
 sTeam - Designing an Integrative Infrastructure
for Web-Based Computer-Supported Cooperative Learning

Thorsten Hampel
Computers and Society

Heinz Nixdorf Institut
Fürstenallee 11, 33102 Paderborn, Germany

 hampel@upb.de

Reinhard Keil-Slawik
Computers and Society

Heinz Nixdorf Institut
Fürstenallee 11, 33102 Paderborn, Germany

 rks@upb.de

ABSTRACT
Learning is a socially embedded design process. But most of
today’s hypermedia systems fail to properly support both the
design-related and the social aspects of learning. Authoring and
web-publishing systems aim to support the authors’ design
process. Consequently, learners’ activities are confined to
selecting and reading. Based on some fundamental reflections on
the role of technology in learning processes, we conclude that top
priority must be given to the construction of infrastructures that
support cooperative learning processes if we are to properly
harness technology’s potential.
We present a learner-centered – wholly web-based – approach for
structuring information in teams (sTeam). The key concept in
sTeam is virtual space. It draws together cooperation and
communication, at the same time embodying the common external
memory of a (virtual) learning group. The focus is not, then, on
interactive systems for individual accessing of knowledge bases,
but rather on the cooperative management and structuring of
distributed knowledge bases.

Keywords
cooperative learning, web-based learning and teaching, learner-
centered approaches, cooperation support, sTeam – structuring
information in a team

1. INTRODUCTION
Mainstream discussions on the role of technology in teaching and
learning center on two basic paradigms. Hypermedia systems aim
to support individual learning processes, special emphasis being
placed on new didactic qualities, attributed to the interactive
combination of different media types such as text, graphics, audio,
video, etc. The second paradigm embodies the notion of
“delivering education”, networking technology being used to
distribute and access study materials as well as to establish
communication channels between students and teachers. Although
the idea of utilizing net services has strong collaborative
connotations, the main argument in favor of networking is the
temporal and spatial independence it offers and, consequently,
independence from close collaboration with others.
Students can now learn individually at their own pace and their
own chosen location.

However, many studies evaluating the role of technology in
learning processes have yielded conflicting results, indicating that
there is no general, clear-cut connection between the effort
required to produce high-quality multimedia educational materials
and improvements in the learning process. The problem is to
attribute certain benefits to a single variable – say, the specific
technology used. Mostly, the results are a combination of different
variables such as didactic style, educational strategy, technology
deployment, appropriate selection of content and the personal
qualities of teachers and students. (see [11], [13]) Thus, the
widely accepted idea that learning can be improved by the
individualization of learning processes using hypermedia and
networking technology is not generally borne out by scientific
research.
Instead of using technology to individualize learning processes,
we have chosen the opposite approach – namely, using
technology to support cooperative learning processes within the
framework of traditional university education. Rather than trying
to do away with the need for physical presence in the learning
situation, we seek to support social processes in which students
and teachers are physically present for a specific time at different
places. Quite apart from practical considerations, theoretical
research reveals that, ultimately, the social embedment of learning
is a crucial factor in success.
Furthermore, our approach is based on the general assumption
that technology can only solve technological problems, didactic
problems requiring didactic solutions. Teaching activities cannot,
then, be replaced by technological functions, and the embedding
of technology into teaching and learning activities must be
carefully studied.
To design a learning-supportive infrastructure, it is therefore
necessary to identify which of the problems connected with the
learning process are technological problems and which are the
main technological functions for problem solution. In the
following sections, we briefly sketch the theoretical framework
enabling us to identify general technological functions that need
to be implemented. However, empirical investigations are
required to properly determine the specific implementation of
these functions because it is the fine tuning of all variables, of
technical means and didactic concepts, innovative ideas and
available resources that ultimately determines how to set up an
appropriate infrastructure. The sTeam approach focuses on the
collaborative exploration and maintenance by students of a
complex hypermedia knowledge base – a concept we call self-
administration.

