
A Client-Aware Dispatching Algorithm for Web Clusters
Providing Multiple Services

Emiliano Casalicchio
Dept. of Computer Engineering
University of Roma Tor Vergata

Roma, Italy, 00133

ecasalicchio@ing.uniroma2.it

Michele Colajanni
Dept. of Information Engineering

University of Modena
Modena, Italy, 41100

colajanni@unimo.it

ABSTRACT
The typical Web cluster architecture consists of replicated
back-end and Web servers, and a network Web switch that
routes client requests among the nodes. In this paper, we
propose a new scheduling policy, namely client-aware policy
(CAP), for Web switches operating at layer-7 of the OSI pro-
tocol stack. Its goal is to improve load sharing in Web clus-
ters that provide multiple services such as static, dynamic
and secure information. CAP classi�es the client requests on
the basis of their expected impact on main server resources,
that is, network interface, CPU, disk. At run-time, CAP
schedules client requests reaching the Web cluster with the
goal of sharing all classes of services among the server nodes.
We demonstrate through a large set of simulations and some
prototype experiments that dispatching policies aiming to
improve locality in server caches give best results for Web
publishing sites providing static information and some sim-
ple database searches. When we consider Web sites provid-
ing also dynamic and secure services, CAP is more e�ec-
tive than state-of-the-art layer-7 Web switch policies. The
proposed client-aware algorithm is also more robust than
server-aware policies whose performance depends on opti-
mal tuning of system parameters, very hard to achieve in a
highly dynamic system such as a Web site.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems; C.4 [Performance of Systems]: Design studies;
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services|Web-based services

General Terms
Algorithms, Design, Performance

Keywords
Load balancing, Dispatching algorithms, Clusters

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
Copyright 2001 ACM 1-58113-348-0/01/0005 ...$5.00.

1. INTRODUCTION
The need to optimize the performance of popular Web

sites is producing a variety of novel architectures. Geo-
graphically distributed Web servers [21, 10] and proxy server
systems aim to decrease user latency time through network
access redistribution and reduction of amount of data trans-
ferred, respectively. In this paper we consider di�erent Web
systems, namely Web clusters, that use a tightly coupled
distributed architecture. >From the user's point of view,
any HTTP request to a Web cluster is presented to a log-
ical (front-end) server that acts as a representative for the
Web site. This component called Web switch retains trans-
parency of the parallel architecture for the user, guarantees
backward compatibility with Internet protocols and stan-
dards, and distributes all client requests to the Web and
back-end servers. Cluster architectures with Web switch
dispatcher(s) have been adopted with di�erent solutions in
various academic and commercial Web clusters, e.g. [2, 7,
12, 17, 20]. Valuable recent surveys are in [25, 23].
One of the main operational aspects of any distributed

system is the availability of a mechanism that shares the
load over the server nodes. Numerous global scheduling1

algorithms were proposed for multi-node architectures exe-
cuting parallel or distributed applications.
Unlike geographically distributed Web sites, where the

dispatching role is taken by system components (e.g., DNS)
that have only a limited control on client requests [14, 17],
the Web cluster with a single Web switch controlling all
workload is a very robust architecture to front Web arrivals
that tends to occur in waves with intervals of heavy peaks.
The motivations for a new dispatching policy come from two
main considerations on Web service distributions.
The service time of HTTP requests may have very large

or in�nite variance even for traditional Web publishing sites.
Moreover, heterogeneity and complexity of services and ap-
plications provided by Web sites is continuously increasing.
Traditional sites with most static contents have being inte-
grated with recent Web commerce and transactional sites
combining dynamic and secure services.
Web switch policies that want to dispatch the requests in

a highly heterogeneous and dynamic system by taking into
account server states require expensive and hard to tuning

1In this paper we use the de�nition of global scheduling given
in [11], and dispatching as synonymous.

535

mechanisms for monitoring and evaluating the load on each
server, gathering the results, combining them, and taking
real-time decisions.
For these reasons, we propose a client-aware policy (CAP)

policy that, in its pure version, takes dynamic decisions by
looking only at client requests instead of server states. CAP
partitions the Web cluster services into broad classes on the
basis of the expected impact that each request may have on
main server components, that is, network interface, CPU,
disk. Then, it schedules client load by taking into account
the service class each request belongs to. Under workload
characteristics that resemble those experienced by real Web
sites, we demonstrate through simulation and prototype ex-
periments that this simple client-aware policy is much more
e�ective than state-of-the-art dynamic algorithms when ap-
plied to Web clusters providing heterogeneous services such
as static, dynamic and secure information. By using CAP,
the 90-percentile of page latency time can be half of that
of commonly used dynamic Web switch policies, such as
Weighted-Round Robin [20] and LARD [24]. Moreover,
CAP guarantees stable results for a wide range of Web sites
because it does not need a hard tuning of parameters for
each type of Web site as most server-aware policies require.
The remainder of this paper is organized as follows. In

Section 2, we outline the typical architecture of a Web clus-
ter with a focus on Web switches. In Section 3, we discuss
some related work on global scheduling algorithms for the
Web switch and propose the CAP policy. In Section 4, we
present a detailed simulation model for the Web cluster, and
we discuss the results for various classes of Web sites. In Sec-
tion 5, we describe a prototype of Web switch operating at
layer-7 that implements CAP and other policies, and ana-
lyze experimental results in a controlled environment. In
Section 6, we give our �nal remarks.

