
Towards Second and Third Generation Web-Based
Multimedia

Jacco van Ossenbruggen, Joost Geurts, Frank Cornelissen, Lynda Hardman and Lloyd Rutledge
Centrum voor Wiskunde en Informatica (CWI), Amsterdam

Jacco.van.Ossenbruggen@cwi.nl

ABSTRACT
First generation Web-content encodes information in hand-
written (HTML) Web pages. Second generation Web con-
tent generates HTML pages on demand, e.g. by filling in
templates with content retrieved dynamically from a data-
base or transformation of structured documents using style
sheets (e.g. XSLT). Third generation Web pages will make
use of rich markup (e.g. XML) along with metadata (e.g.
RDF) schemes to make the content not only machine read-
able but also machine processable — a necessary pre-requisite
to the Semantic Web.

While text-based content on the Web is already rapidly
approaching the third generation, multimedia content is still
trying to catch up with second generation techniques. Multi-
media document processing has a number of fundamentally
different requirements from text which make it more diffi-
cult to incorporate within the document processing chain.
In particular, multimedia transformation uses different doc-
ument and presentation abstractions, its formatting rules
cannot be based on text-flow, it requires feedback from the
formatting back-end and is hard to describe in the functional
style of current style languages.

We state the requirements for second generation process-
ing of multimedia and describe how these have been incorpo-
rated in our prototype multimedia document transformation
environment, Cuypers. The system overcomes a number of
the restrictions of the text-flow based tool sets by integrat-
ing a number of conceptually distinct processing steps in a
single runtime execution environment. We describe the need
for these different processing steps and describe them in turn
(semantic structure, communicative device, qualitative con-
straints, quantitative constraints, final form presentation),
and illustrate our approach by means of an example. We
conclude by discussing the models and techniques required
for the creation of third generation multimedia content.

Keywords: Multimedia, Transformations, XSLT, XML,
SMIL.

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

1. INTRODUCTION
The evolution of the Web is sometimes described in terms

of first, second and third generation Web content [10]. In
the first generation, the Web browser provided its users a
uniform interface to a wide variety of information on the In-
ternet. URIs provide a simple but universal naming scheme,
and HTTP a simple but fast transfer protocol. In theory,
HTML was designed to provide the “glue” between various
information resources in the form of hyperlinks, and as a
default document format Web servers could resort to when
other available formats were not understood by the client.
In practice, however, HTML turned out as being the format
that was also used to put the bulk of the content on the
Web [3]. A major problem of the first generation Web con-
tent was the fact that all this HTML content was manually
written. This proved to be too inflexible when dealing with
content that is stored in existing databases or that is subject
to frequent changes. For larger quantities of handwritten
documents, keeping up with changing browser technology
or updating the “look and feel” proved to be hard.

In the current, second generation Web, the required flex-
ibility is provided by a range of technologies based on auto-
matic generation of HTML content. Approaches vary from
filling in HTML templates with content from a database
back-end to applying CSS and XSLT style sheets to give the
content the appropriate look and feel while storing the con-
tent itself in a form free of presentation and browser related
details. Current trends on the Web make the flexibility pro-
vided by the second generation Web technology even more
relevant. The PC-based Web browser is no longer the only
device used to access the Web. Content providers need to
continuously adapt their content to take into account the
significant differences among Web access using PCs and al-
ternative devices ranging from small-screen mobile phones
and hand-held computers to set-top boxes for wide-screen,
interactive TV [13]. Additional flexibility is required to take
into account the different languages, cultural backgrounds,
skills and abilities of the wide variety of users that may ac-
cess their content.

By providing flexibility in terms of the presentation and
user interaction, second generation Web technology primar-
ily addresses the needs of human readers. In contrast, third
generation Web technology focuses on content that is both
human and machine processable. Machine-processable con-
tent is a pre-requisite for the more intelligent services that
constitute the “Semantic Web” as envisioned by Tim Berners-
Lee and others [3]. To provide real machine-processable
content, next generation Web technology primarily needs

479

to extend interoperability on the semantic level. Current
Web recommendations focus on either syntactic issues or on
semantics for a generic domain. Examples of such generic
domains that are covered by current W3C specifications in-
clude the semantics of presentation (CSS, XSL), interaction
(XLink, XForms), privacy (P3P) and content rating (PICS).
The third generation, however, needs to provide interoper-
ability in terms of application and domain-dependent se-
mantics. A first step in this direction has already been taken
by W3C specifications such as XML and RDF.

New models and tools to improve the support for second
and third generation Web currently receive ample attention,
both in research and commercial environments. Most of this
attention, however, is directed towards text-oriented appli-
cations. Multimedia content — that is, content that seam-
lessly integrates multiple media types in a synchronized, in-
teractive presentation — has some characteristics that are
fundamentally different from text. These differences mean
that the models and tools that are developed for text cannot
be readily applied to multimedia. In this article we claim
that — while the need for second and third generation mul-
timedia content is similar to that for textual content — the
technical requirements to support this need are substantially
different.

The structure of the remainder of the article is as follows.
First, we analyze the requirements for multimedia presen-
tation generation, focusing on the differences between text
and multimedia document transformations. Then we de-
scribe the different levels of abstraction that characterize
the Cuypers multimedia presentation generation system (the
system is named after the Dutch architect who designed sev-
eral famous buildings in Amsterdam, including the Rijksmu-
seum and Central Station). We discuss the use of these ab-
straction levels in the context of an example scenario. We
conclude with an overview of related work and a description
of future work.