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

76

2. MEDIA AS EXTERNAL MEMORIES
Theoretical frameworks fail to provide a sufficient basis for the
design of cooperative learning-supportive infrastructures. They
do, however, help to define a general strategy for their
development, especially when the overall development cycle
spans several years. Such a framework must provide some
guidance on how to specify goals, set priorities and formulate
hypotheses to be validated in actual use, as well as helping to
distinguish between technical and nontechnical problems and to
analyze how they are interconnected.
Two general ideas might be useful to illustrate briefly the
approach we have adopted. The first is based on an argument put
forward by J.J. Gibson [7]. Gibson came to the conclusion that it
is human information processing that allows us to distinguish
between what is imagined and what is real. When we view a
phenomenon from different perspectives, or when we modify what
we perceive and interpret the respective changes, we gather
information through our bodily activities. We cannot, as Gibson
claims, gather information about a purely imagined phenomenon
because the result of any purely mental modification or change in
perspective is completely controlled by our mind. Thus, no
difference between what is imagined and what is real can be
detected. To carry this argument a step further, we could say that
nothing can be learned about a certain phenomenon if we are
unable to generate and interpret different patterns of perceivable
responses. Learning, then, requires feedback through personal
observation or social response; it is generally a combination of
both. Hence, in order to gain information about a certain
phenomenon, we must create an environment that can be
perceived and manipulated (i.e. an experimental setting or
symbolic description).

tertiary media
functions

secondary media
functions

I

II

primary media
functions

CREATE
ARRANGE

LINK
TRANSMIT

didactic concepts

adaptive systems III

Figure 1: media functions

The second idea draws on the fact that the biological (genetic)
basis for cognition has not changed for at least the last several
thousand years of human evolution. Our cultural accomplishments
do not reflect an improvement in our biological capacity for
intelligent behavior, but rather our ability to create ever better
means of expression to support productive thinking and to create
a socio-symbolic universe that enables us to base our learning
activities on the ideas and accomplishments of our ancestors (see
[4]). In terms, then, of both the evolution of culture in general and
the evolution of the individual’s mental capacity, it can be said

that learning is an inherently social activity based on the use of
physical artifacts, semiotic artifacts such as drawings,
calculations, verbal descriptions or formal notations also playing a
crucial role. Of course, symbolic artifacts are of paramount
importance: “...the use of signs appears to be indispensable to the
use of reason.” (see [16], p.135). However, the use of symbolic
artifacts requires technology, so the crucial question is: Which
specific technological functions adequately support learning?
To answer this question, we begin by distinguishing between the
terms memory and storage. Human memory is dynamic,
irreversible (one cannot deliberately forget or erase something),
selective and subject to individual experiences and views. A
storage is a repository generally used for depositing physical items
for later retrieval. The storing and retrieving functions should not
modify the items being stored (authenticity). The human memory,
then, processes information, whereas computers store data.
Apart from the human brain and its memory functions, we talk of
external memories in cases where the items in a storage are
continuously interpreted and modified as a result of some
individual or socio-intellectual process. A university library, for
instance, is not just a storage (a repository for books and
magazines), but a living body of knowledge available to a
scientific community and continuously modified to reflect the
current state of knowledge. To this extent, a library serves as an
external memory.
The same holds for course material in an education context.
During a course, students learn to explore the material, associating
meaning with formulas and data, to assess and discuss the
relevance of examples and to add their own material − which may
be individually produced, copied from some other source or the
result of collaborative work. The way they use the external
memory reflects their current state of knowledge, changing as they
become more knowledgeable. By the end of a course, participants
will have acquired their own personal understanding, but they will
also share a common understanding of the material commensurate
with their active involvement in its collaborative use and redesign;
a somewhat arbitrary repository of semiotic artifacts has thus
evolved into an external memory. Items in a storage can be
created, moved, arranged or deleted to express people’s
understanding and support their mental activities. However, the
actual physical state of an external memory can only embody this
knowledge to a limited extent because it fails to provide a detailed
account of the knowledge’s evolution and why it evolved in that
particular way. This holds for textbooks, formal notations and
software.
By way of conclusion, it may be said that technology supports
learning processes by providing appropriate means to create and
maintain storage that functions as an external memory.

3. ENHANCING LEARNING VS.
REPLACING TEACHING
The concept of external memories constitutes an initial attempt to
separate the technical (product) from the human (process).
However, to design suitable external memories, we have to go a
step further. We do so by distinguishing three classes of media
functions and showing their implications for the interplay of
technology and learning.