2. WEB CLUSTERS

2.1 Architecture
A Web cluster refers to a Web site that uses two or more

server machines housed together in a single location to han-
dle user requests. Although a large cluster may consist of
dozens of Web servers and back-end servers, it uses one
hostname to provide a single interface for users. To have a
mechanism that controls the totality of the requests reaching
the site and to mask the service distribution among multi-
ple servers, Web clusters provide a single virtual IP address
that corresponds to the address of the front-end server(s).
Independently of the mechanism that existing Web clusters
use to routing the load, we refer to this entity as the Web
switch. The Domain Name Server(s) for the Web site trans-
lates the site address (e.g., www.site.edu) into the IP address
of the Web switch. In such a way, the Web switch acts as a
centralized global scheduler that receives the totality of the
requests and routes them among the servers of the cluster
(see Figure 1).
We consider a Web cluster consisting of homogeneous dis-

tributed servers that provide the same set of documents and
services. The details about the operations of the Web clus-
ter are described in Section 4.1. Various academic and com-
mercial products con�rm the increasing interest in these dis-
tributed Web architectures. In the IBM TCP router [17], all
HTTP requests reach the Web switch that distributes them
by modifying the destination IP address of each incoming

NetworkAreaLocal

Client Requests

W
ide A

rea N
etw

ork

����
����
����
����
����

����
����
����
����
����

����
����
����
����

���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����

���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Back−end 1 Back−end MBack−end 2

Web server 2 Web server 3 Web server NWeb server 1

Web switch

Figure 1: Web cluster architecture.

packet: the Web switch replaces its IP address with the pri-
vate address of the selected Web server.
Magicrouter [2], Distributed Packet Rewriting [7] and Cisco

LocalDirector [12] are other Web cluster architectures relying
on a Web switch that receives the totality of client requests.
In particular, Magicrouter is a mechanism of fast packet in-
terposing where a user level process acting as a switchboard
intercepts network packets and modi�es them by changing
addresses and checksum �elds. Cisco LocalDirector rewrites
the IP header information of each incoming packet accord-
ing with a dynamic table of mapping between each session
and the server to which it has been redirected. Unlike the
TCP router that modi�es only the client-to-server packets
and lets the servers modify outgoing IP packets, Magicrouter
and LocalDirector Web switches can be de�ned as gateways
because they intervene even on server-to-client packets.
An evolution of the TCP router architecture is represented

by the IBM Network Dispatcher that does not require a mod-
i�cation of the packet addresses because packet forwarding
to cluster nodes is done at the MAC address level [20]. A
di�erent forwarding approach to con�gure a Web system
with multiple servers uses the if-con�g-alias option, which
is available in most UNIX platforms [16]. This architecture
publicizes the same secondary IP address of all Web servers
as the IP single virtual address, namely ONE-IP, of the Web
cluster. This is achieved by letting the servers of the cluster
share the same IP address as their secondary address, which
is used only for the request distribution service.

2.2 Web switches
A key component of any Web cluster is the Web switch

that dispatches client requests among the servers. They can
be broadly classi�ed according to the OSI protocol stack
layer at which they operate, so we have layer-4 and layer-7
Web switches [25].
Layer-4 Web switches work at TCP/IP level. Since pack-

ets pertaining to the same TCP connection must be assigned
to the same server node, the Web switch has to maintain a
binding table to associate each client TCP session with the

536

target server. The switch examines the header of each in-
bound packet and on the basis of the ag �eld determines
whether the packet pertains to a new or an existing con-
nection. Layer-4 Web switch algorithms are content infor-
mation blind, because they choose the target server when
the client establishes the TCP/IP connection, before send-
ing out the HTTP request. Global scheduling algorithms
executable at the layer-4 Web switch range from static algo-
rithms (say, random, round-robin) to dynamic algorithms
that take into account either network client information,
(say, client IP address, TCP port), or server state informa-
tion (say, number of active connections, least loaded server)
or even a combination of both information.
Layer-7 Web switches can establish a complete TCP con-

nection with the client and inspect the HTTP request con-
tent prior to decide about dispatching. In such a way, they
can deploy content information aware distribution, by let-
ting the Web switch examine the HTTP request and then
route it to the target server. The selection mechanism (usu-
ally referred to as delayed binding) can be based on the Web
service/content requested, as URL content, SSL identi�ers,
and cookies. In [5] there are many techniques to realize
the dispatching granularity at the session level or at the
single Web object request level. Scheduling algorithms de-
ployed at layer-7 may use either client information (as ses-
sion identi�ers, �le type, �le size) or a combination of client
and server state information. The potential advantages of
layer-7 Web switches include the possibility to use special-
ized Web server nodes and partition the Web content among
clusters of heterogeneous servers [28], and to achieve higher
cache hit rates, for example, through aÆnity-based schedul-
ing algorithms such as the LARD policy [24]. On the other
hand, layer-7 routing introduces additional processing over-
head at the Web switch and may cause this entity to become
the system bottleneck. To overcome this drawback, design
alternatives for scalable Web server systems that combine
content blind and content aware request distribution have
been proposed in [6, 26]. These architecture solutions are
out of the scope of this paper which is more focused on the
dispatching algorithms for Web switches.

3. WEB SWITCH ALGORITHMS
The Web switch may use various global scheduling poli-

cies to assign the load to the nodes of a Web cluster. Global
scheduling methods were classi�ed in several ways, depend-
ing on di�erent criteria. The main alternatives are between
load balancing vs. load sharing problems, centralized vs.
distributed algorithms, static vs. dynamic policies. The
Web cluster architecture with a single Web switch motivates
the choice for centralized scheduling policies. If we consider
that load balancing strives to equalize the server workload,
while load sharing attempts to smooth out transient peak
overload periods on some nodes, a Web switch should aim
to share more than to balance cluster workload. Hence, the
real alternative for layer-4 and layer-7 Web switches is the
kind of system information they use to take assignment de-
cisions. The main classes of policies are static and dynamic,
these latter with several subclasses.

3.1 Static and dynamic global scheduling
Static policies do not consider any system state informa-

tion. Typical examples are Random (RAN) and Round-

Robin (RR) algorithms. RAN distributes the arrivals uni-

formly through the nodes. RR uses a circular list and a
pointer to the last selected server to take dispatching deci-
sions. Dynamic policies use some system state information
while taking scheduling decisions.
We consider the three classes of dynamic algorithms.

