodes
and 6% of the edges. This can be explained as follows. The
algorithm initially needs to generate a suÆciently large con-
nected component where the solutions can be found and this
might take some time. However, after that the growth in ex-
ploration of the graph is fairly slow to produce new answers.
This is a useful property since it can be combined with pro-
gressive querying to return incremental results (i.e., next-k)
fairly quickly to the user. Another interesting observation
is that portions of this plot are relatively 
at. This is be-
cause once a connected subgraph is constructed it may have
enough answers to return to the user without further explo-
ration of the graph. The results with 500 and 1000 node
graphs are similar. The range of nodes visited is from 40%
to approximately 60% for 500 nodes and 30% to 40% for 100
nodes. The range for the percentage of edges visited is 8%
to 15% for 500 nodes and 7% to 9% for 1000 nodes.
Finally, Figures 14(c), 15(c), and 16(c) report the recall

ratio and the adjusted recall ratio of the proposed heuristic.
As discussed in Section 3, the proposed heuristic generates
result not necessarily in the ranked order. Furthermore,
the ranking of results itself is not always as speci�ed by
the optimal order. Due to the combination of these two
limitations of the proposed heuristic, we achieve less than
perfect recall. As observed, the recall ratio for 100 nodes
is in the range of 10% (when the size of the answer set is
very small) to 50%. For 500 nodes the range is 20% to 55%
and for 1000 nodes the range is 0% (for top-10 results) to
35%. If we exclude the top-10 data-point, the lower end of
the recall ratio for the 1000 node graph becomes about 15%.
As we have argued, the traditional recall measure imposes
severe penalties for the result misses. Under this measure,
for example, if in the top-10 answer set the 10th element is
replaced by the 11th element, the loss of accuracy is 10%.
Similarly, if the answer set includes 11th to 20th elements
instead of the �rst 10, the loss of accuracy is 100%. The
adjusted recall ratio de�ned above, on the other hand, is
more realistic in the sense it penalizes the misses but does
give partial credit for retrieving lower ranked results. In our
experiments we found that the range for adjusted recall for
100 nodes is 20% to 60%; for 500 nodes it is 20% to 70%,
and for 1000 nodes it is 0% (for the top-10 data-point) to
50%.
Figures 14(a), 15(a), and 16(a) report the average cost of

the information unit in the answer set of size from 10 to 100
in the increments of 10. As we explained earlier, due to the
sub-optimal nature of the proposed heuristic, the average
cost of information units is inferior to the one produced by

the exhaustive search. Another reason is that our algorithm
only explores on an average less than 10% of edges. To iden-
tify how well our solutions are compared with the optimal
solution if they are derived based on the same graph, we con-
ducted additional experiments to �nd the optimal solutions
for the same subgraphs our algorithm has explored rather
than the whole graphs. We then compare the average cost
of our sub-optimal solutions with the optimal solutions in
Figure 17. The experimental results show that the average
costs of our solutions are closer to the cost of the optimal
solutions compared with the experimental results shown in
Figures 14(a), 15(a), and 16(a), especially for larger graphs
with 500 and 1000 nodes.

5.3 Evaluation on Real Web Data Set

Figure 18 reports the results of our experiments with ac-
tual Web data. Figure 18(a) illustrates the average costs
under the two schemes. Here we see that the average cost
of the information units is within 30% of that computed by
the exhaustive algorithm. The reason for the small error in
the cost in
ation is because the edges in the Stanford Web
data have a unit cost. As shown in Figure 18(b), a larger
percentage of the edges are visited because of the low con-
nectivity of the Web pages in the chosen dataset. Finally,
Figure 18(c) reports the recall ratio which is in the range
of 30% to 60%. The decline in recall between 50 and 100
results (x-axis) can be explained as follows: Note that from
Figure 18(b) we can observe that the visited portion of the
graph does not change much indicating that the graph is
large enough to compute the answers in this range. Due
to the greedy approach of the heuristic, when a given con-
nected component has multiple answers, these answers are
produced in a random order and not necessarily in the order
of their costs. This contributes to the drop in recall. How-
ever, the adjusted recall ratio reaches almost 70% and the
curve remains 
at, which validates the performance of our
heuristics algorithm since it provides the same level of recall
utility to the users. More interestingly, our algorithm, shown
in Figure 18(c), can provide 70% of adjusted recall ratio by
exploring only about 30% of nodes and 25% of edges.