2. REQUIREMENTS FOR SECOND GEN-
ERATION MULTIMEDIA CONTENT

Many of the advantages of generated Web content over
manually authored Web content are commonly known and
well described in the research literature [22, 25]. When the
content and its underlying structure are stored separately
from the details of a specific presentation of that content,
tools can be developed to automatically adapt the presenta-
tion to the current situation, both in terms of the capabilities
of the technical infrastructure and the specific needs of the
user. These advantages not only apply to text, but perhaps
even more to multimedia. One can argue that adaptation to
the available network bandwidth, presentation capabilities
of the end-user’s platform, preferred language and preferred
media types is even more important for complex, interactive
multimedia than for content that is mainly text-based. In
this section, we explain the differences between the require-
ments for second generation text and multimedia content.

Standards such as SGML [14] and XML [6] use embedded
markup to encode documents in a presentation-independent
way in order to increase longevity, reusability and flexi-
bility. The visual appearance of these so-called structured
documents is defined by the specification of a style sheet.
Style sheets effectively define a mapping between the ab-
stractions in the document structure and those in the pre-
sentation structure. This mapping is defined using a style

sheet language. In general, efficient run-time execution and
standardization of the style language (in order to be able to
interchange documents) is considered more important than
the language’s flexibility and expressiveness. Additionally,
for most applications, the mapping can be described, rela-
tively straightforwardly, in a functional way — standardized
style and transformation languages such as DSSSL [15] and
XSLT [7] are functional languages.

Style sheets as described above mainly come in two fla-
vors: template-driven and content-driven. Template-driven
style sheets first set up the designed layout, and then fill in
the content by querying the source document or underlying
database. This works well when

1. the underlying structure of the content is sufficiently
known to allow effective querying,

2. the structure of the generated presentations is compa-
rable and known in advance and

3. the presentation structure is independent of the results
returned by the query.

For example, the type and size of the information returned
by each query and the number of items queried for are re-
quired to be known in advance.

In contrast, in content-driven style sheets the size and
global structure of the generated presentation is not known
in advance, so it cannot be defined by a template specifica-
tion. Instead, the style sheet defines a set of transformation
rules that will be applied to the source document. Again,
certain aspects of the structure of the underlying content
should be known, this time not to allow querying, but to al-
low the definition of an effective selector which determines to
which element(s) each rule applies. In content-driven style
sheets, the structure and size of the generated presentation
varies largely with the structure and size of the underlying
source document. For most textual documents, this is not a
problem, since most textual elements can be flexibly nested
and chained. Strict constraints on the size of the resulting
presentations are also rare: for online presentations, scroll-
bars make the page length irrelevant, and for paged-media,
extra pages can always be added.

Today’s style languages are, however, not suited for those
rare cases that size does matter. It is, for example, extremely
hard (if not impossible) to write a style sheet that formats
this HTML paper and makes sure it exactly meets the con-
ference’s 10-page limit. For many text-based applications,
however, these constraints do not apply, and the techniques
described above work well. For almost all multimedia ap-
plications, however, spatio-temporal positioning is not this
flexible. In addition, there are a number of other issues that
prevent the use of text-oriented techniques for multimedia
document generation:

1. multimedia uses different document and presentation
abstractions,

2. multimedia document formatting is not based on text
flow,

3. multimedia transformations need feedback from the
formatting back-end,

4. multimedia transformations are hard to describe in a
functional language.

These four issues are discussed below.

480

2.1 Multimedia uses different document and
presentation abstractions

The separation of the document’s structure from its vi-
sual appearance is a fundamental and well known abstrac-
tion technique, both in database and structured document
technology. A less common distinction is that between the
specification of the document’s visual appearance and its re-
alization in terms of the final-form presentation format. For
example, style languages such as XSL (and also DSSSL) de-
fine an abstract formatting object model that can be used
to define the visual appearance of a presentation in a way
that is independent of format-specific details of the final-
form presentation. In this way, a single XSL style sheet can
be defined for a specific set of documents, and, depending
on the available back-ends for the XSL formatting model,
the same style sheet can be applied for the generation of an
online, PostScript or RTF version.

XSL style sheets essentially map document abstractions
onto presentation abstractions. For text, this works well be-
cause on both levels, we have a commonly established set
of abstractions to work with. On the document level, chap-
ters, sections, headings and titles, bulleted lists, etc., are
abstractions that are frequently used across different tools.
On the presentation level, the same applies to abstractions
such as pages, columns, inline, block-level and floating ma-
terial, font families, etc. These abstractions are not only
applicable across many domains, they have also proven to
be extremely stable over time: while the majority of these
abstractions originate from the early days of printing, they
are still highly applicable to today’s online documents. Even
for text, however, transformations based on the abstract for-
matting models of XSL or DSSSL are not (yet) widely used:
most tools still transform directly into target formats such as
HTML or WML, by-passing the abstract formatting model
entirely. While this may be partly because of the relative
newness of the XSL specification, another reason is that the
advantages in terms of reuse do not always outweigh the
disadvantages in terms of decreased flexibility and increased
complexity.

For multimedia, we still lack a commonly accepted set of
abstractions, both on the document and the presentation
level. The relatively slow acceptance of abstract formatting
models for text, combined with rapidly changing multimedia
technology and the vast range of different multimedia appli-
cations and presentation features, will make it very unlikely
that this situation is going to change in the near future.
This is highly unfortunate, because it means that a major
advantage of today’s style sheet technology — the defini-
tion of style sheets independent from the syntactic details
of the target presentation format — cannot be applied to
multimedia.

2.2 Multimedia document formatting is not
based on text flow

For text, we have an established set of (complicated but)
well understood algorithms [19] that can be used to auto-
matically typeset a text according to the requirements of a
given layout specification. To keep the style sheet itself as
declarative as possible, the components implementing these
relatively low level and detailed algorithms are typically part
of the style engine’s back-end application. These back-end
components typically implement kerning, hyphenation, jus-
tification, and line and page breaking algorithms. Note that

these algorithms are based on the linear structure of the un-
derlying text. Since multimedia documents are not based
on such a text flow, these algorithms do not suffice for for-
matting multimedia documents. For example, in text-based
formatting, content that does not fit on a single page or
screen is just spread out over multiple pages, or rendered
on a scrollable area that is larger than the screen. These
solutions are, in general, not applicable to multimedia pre-
sentations, where the very concept of a page or scrollbar
often does not make sense.