Server-aware algorithms route requests on the basis of some
server state information, such as load condition, latency
time, availability or network utilization. Client-aware algo-
rithms route requests on the basis of some client information.
Layer-4 Web switches can use only some basic client net-
work information, such as IP address and TCP port. Layer-
7 Web switches can examine the entire HTTP request and
take decisions on the basis of detailed information about the
content of the client request. Client- and server-aware algo-
rithms route requests on the basis of client and server state
information. Actually, most of the existing client-aware al-
gorithms belong to this class. Indeed, although the most
important information is the client request, these policies
combine it with some information about the server loads.
The main goal is to avoid assignments to overloaded servers.
The Web switch cannot use highly sophisticated algo-

rithms because it has to take fast decision for dozens or
hundreds of requests per second. To prevent the Web switch
becoming the primary bottleneck of the Web cluster, static
algorithms are the fastest solution because they do not rely
on the current state of the system at the time of decision
making. For this reason, these algorithms can potentially
make poor assignment decisions. Dynamic algorithms have
the potential to outperform static algorithms by using some
state information to help dispatching decisions. On the
other hand, dynamic algorithms require mechanisms that
collect and analyze state information, thereby incurring po-
tentially expensive overheads.
In this paper, we consider three widely used dispatch-

ing policies that are based on client and/or server informa-
tion: Weighted Round Robin (WRR), Locality Aware Re-

quest Distribution (LARD) and StaticPartitioning. WRR
has resulted the layer-4 policy that guarantees best load
sharing in most simulations and experiments from several re-
search groups. On the other hand, we do not expect LARD
to work well in a site providing heterogeneous services, but
we have chosen it because we are not aware of other layer-7
dispatching algorithms proposed by the research community.
StaticPartitioning uses dedicated servers for speci�c services
or multiple Web sites (co-location). This is the most rep-
resentative example of a client-aware algorithm working at
layer-7 in commercial Web switches [1, 19].
WRR comes as a variation of the round robin policy.

WRR associates to each server a dynamically evaluated
weight that is proportional to the server load state [20]. Pe-
riodically (every Tgat seconds), the Web switch gathers this
information from servers and computes the weights. WRR
is actually a class of dynamic policies that uses some infor-
mation about the system state. The �rst issue that needs
to be addressed when we consider a server state aware pol-
icy is how to compute the load state information because it
is not immediately available at the Web switch. The three
main factors that a�ect the latency time are loads on CPU,
disk and network resources. Typical load measures are the
number of active processes on server, mean disk response
time, and hit latency time, that is, the mean time spent by
each request at the server. In particular, the load indexes we
consider are the number of active processes at each server

537

(WRR num policy), and the mean service time for the re-
quests (WRR time policy). Additional information on WRR
can be found in [20].
If we consider Web clusters of homogeneous servers, the

main goal of the proposed policies is to augment disk cache
hit rates, for example through the LARD policy [24] or other
aÆnity-based scheduling algorithms [26, 29]. The LARD
policy [24] is a content based request distribution that aims
to improve the cache hit rate in Web cluster nodes. The
principle of LARD is to direct all requests for a Web object
to the same server node. This increases the likelihood to
�nd the requested object into the disk cache of the server
node. We use the LARD version proposed in [24] with the
multiple hand-o� mechanism de�ned in [5] that works for the
HTTP/1.1 protocol. LARD assigns all requests for a target
�le to the same node until it reaches a certain utilization
threshold. At this point, the request is assigned to a lowly
loaded node, if it exists, or to the least loaded node. To
this purpose, LARD de�nes two threshold parameters: Tlow
denoting the upper bound of a lowly loaded condition, and
Thigh denoting the lower bound of a highly loaded condition.

3.2 Client-aware policy
All previously proposed scheduling policies take static de-

cisions independently of any state information (e.g., RAN
and RR) or they take dynamic decisions on the basis of the
state of the server nodes (e.g., WRR) that can be combined
with client request information (e.g., LARD). We propose
a client-aware policy (CAP) that takes into account some
information associated to client requests as it can be got-
ten by a layer-7 Web switch. CAP, in its basic form, is
a pure client-aware policy, however, it can be easily com-
bined with some server state information. In this paper,
we consider the pure CAP that does not gather any load
information from servers. Pure client-aware policies have a
possible great advantage over server-aware policies because
server-aware algorithms often require expensive and hard to
tuning mechanisms for monitoring and evaluating the load
on each server, gathering the results, and combining them to
take scheduling decisions. In a highly dynamic system such
as a Web cluster this state information becomes obsolete
quickly.
The key idea for CAP comes from the observation that

dynamic policies such as WRR and LARD work �ne in Web
clusters that host traditional Web publishing services. In
fact, most load balancing problems occur when the Web
site hosts heterogeneous services that make an intensive use
of di�erent Web server's components. Moreover, almost all
commercial layer-7 Web switches use client information for
a static partitioning of the Web services among specialized
servers [1, 19]. The simulation experiments will con�rm the
intuition that a StaticPartitioning policy, although useful
from the system management point of view, achieves poor
server utilization because resources that are not utilized can-
not be shared among all clients. To motivate the CAP pol-
icy, let us classify Web services into four main categories.

Web publishing sites providing static information (e.g.,
HTML pages with some embedded objects) and dy-
namic services that do not intensively use server re-
sources (e.g., result or product display requests). The
content of dynamic requests is not known at the in-
stant of a request, however, it is generated from database
queries whose arguments are known before hand.

Web transaction sites providing dynamic content gener-
ated from (possibly complex) database queries built
from user data provided by an HTML form. This is
a disk bound service because it makes intensive use of
disk resources.