77

3.1 Primary media functions
Media are generally viewed in terms of communication, based in
most cases on the classical transmitter/receiver or producer/
consumer model. The integration of different media types such as
text, image and sound (multimedia) made possible by computers,
together with the fusion of transmission channels and services
(Internet), means that we must extend the concept of media.
Media are no longer simply means of communication; they are –
and have always been – both means of expression/ cognition and
means of organization. Without media, our cultural achievements
are inconceivable. Complex social processes based on the division
of labor are just as reliant on media as are science and education.
Media, for their part, require technology to create an objective,
mostly symbolic world. To determine the potential and
possibilities offered by the new media, we must first remind
ourselves of what constitutes, in technical terms, the benefits they
provide. Here, four basic categories can be defined for technical
functions, whose implementation can help better support
cognitive processes:

• CREATING: Media serve to create a perceptual space
allowing conception and reality to be correlated by action and
the relevant conclusions to be drawn. Scientific instruments,
experimental apparatus, models and simulation programs are
just as much instances of artifacts that perform this function as
are symbolic descriptions, diagrams, images, formalisms and
visualizations of large datasets.

• ARRANGING: To attain new insights, it is necessary to
correlate different documents. Problem solving and learning
invariably involve identifying differences and concurrences,
combining different types of descriptions and representations or
weighing statements from different sources against one another.
To support these processes, the artifacts to be correlated must be
brought into the field of perception, simultaneously if possible.
Here, logical connections should be represented, if possible, by
spatial connections as well, to enable them to be swiftly
identified and processed.

• TRANSMITTING: Cultural learning achievements are social
processes. Reducing learning to the individual processing of a
document, for example, means failing to appreciate that this
document is already being used, assessed and passed on in a
specific social teaching/learning situation. Furthermore,
contemporary university learning situations are often such that
course materials are processed, exchanged or compared in
groups. In such a context, learning is a disparate process taking
place in a variety of forms in different places and at different
times. The required material must be uniformly available at all
learning locations, i.e. it must be transmitted there.

• LINKING: Arrangements embodying an important
connection should be preserved after the act of arranging so that
they do not need to be regenerated at a later point in order to
continue working with them. Suitable links, for example, enable
users – ideally in a single step – to refer to all documents that
are of relevance for the respective meaning context. Equally
important here is the fact that the meaning context may cover
only part of the material and documents. For instance, an author
may refer to the works of other authors by citing or
paraphrasing them, linking together certain statements by these
authors to form a new line of reasoning. The relevant
statements, quotes and paraphrases are fused with the author’s

own statements to form a new physically coherent textual entity,
e.g. an anthology or an article. Besides a physical coupling of
this sort, such linking can also be done by grouping, i.e. the
physically unconnected objects are brought together at a
specific place and – if necessary – structured, i.e. arranged
according to one or more criteria. And it is also possible, instead
of linking the artifacts themselves, to create references to them
and then link them physically via these references (hypertext).

The rationalization potential of the new media lies in the
implementation and integration of these primary media functions,
the concern being to achieve more effective handling of the
physical artifacts in terms of the four basic areas of functionality.
Here, the new media offer a wealth of new forms for effectively
generating, transmitting, arranging and linking semiotic artifacts,
ranging from the integration of different types of media to net-
based services and search facilities.
To this extent, learning-supportive infrastructures, like the
Paderborn DISCO (Digital Infrastructure for Computer-Supported
Cooperative Learning) [12], make use of all materials at any
location where learning takes place.

3.2 Secondary Media Functions
Primary functions are essential means for creating and
maintaining external memories to the extent that they should
allow students and teachers to create and arrange any sort of
educational material in any way, without enforcing specific
teaching methods or didactic concepts. This allows a high degree
of flexibility, but it may not provide adequate support. A textbook
or CD-ROM is not just an arbitrary physical arrangement of
different media types such as text, graphics or video; it constitutes
specifically selected and designed material, taking the form of,
say, introductions, examples, exercises or suggestions for further
reading. The arrangement and selection of the material follows
didactic principles, and in many cases it may be useful to suggest
a certain sequence of learning activities (select and arrange
materials) or guide learners through the material along a pre-
specified path. We call such technological functions that support
learners or enforce specific sequences of activities according to
underlying didactic principles secondary media functions of the
external memory, because these functions embody specific
(empirical) knowledge about learning processes and their context.
We group these functions into three categories:

• STRUCTURE: Providing operations to create and maintain
specific arrangements of tools and documents such as learning
units, which may be defined as a compound document
containing a specification of the learning goal, an introductory
text, some examples, a set of interactive tests and further
references.

• INSTRUCT: Developing means for instructional design,
especially tutoring and feedback mechanisms for self-guided
learning.

• COOPERATE: Creating environments that support specific
methods for cooperative learning and problem solving, such as
brainstorming, role games or future workshops.

The implementation of secondary functions requires careful
analysis of the specific knowledge to be taught and should be
based on theoretical principles and empirical investigations to
justify the additional resources needed to design the tools and
materials. Since secondary functions are tied to a specific didactic

78

approach, they have to be re-implemented for different learning
environments.