In addition, many document-level and presentation-level
abstractions for text are also based on text flow. For exam-
ple, in a style language such as CSS, a key concept such as
relative positioning refers to the ability to specify the posi-
tion of an object relative to its default position in the text
flow. Such flow-based models are, in general, not applicable
to multimedia documents.

2.3 Multimedia transformations need feedback
from the formatting back-end

Most style and transformation languages do not support
feedback from the rendering application back into the main
transformation process. For example, information about
the precise position onto which a specific word is rendered,
is only available after the rendering application has fully
formatted the document (using the algorithms described
above). Consequently this type of information is not avail-
able in the transformation process. For text, this limitation
hardly ever causes problems: due to the flexibility of the text
flow, the system can in most cases adjust the layout to make
it meet the given constraints. For multimedia, however, the
only way to determine whether a given layout specification
can be realized with respect to a given set of constraints is
to actually solve this set of constraints. This task is typi-
cally not performed by a (high level) transformation engine,
but by a (lower level) constraint solver implemented in the
back-end. For multimedia, it is thus of crucial importance
to allow feedback from the lower levels of the process to the
higher levels.

2.4 Multimedia transformations are hard to
describe in a functional model

Transforming a presentation-independent structure to a
presentation of acceptable quality is, when compared with
text-centric presentations, relatively complex for media-cen-
tric presentations. These mappings are often best specified
using a trial and error strategy, by backtracking over a set
of alternative presentation rules, trying out different sets of
constraints along the way. In contrast, most textual trans-
formations are relatively straightforward mappings that can
be better specified in a set of functional style rules. The
more complex transformations that are common in multi-
media are more conveniently expressed in a logic-based lan-
guage with built-in support for backtracking and constraint
solving.

The system introduced in the following section addresses
these issues.

3. LEVELS OF ABSTRACTION IN
CUYPERS

Cuypers is a research prototype system, developed to ex-
periment with the generation of Web-based presentations

481

as an interface to semi-structured multimedia databases.
Cuypers addresses many of the issues discussed in the pre-
vious section. First of all, it explores a set of abstractions,
both on the document and on the presentation level, that
are geared towards interactive, time-based and media centric
presentations, rather than presentations that are based on
text-flow. Second, it uses a set of easily extensible transfor-
mation rules specified in Prolog, exploiting Prolog’s built-in
support for backtracking. Finally, it facilitates easy feedback
between the higher and lower level parts of the transforma-
tion process by executing both within the same environment.
Instead of a strict separation between the transformation en-
gine and the constraint solver, our system uses a constraint
solver embedded in Prolog, so the system is able to back-
track when the transformation process generates a set of
insolvable constraints.

Cuypers operates in the context of the environment de-
picted in Figure reffig:arch below. It assumes a server-
side environment containing a multimedia database manage-
ment system, an intelligent multimedia IR retrieval system,
the Cuypers generation engine itself, an off-the-shelf HTTP
server, and — optionally — an off-the-shelf streaming me-
dia server. At the client-side, a standard Web client suffices.
The focus of this paper is the Cuypers generation engine.
Given a rhetorical (or other type of semantic) structure and
a set of design rules, the system generates a presentation
that adheres to the limitations of the target platform and
supports the user’s preferences.

Figure 1: The environment of the Cuypers genera-
tion engine

The experience gained from the development of earlier
prototypes (e.g. work done by Bailey [22]) however, proved
that for most applications, the conceptual gap between an
abstract, presentation-independent document structure and
a fully-fledged, final-form multimedia presentation is too big
to be specified by a single, direct transformation. Instead,
we take an incremental approach, and define the total trans-
formation in terms of smaller steps, which each perform a
transformation to another level of abstraction. These levels
are depicted in Figure 2 and include the semantic, com-
municative device, qualitative constraint, quantitative con-
straint and final-form presentation levels, resp.

Below, we describe each abstraction level and why it is
needed in the overall process. We take a bottom-up ap-
proach and start with the final-form presentation level, which
is the level that describes the presentation as it is delivered
to the client’s browser. This is also the level readers will
be most familiar with, since it describes documents on the
level of their encoding in for example HTML [28], SMIL [27]
or SVG [11]. We subsequently add more abstraction levels,

Figure 2: The layers of the Cuypers generation en-
gine.

and end with the highest level, the “semantic level”, which
completely abstracts from all layout and style related infor-
mation.

1. Final-form presentation level — At the lowest level
of abstraction, we define the final-form presentation,
which encodes the presentation in a document format
that is readily playable by the end user’s Web browser
or media player. Examples of such formats include,
HTML, SVG, and — the focus of our current proto-
type — SMIL. This level is needed to make sure that
the end-user’s Web-client remains independent of the
abstractions we use internally in the Cuypers system,
and to make sure that the end-user can use off-the-
shelf Web clients to view the presentations generated
by our system.

2. Quantitative constraints level — To be able to
generate presentations of the same information using
different document formats, we need to abstract from
the final-form presentation. On this level of abstrac-
tion, the desired temporal and spatial layout of the
presentation is specified by a set of format-independent
constraints, from which the final-form layout can be
derived automatically.