Web commerce sites providing static, dynamic and secure
information. For security reasons, some dynamically
generated content may need a secure channel that in
most cases is provided by the SSL protocol. Cryptog-
raphy makes intensive use of CPU resources. Hence,
Web commerce services are disk and/or CPU bound.

Web multimedia sites providing streaming audio and video
services. In this paper, we do not consider this type
of application that often is implemented through spe-
cialized servers and network connections.

Although realistic, this classi�cation is done for the pur-
poses of our paper only and does not want to be a precise
taxonomy for all Web services. The idea behind the CAP
policy is that, although the Web switch can not estimate
precisely the service time of a client request, from the URL
it can distinguish the class of the request and its impact on
main Web server resources. Any Web content provider can
easily tune the CAP policy at its best. Starting from the
above classi�cation, we distinguish the Web requests into
four classes: static and lightly dynamic Web publishing ser-
vices (N); disk bound services (DB), for example, in Web
transaction and Web commerce sites; CPU bound (CB) and
disk and CPU bound (DCB) services, for example, in Web
commerce sites. In the basic version of CAP, the Web switch
manages a circular list of assignments for each class of Web
services. The goal is to share multiple load classes among
all servers so that no single component of a server is over-
loaded. When a request arrives, the Web switch parses the
URL and selects the appropriate server. We describe the
CAP behavior through the following example.
We suppose that the server A has already received one

request of type CB and one of type DCB; the server B has
received one request of type N, and one of type DB. The
sequence of successive requests to the Web cluster is shown
in Figure 2. By using the CAP assignment, server A and
B have a similar number of requests for each class of ser-
vice, while this does not happen when using RR or LARD.
For example, in the case of RR the server A receives four
intensive requests that stress the CPU and/or disk, while
server B receives only one CPU bound request. In the case
of LARD, we suppose that the requests of type DB and CB
are assigned to the server A and those of other types to the
server B. This dispatching results that the server A receives
two CPU bound and two disk bound requests, while the
server B receives only one request of type DCB.
CAP does not require a hard tuning of parameters which is

typical of most dynamic policies because the service classes
are decided in advance, and the scheduling choice is deter-
mined statically once the URL has been classi�ed.

4. SIMULATION EXPERIMENTS

4.1 System model
The Web cluster consists of multiple Web servers and

back-end servers, and a dedicated machine that can act as

538

Web switch

denotes the next server in the assignment for each class of Web service*

N DB CB DCB N DB CB DCB

RR Final state

CAP Final state

Initial state
* ***

1 0 01

N DB CB DCB

0 0 1 1

N DB CB DCB

3 1 10 2 3 1

N DB CB DCB N DB CB DCB

2 11 2 11 1

2 2 1 01 1 2 2

N DB CB DCB N DB CB DCB

2

0
LARD Final state
(DB, CB −−> A
 N, DCB −−> B)

CAP

RR

LARD

Algorithm Web server A

N_1, CB_2, DCB_1, DB_2

N_1, CB_2, DB_1

CB_1, CB_2, DB_1, DB_2

Web server B

CB_1, DCB_1, N_2, DB_2

CB_1, DB_1, N_2

N_1, DCB_1, N_2

Web server A Web server B

DB_2, N_2, DCB_1, DB_1, CB_2, CB_1, N_1

Sequence Assignement

Figure 2: Example of behavior of CAP, RR and

LARD dispatching policies.

a layer-4 or layer-7 Web switch. The primary DNS trans-
lates the hostname of this site into the IP address of the
Web switch. The addresses of Web and back-end servers
are private and invisible to the extern. Web servers, back-
end servers and Web switch are connected through a local
fast Ethernet with 100 Mbps bandwidth, as in Figure 1. As
the focus is on Web cluster performance we did not model
the details of the external network. To prevent the bridge(s)
to the external network becoming a potential bottleneck for
the Web cluster throughput, we assume that the system is
connected to the Internet through one or more large band-
width links that do not use the same Web switch connection
to Internet [20].
Each server in the cluster is modeled as a separate compo-

nent with its CPU, central memory, hard disk and network
interface. All above components are CSIM processes having
their own queuing systems that allow for requests to wait if
the server, disk or network are busy. We use real parameters
to set up the system. For example, the disk is parameterized
with the values of a real fast disk (IBM Deskstar34GXP)
having transfer rate equal to 20 MBps, controller delay to
0.05 msec., seek time to 9 msec., and RPM to 7200. The
main memory transfer rate is set to 100MBps. The network
interface is a 100Mbps Ethernet card. The back-end servers

are replicated database servers that reply to dynamic re-
quests. The Web server software is modeled as an Apache-
like server, where an HTTP daemon waits for requests of
client connections. As required by the HTTP/1.1 protocol,
each HTTP process serves all �les speci�ed in a Web request.
The client-server interactions are modeled at the details of

TCP connections including packets and ACK signals. Each
client is a CSIM process that, after activation, enters the sys-
tem and generates the �rst request of connection to the Web
switch of the Web cluster. The entire period of connection to
the site, namely, Web session, consists of one or more page
requests to the site. At each request, the Web switch ap-
plies some routing algorithm and assigns each connection to
a server. The server dedicates a new HTTP process for that
connection. Each client request is for a single HTML page
that typically contains a number of embedded objects. A
request may include some computation or database search,
and a secure connection. The client will submit a new re-
quest only after it has received the complete answer, that
is, the HTML page and all (possible) embedded objects. A
user think time between two page requests models the time
required to analyze the requested object and decide about
a new request.
It is worth observing that for a fair comparison of the

Web switch algorithms our models consider the overhead
di�erence in dispatching requests at layer-4 and layer-7 Web
switches. For example, the delays introduced by layer-7
switching are modeled with the values given in [5].