3.3 Tertiary Media Functions
In the literature, there are instances of attempts to implement
tertiary functions, although such approaches have not yet yielded
very promising results. Tertiary functions embody generic
knowledge of problem solving and human understanding. The
idea is to build smart or intelligent systems that are capable of
understanding users or learning from their behavior, enabling the
systems to adapt to the learners’ individual needs. Tertiary
functions are:

• ADAPTATION: Designing mechanisms that analyze the
learner’s input and change the system’s behavior in accordance
with this ongoing analysis.

• INTELLIGENT TUTORING: Developing systems that are
able to cope with unanticipated or wrong input by users in an
intelligent manner. The system must embody models of the
learner’s knowledge, the problem-solving knowledge of domain
experts and knowledge about teachers’ intervention strategies.

• NATURAL-LANGUAGE PROCESSING: Enhancing the
system’s ability to “understand” the input of learners by
incorporating natural-language-processing mechanisms.

Tertiary functions represent the most ambitious goals in designing
learning environments, and it seems doubtful whether this
approach will ever lead to practical solutions. This is why we
made it our highest priority to implement the primary media
functions, which allow collaborative solutions. Secondary
functions are often regarded as playing a key role for a new
generation of learning environments, such as computer-based
training (CBT) or computer-aided instruction (CAI). However,
implementing secondary functions generally culminates in
supporting individual learning and so often runs counter to
attempts to establish infrastructures that support collaborative
learning.

3.4 Product and Process
In a formal system, each operation performed by a machine is
determined by the form and arrangement of symbols in the input
sequence, the machine storage being independent of what these
symbols represent. Every software system, then, embodies a
syntactic machine (product). In teaching and learning, however,
signs and symbols have to be interpreted in terms of personal
experience and knowledge, individual preferences and interests.
The respective consequences become apparent through human
actions (process). This sort of knowledge is therefore often
described as tacit or implicit. Implementing different classes of
media functions forces us to make more and more tacit/implicit
knowledge explicit. In the case of tertiary media functions – and
to some extent secondary media functions – the kind of
knowledge involved is typically that possessed by teachers. The
learner can proceed individually because the teacher’s functions
are increasingly replaced by a machine that the learner can use
anywhere, any time. Incidentally, the same holds true for
traditional print media. The closer we come to the technical
implementation of tertiary media functions, the greater the risk we
run of trying to build a technical solution for a nontechnical
problem − a hugely expensive undertaking.

4. THE PADERBORN DEVELOPMENT
The more we succeeded in solving the problems originally
connected with the establishment and use of learning-supportive
infrastructures in Paderborn, the more apparent became the
direction the next development steps should take. Our orientation
to the constructive use of media and the social embedding of
learning increasingly revealed certain discontinuities in the use of
media. Our distributed document management approach is a
marked improvement on classical Web Publishing, but it still has
its shortcomings: the volume of the teaching material and the
access authorizations are determined by the teachers.
This means that the learner’s scope is invariably confined to the
content and access structures laid down by the respective teacher.
The extent to which learners can arrange and structure the
material to suit their own needs is therefore limited. They are not,
then, able to establish their own learning environment, in which
they could, for example, link documents from different courses or
even different universities to match their own learning path and
knowledge level.
It is, of course, possible in principle to use all the material freely
available in the Net in different contexts. However, to effectively
utilize and manage such material, activities like copying,
transforming or indexing are needed that can soon involve a great
deal of effort. Also, such individually structured knowledge bases
are an obstacle to cooperative processing and generation. It is the
discontinuities in the use of media and shortcomings like this that
we aim to avoid by using the sTeam approach, a sort of learning
lab for studying new forms of distributed knowledge organization,
implementing them to meet everyday practical requirements and
providing the necessary tools for this purpose on an open-source
basis. To this extent, sTeam is not a finished product, i.e. a
learning tool, but is itself the object of a learning process that
needs to be further developed cooperatively.