An example of a quantitative constraint is “the x-
coordinate of the top-right corner of picture X should
be at least 10 pixels smaller than than the x-coordinate
of the top-left corner of picture Y”. Such constraints
provide a first level of abstraction, abstracting from the
syntactic details of the final-form presentation format,
but also from the presentation’s exact numeric layout
specifications. While more abstract than the final form
presentation, a specification at this level provides suf-
ficient information for the Cuypers system to be able
to automatically generate the final-form presentation.
An off-the-shelf numeric constraint solver is used to
determine whether or not a given layout specification
can be realized, and, if so, to generate any numeric
layout specifications needed. The use of constraints
also gives the system the flexibility to automatically
adapt to small differences in screen size between, for
example, two different handhelds or mobile phones.

In practice, larger differences cannot be solved at this
level of abstraction. The use of numeric constraints is,
for example, not sufficient to cater for the differences
between the small screen of a mobile phone versus the

482

large screen of a desktop web browser. Another draw-
back is that it is hard to specify higher level require-
ments such as the fact that certain rules should be
applied consistently across the entire layout. In addi-
tion, for some final-form formats this level of abstrac-
tion is just too low to be useful. For example, for the
relatively flat spatial layout of a SMIL 1.0 document,
the constraints given above are well suited. The same
constraints, however, are too low-level to generate the
complex temporal hierarchy that gives a SMIL pre-
sentation its adaptive scheduling information. On the
implementation level, numeric constraints also have se-
rious drawbacks. For example, when automatic back-
tracking over alternative layouts is used, a set of quan-
titative constraints might generate alternative layouts
which are all equal, except for one coordinate, whose
value only increases or decreases with one pixel (or
other unit) for each generated layout.

The discussion above can be summarized by stating
that numeric or quantitative constraints are necessary
because solving a set of quantitative constraints is the
only way to determine whether a specific layout can
be realized with respect to a specific requirements. In
addition, many final-form formats use numeric infor-
mation to define the layout presentation. For many
other purposes, however, these constraints are too low
level and contain too much detail. Qualitative con-
straints are introduced to solve these problems.

3. Qualitative constraints level — An example of a
qualitative constraint is “caption X is positioned below
picture Y”, and backtracking to produce alternatives
might involve trying right or above, etc. Some final-
form formats allow specification of the document on
this level. In these cases, the Cuypers system only gen-
erates and solves the associated numeric constraints to
check whether the presentation can be realized at all,
it subsequently discards the solution of the constraint
solver and uses the qualitative constraints directly to
generate the final form output.

In the Cuypers system, qualitative constraints also
provide a basis for defining meta-constraints. Meta-
constraints are necessary to specify more global prop-
erties of the resulting document, and are used with
Cuypers to ensure consistency across the presentation.
For example, to prevent some captions from appearing
below figures and others above, a designer could add
a meta-constraint specifying that all captions should
appear either below or above their figures. Meta-con-
straints derive their name from the fact that they are
implemented as constraints that constrain the set of
generated constraints.

While qualitative constraints solve many of the prob-
lems associated with quantitative constraints, they are
still not suited for dealing with the relatively large dif-
ferences in layout, e.g., as in the mobile phone versus
the desktop browser example given above. Therefore,
another level of abstraction is introduced: the commu-
nicative device.

4. Communicative device level — The highest level of
abstraction describing the presentation’s layout makes
use of communicative devices [23]. These are similar

to the patterns of multimedia and hypermedia inter-
face design described by [21] in that they describe the
presentation in terms of well known spatial, tempo-
ral and hyperlink presentation constructs. An exam-
ple of a communicative device described in [23] is the
bookshelf. This device can be effectively used in mul-
timedia presentations to present a sequence of media
items, especially when it is important to communicate
the order of the media items in the sequence. How
the bookshelf determines the precise layout of a given
presentation in terms of lower level constraints can de-
pend on a number of issues. For example, depending
on the cultural background of the user, it may order
a sequence of images from left to right, top to bottom
or vice versa. Also its overflow strategy, that is, what
to do if there are too many images to fit on the screen,
may depend on the preferences of the user and/or au-
thor of the document. It may decide to add a “More
info” hyperlink to the remaining content in HTML,
alternatively, it could split the presentation up in mul-
tiple scenes that are sequentially scheduled over time
in SMIL.

Note that communicative devices, including the one
described above, typically deal with layout strategies
that involve multiple dimensions (including space, time
and linking), while the constraints discussed above typ-
ically do not cross the boundaries of a single dimension.
Constraints using variables along more than one di-
mension are called cross-dimensional constraints, and
have previously been discussed in [22]. The introduc-
tion of such constraints would simplify the definition
of many communicative devices and is the subject of
further research.

While the communicative device level is a very high-
level description of the presentation, we still need a
bridge from the domain-dependent semantics as stored
in the multimedia information retrieval system to the
high-level hypermedia presentation devices. To solve
this problem, we introduce one last level of abstraction:
the semantic structure level.

5. Semantic structure level — This level completely
abstracts from the presentation’s layout and hyper-
link navigation structure and describes the presenta-
tion purely in terms of higher-level, “semantic” rela-
tionships.

In the current Cuypers system we focus on the rhetor-
ical aspects of the presentation, because it applies well
to the application domains for which we are currently
building prototypes (e.g. generating multimedia de-
scriptions of artwork for educational purposes).

Depending on the target application, however, other
types of semantic relations can be used as well. Possi-
ble alternatives include abstractions based on the pre-
sentation’s narrative structure for story-telling appli-
cations or abstractions based on an explicit discourse
model. From the perspective of the Cuypers architec-
ture, any set of semantic relations can be chosen as
long as it meets the following two requirements:

(a) it should sufficiently abstract from all presenta-
tion details so that these can be adequately adap-
ted by the lower levels of the system, and

483

(b) it should provide sufficient information so that
the relations can be used to generate an adequate
set of communicative devices that convey the in-
tended semantics to the end user.