4.2 Workload model
Special attention has been devoted to the workload model

that incorporates all most recent results on the characteris-
tics of real Web load. The high variability and self-similar
nature of Web access load is modeled through heavy tail
distributions such as Pareto, lognormal and Weibull distri-
butions [4, 8, 9, 15]. Random variables generated by these
distributions can assume extremely large values with non-
negligible probability.
The number of page requests per client session, that is, the

number of consecutive Web requests a user will submit to the
Web site, is modeled according to the inverse Gaussian dis-
tribution. The time between the retrieval of two successive
Web pages from the same client, namely the user think time,
is modeled through a Pareto distribution [9]. The number of
embedded objects per page request including the base HTML
page is also obtained from a Pareto distribution [9, 22]. The
inter-arrival time of hit requests, that is, the time between
retrieval of two successive hit requests from the servers, is
modeled by a heavy-tailed function distributed as a Weibull.
The distribution of the �le sizes requested to a Web server
is a hybrid function, where the body is modeled accord-
ing to a lognormal distribution, and the tail according to
a heavy-tailed Pareto distribution [8]. A summary of the
distributions and parameters used in our experiments is in
Table 1.
To characterize the di�erent Web services classi�ed as

in Section 3.2 we have modeled also the impact of a se-
cure channel on server performance (that is, the presence of
CPU bound requests) and the impact of intensive database
queries (that is, disk bound requests). Our model includes
all main CPU and transmission overheads due to SSL pro-
tocol interactions, such as key material negotiation, server
authentication, and encryption and decryption of key mate-

539

Web cluster

Number of servers 2-32
Disk transfer rate 20 MBps
Memory transfer rate 100 MBps
HTTP protocol 1.1
Intra-servers bandwidth 100 Mbps

Clients

Arrival rate 100-300 clients per second
Requests per session Inverse Gaussian (� = 3:86, � = 9:46)
User think time Pareto (� = 1:4, k = 2)
Objects per page Pareto (� = 1:1� 1:5(1:33), k = 1)
Hit size request (body) Lognormal (� = 7:640, � = 1:705)
(tail) Pareto (� = 1:383, k = 2924)

Table 1: Parameters of the system and workload

model.

rial and Web information. The CPU service time consists
of encryption of server secret key with a public key encryp-
tion algorithm such as RSA, computation of Message Au-
thentication Code through a hash function such as MD5 or
SHA, and data encryption through a symmetric key algo-
rithm, such as DES or Triple-DES. Most CPU overhead is
caused by data encryption (for large size �les), and public
key encryption algorithm (RSA algorithm), that is required
at least once for each client session, when the client has to
authenticate the server. The transmission overhead is due
to the server certi�cate (2048 bytes) sent by the server to the
client the server hello and close message (73 bytes), and the
SSL record header (about 29 bytes per record). Table 2 sum-
marizes the throughput of the encryption algorithm used in
the secure workload model.

Category Throughput (Kbps)

RSA(256 bit) 38.5
Triple DES 46886
MD5 331034

Table 2: Secure workload model.

We compare the performance of di�erent scheduling poli-
cies for Web clusters under three main classes of workload.

Web publishing site containing static and lightly dynamic
documents. A static document resides on the disk of
the Web server; it is not modi�ed in a relatively long
time interval and is always cacheable. The cache of
each node is set to 15% of the total size of the Web
site document tree. A lightly dynamic document is
cacheable with 0.3 probability.

Web transaction sites contain 60% of static documents
and 40% of dynamically created documents. Database
queries to back-end servers require intensive disk use
and their results are not cacheable.

Web commerce sites have 30% of static requests, 30% of
lightly dynamic requests and various combinations for
the remaining 40% of requests.

4.3 Simulation results
As the main measure for analyzing the performance of the

Web cluster we use the cumulative frequency of the page la-
tency time. The goal of this paper on Web cluster perfor-
mance allows us not to include all delays related to Internet
in page latency time.

4.3.1 Optimal tuning of server-aware policies
Most dynamic policies depend on system state informa-

tion that is not immediately available at the Web switch. It
is often expensive to gather server state information, and it
is diÆcult to choose the best parameters of dynamic poli-
cies in highly variable and heterogeneous Web systems. The
CAP policy, in its basic form, does not require setting any
parameter other than the choice of classes of services that
can be identi�ed from the URL. The LARD strategy re-
quires setting the parameters Tlow and Thigh for server uti-
lization as described in Section 3. In our experiments we set
Tlow=0.3 and Thigh=0.7, and we did not observed consider-
able changes for lightly di�erent values.
The most complex policy to tune is the WRR that is sen-

sible to the adopted load metric and to the selected Tgat

value for gathering server state information. To show the
diÆculty of optimal tuning parameters of some dynamic
policies in Figure 3 we show the sensitivity of WRR num
and WRR time with respect to the Tgat period for an al-
most static (Web publishing) and a highly variable workload
(Web commerce). As a performance metrics, we use the 90-
percentile of page latency time, that is, the page latency time
limit that the Web site guarantees with 0.9 probability. The
Tgat value has a big inuence on performance especially for
sites with heterogeneous services. If not well tuned, a dy-
namic policy such as WRR can behave worse than static
policies such as RAN and RR. In both instances, the num-
ber of active connections (WRR num) seems to be the best
load metric and low Tgat values seem to be preferable to
higher values. In the remaining part of the paper, we use
the number of active processes as a load metric and assume
that we are always able to choose the best parameters for
the WRR policy. We will refer to it simply as WRR.
In the simulations, we consider the ideal StaticPartition-

ing algorithm that for any workload scenario is able to par-
tition the dedicated servers proportionally to the percentage
arrival of requests for each class of services.