5. sTeam – OUR PHILOSOPHY
In its basic sense, distributed knowledge organization means the
cooperative generation, management and maintenance of artifacts
embodying knowledge. Artifacts represented by documents,
graphics, notes and comments, and their linking by learners, thus
form the basis of any method for supporting learning processes
using suitable environments and tools. The temporal component
of an interaction or communication between learners can be seen
as another essential factor as well as the spatial differentiation of
cooperation. Existing environments and approaches can in most
cases be assigned either to the class of synchronous, i.e.
temporally concurrent, systems (supporting one session), or to the
class of asynchronous systems centering on a common location
(see [5]). The sTeam approach focuses on integrating the learners'
temporal and spatial differentiations. Asynchronous mechanisms
for handling multimedia learning components or hypertexts, such
as are frequently familiar from document management, are
combined with strongly synchronous approaches from the area of
session support. Such a synthesis allows new, less familiar, hybrid
forms of asynchronous and synchronous cooperation between
learners.
Of the cooperation-supporting environments, Multi-User Object-
Oriented Environments (MOOs) and Multi-User Domains
(MUDs) (see [3]) are basic architectures that have proved well

79

suited for bringing learners together in common learning and
working areas.1
Rooms are a key concept in all these approaches (see [10]). They
are structured entities that can be dynamically linked together.
The room structure enables positions to be defined for objects,
representing people, documents, tools and services, that allow a
knowledge space to be cooperatively established and, at the same
time, responsibilities, rights or competences to be structurally
mapped. To this extent, rooms constitute a key metaphor of virtual
learning communities. Irrespective of the chosen representation of
the room structure (two-dimensional, three-dimensional, as a tree
structure or a textual description) the room is viewed as the
meeting-point, “playground” and “lifeline” of a virtual
community.
The sTeam system combines the idea of a room-based virtual
world with the basic functionalities of document management.
Rooms function not only as a social meeting-point and center of a
virtual learning community but also as a collective external
memory, providing the primary media functions as a basis for
cooperative learning.
In the different virtual rooms, it is now possible to observe which
cooperation partner is currently dealing with which documents
and knowledge sources, provided this is explicitly permitted by
the students. One use of such mechanisms is to create new forms
of cooperative learning. During a seminar, for example, all the
participants can be assembled in specific rooms and a “virtual
ballot” conducted to evaluate specific documents. Another
application is to set up a shared whiteboard that allows not only
the students currently present in the room but also those hooked
up externally to jointly process objects or to transfer elements of
their desktop, graphics, references or entire documents to this
synchronous work area, i.e. a work area that is simultaneously
visible to all participants at a virtual location, using drag and drop
functions. For instance, dragging a reference from a browser
directly generates a link object in the room corresponding to the
whiteboard. In the following section, we focus on the technical
architecture of the sTeam environment; for a description of typical
learning scenarios of the sTeam system, refer to [9].

6. THE TECHNICAL ARCHITECTURE
To support the primary media functions within a cooperative
learning environment, a specific web-based architecture is needed.
It proved possible to continuously further develop such an
architecture, through a series of different prototypes, culminating
in an open, modern platform. The presented architecture reflects
the current status of the Paderborn sTeam development and
pursues a rigorous open-source approach.
The sTeam architecture (cf. Figure 2) consists of the sTeam
server, an external web server connected with the sTeam server
and various clients. A standard Internet browser can also be used
as a sTeam client to access most of the asynchronous
functionality. Specific functionalities such as synchronous
communication (chat) or cooperative applications are provided via
Java clients. In early sTeam prototypes, the web server was

1 Computer Science graduates Richard Bartle and Roy Trubshaw

wrote the world’s first Multi-Dungeon (MUD) game while they
were still students at the University of Essex, U.K., in the late
1970s.

integrated in the sTeam server proper. In the latest version, an
external web server was coupled with the sTeam server. Here, the
sTeam server acts as a sort of virtual file system for the web
server. This type of architecture allows web accesses (requests) to
be handled by the web server. The freely available Roxen web
server2 currently in use is a modern web server supporting all
essential features, e.g. different security facilities, Javascript and
server-site Java.

database

LPC

COALCOAL
COAL

Web - interface Roxen

sTeam core

clients

modules

Figure 2: The sTeam architecture

The sTeam server proper comprises the sTeam core server, a
number of extension packages and an external SQL database used
as an object repository. Extension packages can be easily
integrated into the sTeam server. For instance, there is currently
an initial extension package (sTeam module) providing a web
front-end for access to sTeam functionality via a standard Internet
browser.
The architecture of the actual sTeam server was tailored to the
needs of supporting cooperation processes. Human interaction in
virtual space, awareness mechanisms and in particular the
cooperative use of teaching material such as documents or
arbitrary objects calls for a specialized management of objects,
users and different events.
In terms of its realization, the sTeam server is based on an
implementation of the classes and object structure in the
interpreter language LPC3. The freely available − subject to GNU
Public Licence (GPL) − and widely used LPC Interpreter PIKE4
serves as the runtime environment. Besides offering good
performance, PIKE features a broad code basis and a large
number of existing libraries that can be implemented in the
programming language C. For instance, the PIKE database
interface for coupling SQL databases and an HTML parser5 were
used.
The sTeam system is completely object-oriented. Internally, the
sTeam environment maps both users and documents − and rooms
− as specific variants of objects. These have particular attributes