The subdivision of the generation process in Cuypers is
based on these different levels, with an extensible set of
transformation rules to move from one level to another (see
the section on implementation below). In practice, however,
the transformations work by backtracking up and down dif-
ferent levels, and transformation rules may have access to
information from several steps earlier. To explain the dif-
ferent abstraction levels and the associated transformation
steps, the next section uses an example scenario to illustrate
all levels.

4. EXAMPLE SCENARIO
In this section, we use an example scenario where the user

(studying art history) just asked the system to explain the
use of the chiaroscuro technique (strong contrast of light and
dark shading) in the paintings of Rembrandt van Rijn. The
system’s multimedia information retrieval back-end queried
its annotated multimedia database system and retrieved five
images of paintings that are annotated as using this tech-
nique, the accompanying titles and a general textual descrip-
tion of the term chiaroscuro.

Figure 3: RST tree representation of the input.

4.1 Semantic level: rhetorical structure
A presentation is constructed around the concept “Exam-

ples of Chiaroscuro in the works of Rembrandt van Rijn”,
using the images as examples of the the core concept, and
the text as an elaboration of the core concept. Additionally,
to preserve the ordering of the time the picture was made,
the five images are shown in a sequence relation. The result-
ing tree structure, using the notation common in Rhetorical
Structure Theory [20] is shown in Figure 3 (the titles of the
individual paintings have been omitted for brevity). The
tree is encoded using a simple XML Schema to represent
RST nucleus/satellite relations. The XML associated frag-
ment is shown in Figure 4.

Note that we do not expect content authors to directly use
the semantic abstractions nor the rhetoric markup during
the authoring phase. Automatic generation of these struc-
tures, however, requires advanced knowledge of the domain,
the organization of the multimedia database, the users and
their task, and is the topic of future research. In the current

Cuypers prototype, the generation of the rhetorical struc-
ture is simply hardwired into the server’s multimedia infor-
mation retrieval system, which is considered to be beyond
the scope of this paper. Here, we focus on the Cuypers pre-
sentation engine, and assume the RST structure as the input
given to the engine.

<!DOCTYPE presentation PUBLIC "-//CWI/DTD Rhetorics 1.0//EN" "rhetoric.dtd">

<presentation xmlns="http://www.cwi.nl/~media/ns/cuypers/rhetoric">

<media id="title" ... refs to content/metadata database .../>

<media id="img1" ... />

<media id="img2" ... />

<media id="img3" ... />

<media id="chiaroscuro" ... />

<nsRelation>

<nucleus>

<mediaref idref="title"/>

</nucleus>

<satellite type="example">

<mnRelation type="sequence">

<nucleus>

<mediaref idref="img1"/>

</nucleus>

... ...

<nucleus>

<mediaref idref="img5"/>

</nucleus>

</mnRelation>

</satellite>

<satellite type="elaboration">

<mediaref idref="chiaroscuro"/>

</satellite>

</nsRelation>

</presentation>

Figure 4: XML encoding of the presentation’s
rhetorical structure.

4.2 High-level presentation semantics:
communicative devices

Note that the rhetorical structure given in Figure 3 con-
tains no information about the spatio-temporal layout of
the final-form presentation. This information is incremen-
tally added by the Cuypers system, based on general design
knowledge, combined with knowledge about the underlying
domain (e.g. “17th century painting”), the task and prefer-
ences of the end-user and the capabilities of the device that
is used to access the Web. In the first step, the input is
matched against a set of rules designed to convert the in-
put to a communicative device hierarchy. Note that this is
purely a design decision: in practice, designers of a particu-
lar application will need to extend the default rule set that
comes with the Cuypers system.

In the example above, the rules that match the input RST
structure could, for example, map the root nucleus (the la-
bel “Chiaroscuro by Rembrandt van Rijn”) to the title of
the presentation. In addition, the rules determine that the
title, elaborative text and the example section should be
visible at the same time, as close to another as possible.
This is used by grouping these elements in a communicative
device named spatial adjacency [23]. Because the example
section itself consisted of a sequence of images of which the
ordering should be preserved, the sequence is mapped to
a communicative device named bookshelf. The bookshelf’s
layout strategy is parameterized, in this case the strategy
is to try to achieve a left-to-right, top-to-bottom ordering
first, and to use a temporal overflow strategy when it proves
impossible to fit all images on a single screen. The resulting
hierarchy is sketched in Figure 5.

4.3 Qualitative constraint level
While the communicative device hierarchy described above

reflects the most basic design decisions about the way the

484

Figure 5: Example communicative device hierarchy.

document should be communicated to the user, the mu-
tual relationships among the media items have not been es-
tablished. This is done in the qualitative constraint level,
which converts the communicative device hierarchy to a
graph structure, for example the graph drawn below in Fig-
ure 6.

Figure 6: Example qualitative constraint graph.

The graph structure consists of nodes and edges, where
the nodes represent the media items and the edges between
the nodes are labeled with the constraints that relate them.
Composite nodes can be used to model useful hierarchical
relationships between media items at the constraint level.

Figure 6 represents the resulting graph after backtracking
over several alternative solutions for converting the com-
municative device structure displayed in Figure 5. In this
case, it turned out that the user’s screen size is too small to
display more than one painting at a time. As a result, all al-
ternatives that tried a left-to-right, top-to-bottom ordering
of the paintings failed, and the bookshelf has resorted to its
overflow strategy: it decides to show the paintings one after
the other, sequentially ordered in time (represented by the
before constraints on the temporal dimension that applies
to all images in the figure). During the time the images are
shown, it makes sure that the title and descriptive text are
also shown (represented by the during constraints in the
figure). Also note that to define the communicative devices
in terms of qualitative constraints, only a limited number of
constraints need to be specified directly. Most constraints
can be automatically generated by the system. For exam-
ple, if the title is to be displayed during the description,

and the description is to be displayed during the examples,
the system automatically derives that the title is to be dis-
played during the examples. These automatically generated
constraints are used when checking consistency rules such
as “always show a title when displaying something else”. In
this case, the system knows that the title is shown during
the examples, even when this is not explicitly specified by
the transformation rules.