4.3.2 Web publishing
We assume a �rst scenario where all requests are for static

documents and a second scenario where requests are for
lightly dynamic documents. Figure 4(a) shows that the
LARD strategy that exploits the reference locality of Web
requests performs better than CAP and WRR. LARD guar-
antees with very high probability that the page latency time
is less than 1 second. The analogous probability is about 0.9
for CAP and 0.8 for WRR.
In the next experiments, we consider only requests for

lightly dynamic documents that have a lower probability
of being found in the disk cache. Figure 4(b) shows that
CAP and LARD have a similar behavior even if LARD still
performs slightly better. However, if we compare this �gure
with Figure 4(a) we can observe that, while CAP and WRR
maintain similar results, actually LARD is truly penalized
by a lower cache hit rate.

4.3.3 Web transaction
When the document hit rate is low and a relatively high

percentage of requests (40%) is disk bound, the CAP policy
starts to exploit its bene�ts for multiple service characteris-
tics. Figure 5 shows that the page latency time of CAP is
much better than that achieved byWRR, LARD and Static-
Partitioning algorithms. CAP policy improves Web cluster

540

0

10

20

30

40

50

60

70

80

10 40 70 100

90
-p

er
ce

nt
ile

 o
f

Pa
ge

 r
es

po
nc

e
tim

e
(s

ec
.)

Tgat (sec.)

WRR_num
WRR_time

RR
RAN

(a) Web publishing site

0

10

20

30

40

50

60

70

80

10 40 70 100

90
-p

er
ce

nt
ile

 o
f

Pa
ge

 r
es

po
nc

e
tim

e
(s

ec
.)

Tgat (sec.)

WRR_num
WRR_time

RR
RAN

(b) Web commerce site

Figure 3: Sensitivity of WRR policies to the Tgat

parameter and load metric.

performance of 35% over WRR and 55% over LARD. In-
deed, the 90-percentile of page latency time using CAP is
less than 2 seconds, while it is about 7 seconds for WRR
and about 20 seconds for LARD. LARD show bad results
because incoming requests are assigned to a Web server �rst
on the basis of document locality and then on the basis of
server load state. Our results con�rm the intuition that
routing requests to the same server until it reaches a highly
loaded state does not work in Web transaction sites. Static-
Partitioning performs even worse than LARD. On the other
hand, the layer-4 WRR policy is quite robust, because its
performance does not degrade too much for sites with het-
erogeneous services.

4.3.4 Web commerce
This is the most heterogeneous workload. We consider

three scenarios where lightly dynamic, CPU bound and disk
bound requests are mixed in di�erent ways.
In the �rst set of experiments we assume that 40% of total

requests need secure connections and cryptography. This
is the most critical scenario because CPU bound requests
a�ect performance of the other 60% of requests that have
to use the CPU, even if for less intensive operations such
as parsing a request and building a HTTP response. Fig-
ure 6(a) shows how this very critical (and, we can say, unre-

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Page Latency Time (sec.)

CAP
LARD
WRR

(a) Static requests

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
C

um
ul

at
iv

e
Fr

eq
ue

nc
y

Page Latency Time (sec.)

CAP
LARD
WRR

(b) Dynamic requests

Figure 4: Web publishing: cumulative frequency of

page latency time.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Page Latency Time (sec.)

CAP
LARD
WRR

StaticPartitioning

Figure 5: Web transaction: cumulative frequency of

page latency time

alistic) scenario deteriorates performance of all dispatching
strategies. However, multiple service scheduling allows CAP
to achieve still best results.
In the second scenario, we introduce both CPU and disk

bound requests, but CPU bound requests (20%) di�er from

541

disk bound requests (20%). In Figure 6(b) we see that the
CAP policy provides really good page latency times, while
WRR is at its limit and LARD does not guarantee a scal-
able Web cluster. The improvement of the CAP strategy is
considerable, especially if we consider that the WRR curve
refers to the WRR policy with best parameters. For ex-
ample, CAP achieves a page latency time of about 2.5 sec-
onds with 0.9 probability. For WRR and StaticPartitioning,
the analogous latency time is achieved with a probability of
about 0.68, and for LARD with a probability of less than
0.4.
In the last set of experiments, we consider a realistic Web

commerce site where the requests can be for secure (20%),
disk bound (10%) or both (10%) services. Even if the work-
load becomes more onerous, Figure 6(c) shows that the CAP
policy guarantees a scalable Web cluster. Indeed, it achieves
a 90-percentile for the page latency time of less than 5 sec-
onds. The analogous percentile is equal to 20 seconds for
WRR and it is higher than 35 seconds for LARD. For ex-
ample, WRR, LARD and StaticPartitioning have a page
latency time of 5 seconds with a probability of 0.66, 0.72
and 0.37, respectively.

5. PROTOTYPE EXPERIMENTS
The simulation results conviced us about the opportunity

of building a prototype cluster with a layer-7 Web switch
equipped with CAP. In this section we outline the architec-
ture and give some performance results that con�rm main
conclusions obtained by the simulation model.

5.1 Prototype architecture
The Web cluster consists of a Web switch node, connected

to the back-end nodes and the Web servers through a high
speed LAN. The distributed architecture of the cluster is
hidden to the HTTP client through a unique Virtual IP
(VIP) address. Di�erent mechanisms were proposed to im-
plement a layer-7 Web switch at various operating system
levels. The most eÆcient solutions are the TCP hand-o� [24]
and the TCP splicing [13] that are implemented at the ker-
nel level. The application layer solutions are undoubtely less
eÆcient than kernel level mechanisms, but their implemen-
tation is cheaper and suÆcient for the purposes of this paper
that is focused more on dispatching algorithms than on Web
switch products. Among the application level solutions, we
selected the reverse proxy approach proposed in [18] that is
based on the Apache Web server software. This mechanism
allows us to implement and test any layer-7 dispatching algo-
rithm without modi�cations at the kernel level. The draw-
back of this approach is a higher overhead on response time
perceived by the clients. Aron et al. show that TCP hand-
o� outperforms TCP splicing techniques [6]. Moreover, the
overheads of Web switches operating at layer-7 pose serious
scalability problems that we, as other authors [26], noticed
in the experiments. There is no doubt that a real system
should work at the kernel level but addressing the switch
performance issue is out of the scope of this paper.
Our system implementation is based on o�-the-shelf hard-

ware and software components. The clients and servers of
the system are connected through a switched 100Mbps Eth-
ernet that does not represent the bottleneck for our experi-
ments. The Web switch is implemented on a PC PentiumII-
450Mhz with 256MB of memory. We use four PC Pentium
MMX 233Mhz with 128MB of memory as Web servers. All

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Page Latency Time (sec.)