5.4 Discussion

In summary, our experiments on synthetic data are vali-
dated with actual data and are promising. In particular, the
proposed heuristic generates information units of acceptable
quality by exploring a very small part of the graph. By com-
paring the experimental results on the real Web data and on
the synthetic graphs, we found that our heuristic algorithm
performs much better on the real Web data in all categories.
We examined the Web site connectivity of the Stanford site
and found that the link fanout is around 4 on average. We
exclude the search on presentation slides and technical re-
ports in PDF or Postscript format. Another reason for such
low fanout is that the personal home pages usually have low
depth and the leaf nodes reduce the average fanout. We
also found the link structures of real Web sites are more like
\trees", rather than highly connected \graphs" used in ex-
periments on synthetic data. We observe that the algorithm
performs better in searching a tree-like structure with lower
connectivity. We are pleased to see the heuristic algorithm
performs better on the real Web data.
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(a) (b) (c)

Figure 14: Experimental results on synthetic data with 100 nodes and 440 edges

(a) (b) (c)

Figure 15: Experimental results on synthetic data with 500 nodes and 2461 edges

(a) (b) (c)

Figure 16: Experimental results on synthetic data with 1000 nodes and 4774 edges
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(a) (b) (c)

Figure 17: Comparisons between the costs of the results using the progressive information unit retrieval
algorithm and the optimal solutions on synthetic data with (a) 100 nodes and 440 edges; (b) 500 nodes
and 2461 edges; and (c) 1000 nodes and 4774 edges

(a) (b) (c)

Figure 18: Experimental results on real Web data with 236 nodes and 409 edges

6. RELATED WORK
We have discussed existing work on group Steiner trees in

Section 3. In this section, we give an overview of work in
the area of integrating content search on the Web and Web
structure analysis.
Although search engines are one of the most popular meth-

ods to retrieve information of interest from the Web, they
usually return thousands of URLs that match the user spec-
i�ed query terms. Many prototype systems are built to per-
form clustering or ranking based on link structures [9, 10]
or links and context [11, 12]. Tajima et al. [13] presented a
technique which uses cuts (results of Wen structure analysis)
as querying units for WWW. [14] �rst present the concept of
information unit and [15] extends to rank query results in-
volved multiple keywords by (1) �nding minimal subgraphs
of links and pages including all keywords; and (2) computing
the score of each subgraph based on locality of the keywords
within it.
Another solution to the above problem is the topic dis-

tillation [16, 17, 11, 9] approach. This approach aims at
selecting small subsets of the authoritative and hub pages
from the much larger set of domain pages. An authoritative
page is a page with many inward links and a hub page is a
page with many outward links. Authoritative pages and hub
pages are mutually reinforcing: a good authoritative page is

linked by good hub pages and vice versa. In [18], Bharat
et al. present improvements on the basic topic distillation
algorithm [16]. They introduce additional heuristics, such
as considering only those pages which are in di�erent do-
mains and using page similarity for mutual authority/hub
reinforcement.
Similar techniques to improve the e�ectiveness of search

results are also investigated for database systems. In [19],
Goldman et al. propose techniques to perform proximity
searches over databases. In this work, proximity is de�ned
as the shortest path between vertices (objects) in a given
graph (database). In order to increase the eÆciency of the
algorithm, the authors also propose techniques to construct
indexes that help in �nding shortest distances between ver-
tices. In our work, in the special case of two keywords we
also use shortest distances. In the more general case, how-
ever, we use minimal group Steiner trees to gather results.
Note that minimal group Steiner trees reduce to the shortest
paths when the number of groups, that is, keywords, is lim-
ited to two. DataSpot, described in [20], aims at providing
ranked results in a database which uses a schema-less semi-
structured graph called a Web View for data representation.
Compared with existing work, our work aims at providing

more eÆcient graph search capability. Our work focuses
on progressive query processing without the assumption of
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that the complete graph is known. Our framework considers
queries with more than 2 keywords, which is signi�cantly
more complex. In addition, we also present how to deal
with partial matches and fuzziness in retrieval.

7. CONCLUDING REMARKS

In this paper, we introduced the concept of information
unit, which is as a logical document consisting of multiple
physical pages. We proposed a novel framework for doc-
ument retrieval by information units. In addition to the
results generated by existing search engines, our approach
further bene�ts from the link structure to retrieve results
consisting of multiple relevant pages associated by linkage
and keyword semantics. We proposed appropriate data and
query models and algorithms that eÆciently solve the re-
trieval by information unit problem. The proposed algo-
rithms satisfy the essential requirement of progressive query
processing, which ensures that the system does not enumer-
ate an unnecessarily large set of results when users are inter-
ested only in top matches. We presented a set of experiment
results conducted on synthetic as well as real data. These
experiments show that although the algorithm we propose is
suboptimal (the optimal version of the problem is NP-hard),
it is eÆcient and provides adequate accuracy.
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