4.4 Quantitative constraint level
To be able to check whether a proposed multimedia lay-

out can be realized, all the constraints need to be resolved
on the lowest level. For the spatial and temporal dimen-
sions, this means that all the qualitative constraints need to
be converted into numeric or quantitative constraints. So if
three images of a certain size are to be positioned left of one
another with a certain minimum padding, at this point the
system needs to do the associated mathematics to find out
whether and how this can be done: it reformulates all the
qualitative constraints into numerical constraints, fills in the
actual sizes of the images and acceptable padding distances,
and tries to solve the given set of constraints. The con-

Figure 7: Example (partial) quantitative constraint
graph.

version process involves many quantitative constraints that
are automatically generated, and Figure 7 shows only a few
of them. This is, however, very efficient from an implemen-
tation point of view: the more constraints that are added,
the smaller the constraint variable domains become, and the
faster a solution will be generated.

Note that part of the information generated at this step
is only needed to make sure that layouts meet the given
constraints. Parts of the solution itself are too low-level to
be useful in high-level formats. Other parts of the solution,
however, are directly used and copied almost verbatim into
the encoding of the final-form presentation.

4.5 Final-form generation
In the last step, the information accumulated in the previ-

ous steps is used to generate the final presentation in SMIL.
A snapshot of the result is shown in Figure 8.

The resulting SMIL markup is listed in Figure 9. As one
can see, the encoding used for the layout specification in the
head is rather low level, and these are indeed the direct val-
ues generated by solving the set of quantitative constraints.
In contrast, the temporal hierarchy in the body has been

485

Figure 8: Snapshot of the resulting SMIL presenta-
tion (RealPlayer).

generated on the basis of the qualitative (Allen) constraints,
realizing during constraints with <par> elements in SMIL,
and after constraints with <seq> elements.

<smil>

<head>

<meta name="generator" content="Cuypers 1.0"/>

<layout>

<root-layout id="root-layout" background-color="black" width="400" height="690"/>

<region id="title" left="10" top="5" width="400" height="50" fit="meet"/>

<region id="descr" left="10" top="55" width="400" height="200" fit="meet"/>

<region id="img" left="10" top="255" width="400" height="400" fit="meet"/>

<region id="ptitle" left="10" top="655" width="400" height="35" fit="meet"/>

</layout>

</head>

<body>

<par>

<text region="title" src="...query to multimedia database..."/>

<text region="descr" src="..."/>

<seq>

<par dur="10"> ... 1st painting+title ... </par>

<par dur="10"> ... 2nd painting+title ... </par>

<par dur="10"> ... 3rd painting+title ... </par>

<par dur="10"> ... 4th painting+title ... </par>

<par dur="10">

<text region="ptitle" src=".."/>

</par>

</seq>

</par>

</body>

</smil>

Figure 9: SMIL encoding of the presentation shown
in Figure 8.

5. IMPLEMENTATION
To exploit the possibilities offered by on demand multime-

dia presentation integration, we have integrated the Cuypers
core presentation generation engine with an off-the-shelf
HTTP server (Apache), as depicted in Figure 10.

The server parses XML input as shown in Figure 4, using
the XML parser of Apache’s Xerces framework. The re-
sult is, via the DOM interface, converted by a Cocoon Java

Figure 10: The core Cuypers architecture and its
integration within the Apache HTTP server.

servlet to an equivalent Prolog term. This Prolog term is the
actual input taken by the core of the presentation engine,
which consists of a number of transformations written in
ECLiPSe [29]. ECLiPSe allows the transformations to com-
bine, within a single runtime environment, standard Prolog
rule-matching and back-tracking with high-level constraint
solving techniques. This allows high level transformation
rules to generate alternative layouts using lower-level sets
of constraints. Layouts with constraints that prove to be
insolvable automatically evaluate to false and cause the sys-
tem to backtrack, trying alternative layout strategies. In
addition, the layout rules can exploit Prolog’s unification
mechanism as a powerful and extensible selector mechanism,
without the need to implement a special purpose selector
language such XPath [8]. When the constraints for a given
layout can be solved by ECLiPSe, this solution is returned
back to the servlet. The servlet converts the result back
to XML (in this case SMIL), again using Cocoon’s DOM
interface.

The example described above focuses on the use of rhetori-
cal structures as the main technique for describing the input,
and on SMIL for describing the final-form output. The core
of the Cuypers presentation engine, however, is independent
of these formats. Any input that can be transformed to a set
of communicative devices can be supported by plugging in a
rule set that transforms the input to a set of communicative
devices. The same applies to the output format, which can
be modified by adapting the lower-level rules that use the
(solved) constraints to generate the final form output.

The constraints we currently use for the temporal dimen-
sion are based on the temporal relations defined by Allen [1]:
equals, before, meets, overlaps, during, starts and finishes,
with similar relations for the spatial dimensions X and Y.
For the stacking order of the media items (the “Z” dimen-
sion), we use above and below constraints. Properties of
these qualitative constraints, such as symmetry (A below B
≡ B above A) or transitivity (A during B land B during C
→ A during C) are described using the Constraint Handling
Rules (CHR, [12]) library of ECLiPSe.