CAP
LARD
WRR

StaticPartitioning

(a) CPU bound requests

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Page Latency Time (sec.)

CAP
LARD
WRR

StaticPartitioning

(b) CPU and disk bound requests

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Page Latency Time (sec.)

CAP
LARD
WRR

StaticPartitioning

(c) CPU and/or disk bound requests

Figure 6: Web commerce scenario: cumulative fre-

quency of page latency time.

nodes of the cluster use a 3Com 3C905B 100bTX network
interface. They are equipped with a Linux operating sys-
tem (kernel release 2.2.16), and Apache 1.3.12 as the Web
server software. On the Web switch node, the Apache Web
server is con�gured as a reverse proxy through the modules
mod proxy and mod rewrite [3]. The dispatching algorithms
are implemented as C modules that are activated once at
startup of the Apache servers. The dispatching module com-
municates with the rewriting engine, which is provided by
the mod rewrite, over its stdin and stdout �le handles. For
each map-function lookup, the dispatching module receives

542

the key to lookup as a string on stdin. After that, it has to
return the looked-up value as a string on stdout.
Because the LARD algorithm requires also information

about the server load, we implement on each Web server a
Collector C module that collects the number of active HTTP
connections. Every 10 seconds the Manager C module in-
stalled on the Web switch gathers server load information
through a socket communication mechanism.

5.2 Experimental results
To test the system we use a pool of client nodes that are

interconnected to the Web cluster through a dedicated Fast
Ethernet. The clients runs on four PentiumII PCs. As syn-
thetic workload generator we use a modi�ed version of the
Webstone benchmark [27] (version 2.1). The main modi�-
cations concern the client behavior for which we introduce
the concept of user think-time and embedded objects per
Web page as described in Section 4.2. Moreover, the �le
size of each object is modeled through a Pareto distribu-
tion. To emulate a dynamic workload, we create three CGI
services: two of them stress the CPU of the Web server
nodes in a lightly or intensive way; the third service stresses
both the CPU and disk. In the experiments we compare the
performance of dispatching strategies under three di�erent
scenarios: static workload, light dynamic workload, and in-
tensive dynamic workload. In the dynamic scenario, 80%
of requests are for static objects and 20% are for dynamic
services. The dynamic requests are classi�ed as CPU-light
(10%), CPU-intensive (6%) and CPU-Disk-intensive (4%).
The main performance metric is the Web cluster through-

put measured in connections per second (conn/sec). We pre-
fer this measure because it represents system performance
better than Mbps especially for highly heterogeneous work-
loads.
In the �rst set of experiments we compare the perfor-

mance of CAP and LARD under static and light dynamic
workload. Figure 7 shows the system throughput in the
case of static scenario. We can see that LARD and CAP
perform similarly. When we pass to consider a light dy-
namic workload (Figure 8), the performance results of CAP
and LARD change completely because dynamic requests
stress the server resources in a quite di�erent way. Figure 9
presents the system throughput for an intensive dynamic

50

60

70

80

90

100

110

160 200 240 280

T
hr

ou
gh

pu
t [

co
nn

/s
ec

]

Active clients

CAP
LARD

Figure 7: Static workload: system throughput.

workload that con�rms that CAP outperforms LARD per-
formance. Compared to this latter algorithm, CAP through-
put increases from 13% when 160 clients are in the system,
to 21% when 240 clients are connected. All the above re-
sults let us think that if the complexity and variety of client
requests augment, the improvement of CAP can increase as
well. The main motivation for this result is the better load
balancing achieved by CAP with respect to LARD. To this
purpose, we show in Figure 10 the minimum and maximum
server utilizations in a cluster where the Web switch uses a
LARD and CAP policy, respectively.

50

60

70

80

90

100

110

120

160 200 240 280

T
hr

ou
gh

pu
t [

co
nn

/s
ec

]

Active clients

CAP
LARD

Figure 8: Light dynamic workload: system throughput

50

60

70

80

90

100

110

120

160 200 240 280

T
hr

ou
gh

pu
t [

co
nn

/s
ec

]

Active clients

CAP
LARD

Figure 9: Intensive dynamic workload: system through-

put

6. CONCLUSIONS
Web cluster architectures are becoming very popular for

supporting Web sites with large numbers of accesses and/or
heterogeneous services. In this paper, we propose a new
scheduling policy, called client-aware policy (CAP), for Web
switches operating at layer-7 of the OSI protocol stack to
route requests reaching the Web cluster. CAP classi�es the
client requests on the basis of their expected impact on main
server components. At run-time, CAP schedules client re-
quests reaching the Web cluster with the goal of sharing

543

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

CPU Utilization

CAP (Min)
LARD (Min)

CAP (Max)
LARD (Max)

Figure 10: Light dynamic workload: distributions of

min-max server utilizations in the Web cluster.

all classes of services among the servers, so that no system
resource tends to be overloaded. We demonstrate through
simulation and experiments on a real prototype that dis-
patching policies that improveWeb caches hit rates give best
results for traditional Web publishing sites providing most
static information and some lightly dynamic requests. On
the other hand, CAP provides scalable performance even for
modern Web clusters providing static, dynamic and secure
services. Moreover, the pure CAP has the additional ben-
e�t of guaranteeing robust results for very di�erent classes
of Web services because it does not require a hard tuning of
system parameters as many other server-aware dispatching
policies do.