6. RELATED WORK
Generation of synchronized multimedia presentations from

higher level descriptions is not novel in itself. Spatial and
temporal constraints for specifying multimedia are used, for
example, in the Madeus system [18]. We share our objective
to realize cross-platform and cross-media adaptation with
preservation of the intended semantics with the ZyX doc-
ument format [4]. While we generate the entire document
flow on the basis of a number of knowledge sources, the ZyX

486

approach is essentially based on augmenting an existing doc-
ument so that it can be adapted while preserving the main
information flow.

Within the AI community, a common reference architec-
ture for model-based multimedia presentations has been de-
veloped. This Standard Reference Model for Intelligent Mul-
timedia Presentation Systems (SRM-IMMPS) [5] is based
on the synthesis of media content, while we focus on reusing
existing content from an annotated multimedia repository.
Other relations between SRM-IMMPS and our work are de-
scribed in [24].

Our work is also closely related to the work of Elisabeth
André, who described the use of AI planning techniques in
combination with constraint solvers in her WIP and PPP
systems [2]. The main contribution of our approach is that it
integrates the several processing steps into a single runtime
environment so that the system can freely backtrack across
the different levels. This allows high-level presentation deci-
sions to be re-evaluated as a result of constraints that turn
out to be insolvable at the lower levels (e.g. pixel level).
Nevertheless, the individual levels remain conceptually sep-
arated, which allows the definition of small, declarative de-
sign rules instead of the single hierarchy of planning oper-
ators used by André. In Cuypers, semantic relations such
as the rhetoric structure are encoded as an explicit level of
abstraction, whereas these are used within WIP as implicit
design guidelines for the implementation of the generation
plan. Additionally, Cuypers uses ECLiPSe as a commonly
available, off-the-shelf logic constraint programming (CSP)
tool while WIP used a dedicated planner.

7. FUTURE WORK: TOWARDS THIRD
GENERATION MULTIMEDIA

Similar to third generation textual content, third genera-
tion multimedia will focus on machine-processable content.
Richly annotated multimedia presentations will not only fa-
cilitate intelligent Web retrieval and brokering services, but
also facilitate reuse of media content in other presentations.
In the long term, when there is a sufficient amount of anno-
tated multimedia available, systems such as Cuypers would
be able to operate without the multimedia database depicted
in Figure 1, and, instead, operate directly on multimedia
content found on the Web.

Note that W3C document formats such as SMIL and SVG
already anticipate this by allowing documents to contain
embedded annotations. In addition, ISO’s MPEG-4 [17] also
allows embedded annotations. It remains unclear, however,
which annotation languages are the most appropriate, and
we are currently investigating various alternatives for the
encoding of our metadata. We are investigating not only
the use of RDF-based languages such as RDF Schema and
DAML+OIL [26], but also approaches that build directly
on top of XML Schema, such as the description schemes
developed by the MPEG-7 community [16].

Adequately annotated multimedia is a key pre-requisite
for this multimedia variant of the Semantic Web. Unfor-
tunately, current multimedia authoring tools provide little
support for producing annotated multimedia presentations.
Much of the underlying semantics of the overall multime-
dia presentation and the media fragments it contains re-
mains implicit and is only present in the head of the au-
thor. In contrast, in the Cuypers system discussed above,

it is relatively easy to generate such annotations automati-
cally. Since the entire presentation-generation process in the
Cuypers system is based on explicitly encoded knowledge,
this knowledge can be preserved and encoded as rich meta-
data annotations in the final-form presentation. Note that
such metadata annotations can arise from different knowl-
edge sources and describe different abstraction levels. For
example, when the system is used to generate richly anno-
tated SMIL, the metadata section of the SMIL document
may contain metadata about the individual media items (as
retrieved from the underlying media database), the rhetor-
ical structure of the overall presentation, domain-specific
knowledge of the application, etc. It could also generate
a report of the design rules and user profiles that were used
to justify the chosen end-result (e.g. the machine-readable
equivalent of “this presentation contains much hi-end video
because it is generated for users with a broadband network
environment”). This could, for instance, be used by the
browsers to help with automatic detection of errors in the
settings of the end-user’s profile.

While our future research will focus on generating richly
annotated multimedia presentations, we are also looking into
extending the Cuypers engine to generate other presentation
types, including SVG and VRML. In addition, we are cur-
rently working on interfacing the engine with the Mirror [9]
multimedia information retrieval system. In particular, we
are working on improving the automatic generation of the
semantic structures (such as the rhetorical structure used in
the example). This generation process should not only take
into account a semantic model of the application domain,
but also some form of discourse model to provide guidelines
on how to convey subjects from that domain to the user.

The current implementation already uses a declarative en-
coding of the design, user and platform knowledge. These
different types of knowledge are, however, still intertwined.
This part of the system needs to be redesigned to be able
to manipulate the different types of knowledge through in-
terfaces that are tailored to the different tasks and roles of
the users that will need to control them, and to be able to
encode the required knowledge in a declarative and reusable
way. We expect the Semantic Web to play a key role in
achieving these goals.

Acknowledgements
Part of the research described here has been funded by the
European ITEA/RTIPA and the Dutch Dynamo and To-
KeN2000 projects.

Examples are taken from a ToKeN2000 demonstrator, and
all media content has been kindly provided by the Rijksmu-
seum in Amsterdam. Our CWI colleagues Steven Pember-
ton and Krzysztof Apt provided many valuable insights.

8. REFERENCES
[1] J. F. Allen. Maintaining Knowledge about Temporal

Intervals. Communications of the ACM,
26(11):832–844, November 1983.

[2] E. André. WIP and PPP: A Comparison of two
Multimedia Presentation Systems in Terms of the
Standard Reference Model. Computer Standards &
Interfaces, 18(6-7):555–564, December 1997.

[3] T. Berners-Lee. Weaving the Web. Orion Business,
1999.

487

[4] S. Boll, W. Klas, and J. Wandel. A Cross-Media
Adaptation Strategy for Multimedia Presentations. In
ACM Multimedia ’99 Proceedings, pages 37–46,
Orlando, Florida, October 30 - November 5, 1999.
Addison Wesley Longman.

[5] M. Bordegoni, G. Faconti, M. Maybury, T. Rist,
S. Ruggieri, P. Trahanias, and M. Wilson. A Standard
Reference Model for Intelligent Multimedia
Presentation Systems. Computer Standards &
Interfaces, 18(6-7):477–496, December 1997.

[6] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0 Specification,
February 10, 1998. W3C Recommendations are
available at http://www.w3.org/TR.

[7] J. Clark. XSL Transformations (XSLT) Version 1.0.
W3C Recommendations are available at
http://www.w3.org/TR/, 16 November 1999.

[8] J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0. W3C Recommendations are available at
http://www.w3.org/TR/, 16 November 1999.

[9] A. P. de Vries. Content and Multimedia Database
Management Systems. PhD thesis, Univerity of
Twente, 1999.

[10] S. Decker, D. Fensel, F. van Harmelen, I. Horrocks,
S. Melnik, M. Klein, and J. Broekstra. Knowledge
Representation on the Web. In F. Baader, editor,
International Workshop on Description Logics
(DL’00), 2000.

[11] J. Ferraiolo. Scalable Vector Graphics (SVG) 1.0
Specification. W3C Candidate Recommendations are
available at http://www.w3.org/TR, 2 November
2000.

[12] T. Frühwirth. Theory and Practice of Constraint
Handling Rules. Journal of Logic Programming,
37(1-3), October 1998. Special Issue on Constraint
Logic Programming, P. Stuckey and K. Marriot, Eds.

[13] L. Hardman and J. van Ossenbruggen. Device
Independent Multimedia Authoring. In W3C
Workshop on Web Device Independent Authoring,
Bristol, UK, October 3-4, 2000.

[14] International Organization for Standardization.
Information Processing — Text and Office
Information Systems — Standard Generalized Markup
Language (SGML), 1986. International Standard ISO
8879:1986.

[15] International Organization for
Standardization/International Electrotechnical
Commission. Information technology — Processing
languages — Document Style Semantics and
Specification Language (DSSSL), 1996. International
Standard ISO/IEC 10179:1996.

[16] International Organization for
Standardization/International Electrotechnical
Commission. MPEG-7: Context and Objectives, 1998.
Work in progress.

[17] International Organization for
Standardization/International Electrotechnical
Commission. Information technology – Coding of
moving pictures and audio, 1999. International
Standard ISO/IEC 14496:1999 (MPEG-4).

[18] M. Jourdan, N. Layäıda, C. Roisin, L. Sabry-Ismäıl,
and L. Tardif. Madeus, an Authoring Environment for

Interactive Multimedia Documents. In Proceedings of
ACM Multimedia ’98, Bristol, UK, 1998.

[19] D. E. Knuth. TeX: The Program, volume B of
Computers and Typesetting. Addison-Wesley
Publishing Company, 1986.

[20] W. C. Mann, C. M. I. M. Matthiesen, and S. A.
Thompson. Rhetorical Structure Theory and Text
Analysis. Technical Report ISI/RR-89-242,
Information Sciences Institute, University of Southern
California, November 1989.

[21] G. Rossi, D. Schwabe, and A. Garrido. Design Reuse
in Hypermedia Applications Development. In The
Proceedings of the Eighth ACM Conference on
Hypertext and Hypermedia, pages 57–66,
Southampton, UK, April 1997. ACM, ACM Press.

[22] L. Rutledge, B. Bailey, J. van Ossenbruggen,
L. Hardman, and J. Geurts. Generating Presentation
Constraints from Rhetorical Structure. In Proceedings
of the 11th ACM conference on Hypertext and
Hypermedia, pages 19–28, San Antonio, Texas, USA,
May 30 – June 3, 2000. ACM.

[23] L. Rutledge, J. Davis, J. van Ossenbruggen, and
L. Hardman. Inter-dimensional Hypermedia
Communicative Devices for Rhetorical Structure. In
Proceedings of International Conference on
Multimedia Modeling 2000 (MMM00), pages 89–105,
Nagano, Japan, November 13-15, 2000.

[24] L. Rutledge, L. Hardman, J. van Ossenbruggen, and
D. C. Bulterman. Implementing Adaptability in the
Standard Reference Model for Intelligent Multimedia
Presentation Systems. In The International
Conference on Multimedia Modeling, pages 12–20,
12-15 October 1998.

[25] L. Rutledge, J. van Ossenbruggen, L. Hardman, and
D. C. Bulterman. A Framework for Generating
Adaptable Hypermedia Documents. In Proceedings of
ACM Multimedia, pages 121–130, Seattle,
Washington, November 1997. ACM Press.

[26] F. van Harmelen and I. Horrocks. Reference
description of the DAML+OIL ontology markup
language.
http://www.daml.org/2000/12/reference.html.
Contributors: Tim Berners-Lee, Dan Brickley, Dan
Connolly, Mike Dean, Stefan Decker, Pat Hayes, Jeff
Heflin, Jim Hendler, Deb McGuinness, Lynn Andrea
Stein.

[27] W3C. Synchronized Multimedia Integration Language
(SMIL) 2.0 Specification. Work in progress. W3C
Working Drafts are available at
http://www.w3.org/TR, 21 September 2000. Edited
by Aaron Cohen.

[28] W3C. XHTML 1.0: The Extensible HyperText
Markup Language: A Reformulation of HTML 4.0 in
XML 1.0. W3C Recommendations are available at
http://www.w3.org/TR/, January 26, 2000.

[29] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A
Platform for Constraint Logic Programming, 1997.

488