Acknowledgments
The authors would like to thank Mauro Andreolini from
the University of Rome for his support in prototype experi-
ments. This work was carried out under the partial support
of Banca di Roma (Res. contract BDR-2001 on \Advanced
technologies").

7. REFERENCES
[1] Alteon WebSystems, Alteon 780 Series, in

www.alteonwebsystems.com/products/
[2] E. Anderson, D. Patterson, E. Brewer, \The Magicrouter,

an application of fast packet interposing", unpublished
Tech. Rep., Computer Science Department, University of
Berkeley, May 1996.

[3] Apache docs., in www.apache.org/docs/mod/
[4] M.F. Arlitt, C.L. Williamson, \Internet Web servers:

Workload characterization and performance implications",
IEEE/ACM Trans. on Networking, vol. 5, no. 5, Oct. 1997,
pp. 631-645.

[5] M. Aron, P. Druschel, W. Zwaenepoel, \EÆcient support
for P-HTTP in cluster-based Web servers", Proc. USENIX
1999, Monterey, CA, June 1999.

[6] M. Aron, D. Sanders, P. Druschel, W. Zwaenepoel,
\Scalable content-aware request distribution in
cluster-based network servers", Proc. USENIX 2000, San
Diego, CA, June 2000.

[7] L. Aversa, A. Bestavros, \Load balancing a cluster of Web
servers using Distributed Packet Rewriting", Proc. of
IEEE IPCCC'2000, Phoenix, AZ, February 2000.

[8] P. Barford, A. Bestavros, A. Bradley, M.E. Crovella,
\Changes in Web client access patterns: Characteristics
and caching implications", World Wide Web, Jan. 1999.

[9] P. Barford, M.E. Crovella, \A performance evaluation of
Hyper Text Transfer Protocols", Proc. of ACM Sigmetrics
'99, Atlanta, Georgia, May 1999, pp. 188-197.

[10] V. Cardellini, M. Colajanni, P.S. Yu, \Dynamic load
balancing on scalable Web server systems", Proc. of
MASCOTS'2000, San Francisco, Aug. 2000.

[11] T.L. Casavant, J.G. Kuhl, \A taxonomy of scheduling in
general-purpose distributed computing systems", IEEE
Trans. on Software Engineering, vol. 14, no. 2, Feb. 1988,
pp. 141-154.

[12] Cisco's LocalDirector, in www.cisco.com
[13] A. Cohen, S. Rangarajan, H. Slye, \On the performance of

TCP splicing for URL-aware redirection", Proc. of 2nd
USENIX Symposium on Internet Technologies and
System, Boulder, CO, Oct. 1999.

[14] M. Colajanni, P.S. Yu, D. Dias, \Redirection algorithms
for load sharing in distributed Web server systems", IEEE
Trans. on Parallel and Distributed Systems, vol. 9, no. 6,
pp. 585-600, June 1998.

[15] M.E. Crovella, A. Bestavros, \Self-similarity in World Wide
Web traÆc: Evidence and possible causes", IEEE/ACM
Trans. on Networking, vol. 5, no. 6, Dec. 1997, pp. 835-846.

[16] O.P. Damani, P.E. Chung, Y. Huang, C. Kintala, Y.-M.
Wang, \ONE-IP: Techniques for hosting a service on a
cluster of machines", Proc. of 6th Intl. World Wide Web
Conf., Santa Clara, CA, Apr. 1997.

[17] D.M. Dias, W. Kish, R. Mukherjee, R. Tewari, \A scalable
and highly available Web server", Proc. of 41st IEEE
Comp. Society Int. Conf., Feb. 1996.

[18] R.S. Engelschall, \Load balancing your Web site", Web
Techniques Magazine, Vol. 3, May 1998.

[19] F5 Networks Inc. BigIP Version 3.0, in www.f5labs.com
[20] G.D.H. Hunt, G.S. Goldszmidt, R.P. King, R. Mukherjee,

\Network Web switch: A connection router for scalable
Internet services", Proc. of 7th Int. World Wide Web
Conf., Brisbane, Australia, April 1998.

[21] A. Iyengar, J. Challenger, D. Dias, P. Dantzig,
\High-Performance Web Site Design Techniques", IEEE
Internet Computing, vol. 4 no. 2, March/April 2000.

[22] B.A. Mah, \An empirical model of HTTP network traÆc",
Proc. of IEEE Int. Conf. on Computer Communication,
Kobe, Japan, April 1997.

[23] R. Mukherjee, \A scalable and highly available clustered
Web server", in High Performance Cluster Computing:
Architectures and Systems, Volume 1, Rajkumar Buyya
(ed.), Prentice Hall, 1999.

[24] V.S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, E. Nahum, \Locality-aware request
distribution in cluster-based network servers", In Proc. of
8th ACM Conf. on Arch. Support for Progr. Languages,
San Jose, CA, Oct. 1998.

[25] T. Schroeder, S. Goddard, B. Ramamurthy, \Scalable Web
server clustering technologies", IEEE Network, May-June
2000, pp. 38-45.

[26] J. Song, E. Levy-Abegnoli, A. Iyengar, D. Dias, \Design
alternatives for scalable Web server accelerators", Proc.
2000 IEEE Int. Symp. on Perf. Analysis of Systems and
Software, Austin, TX, Apr. 2000.

[27] Webstone Mindcraft Inc., Webstone2.01, in
www.mindcraft.com/webstone/ws201index.html

[28] C.-S. Yang, M.-Y. Luo, \A content placement and
management system for distributed Web-server systems",
Proc. of IEEE 20th Int. Conf. on Distributed Computing
Systems, Taipei, Taiwan, Apr. 2000.

[29] X. Zhang, M. Barrientos, J.B. Chen, M. Seltzer, \HACC:
An architecture for cluster-based Web servers", Proc. 3rd
USENIX Windows NT Symp., Seattle, July 1999.

544