2 cf. http://www.roxen.com
3 LPC is a C-style interpreted programming language developed

by Lars Pensjö for LP-MUD.
4 cf. http://pike-community.org/
5 cf. http://www.gingerall.com

80

or content, e.g. the document types. Interaction between objects
takes place via mutual method calls or events. This is an extension
of the well-known concepts from the MUDs family, or more
specifically their object-oriented relations, the MOOs (“Mud
Object Oriented”).

6.1 sTeam Class Structure
To illustrate the specific features of the server architecture, the
classes and object structure are shown in simplified form, along
with their basic object types, e.g. “object”, “container”, “user”,
“group” and “document” (cf. Figure 3). In a second step, the event
system as well as the sTeam server’s access rights model is
sketched.
The sTeam class structure consists of the basic components
“object”, “container”, “user”, “group” and “document”. All
classes are derived from the basic class “object”. It is therefore
imperative that an sTeam object be derived within the
environment of “object” to maintain elementary system security.

 object object container container

Room room document document
group group

User User

link link
Figure 3: The sTeam class structure

Object: An “object” constitutes the basis of every element of the
sTeam environment. Essential features here are object persistence,
an unequivocal Object ID, available methods, events that can be
linked with objects, and a number of possible attributes (these can
be specified or re-registered when instantiating objects). Objects
are persistently administered in the sTeam database. The − for the
server − unequivocal object ID serves as a primary key to definite
identification.
Objects within the sTeam environment have an unambiguous
environment, which we shall henceforth simply term
“environment”. This is intended to create an object structure,
every object existing at precisely one point within the sTeam
system. (Such a structure forms a tree and has its root in the
sTeam-root-room).
Container: One of the simplest variants (derivations) of an object
is doubtless the sTeam container. It is used for the logical
encapsulation of objects. In accordance with the object-oriented
philosophy, a container can hold other objects. To this extent, the
internal object representation is implemented analogously to a
semantic grouping of materials (documents, graphics) in
containers. Similarly, a user’s rucksack, in which materials can be
carried around and exchanged with other users, is realized by the
object representation as a container. Direct results of this feature
are the fairly universal characteristics of containers within the
sTeam environment, such as the grouping of arbitrary objects.
This basic MUD feature enables a room to be implemented as a
specific variant of a container. A room groups materials,
documents, graphics and tools, i.e. all sTeam objects, as well as

users. The only other feature are special methods for
communicating within the room. Connections between rooms are
implemented as sTeam objects, for whose use special rights are
needed. Using an exit or entering another room, then, presupposes
the authorization to use − “execute” − a room object.
User: There exists precisely one user object for each user within
the sTeam environment. This user object is located within a
specific room, depending on the “position” of the user.
Communication between the real user, who has logged into the
sTeam system via a client, and the user object is implemented by
means of a communication object attached to the user object.
(Since users can be connected to the sTeam system via several
clients simultaneously, they can be in possession of several
communication objects at the same time.) As can be seen in the
class structure, the user object is inherited from the class
container. It extends the class container with different attributes
and methods. And, as a feature derived from the container’s class,
it may also contain different objects. (This means that users’
rucksacks − their “inventories” − enable them to take “objects” (to
use MUD terminology) with them.
Special user attributes are, for instance, a user’s name, access
password, etc. These are administered as attributes in the
corresponding user object. As with MUDs, the chosen user name
should be unequivocal, serving as it does to access, to address the
user object within the sTeam environment. Communication
between users within a room is realized by means of events. As in
the case of an MUD, a user’s chat message (in an MUD, the “say”
command) triggers an event within a room (“user X says: text”),
which is processed by the recipients of the event. Various
awareness mechanisms − in the simplest case, a list of the current
visitors to the room − notify users about who is taking part in a
discussion or cooperative session.
Group: A group encapsulates a number of users. The class
“group” is directly derived from the class “object” and has a
similar status to that of a user. User groups may contain other
groups and other users.
This makes it possible to build a hierarchy of groups and users.
Document: All interactions within the sTeam environment are
based essentially on generating, manipulating and exchanging
sTeam objects. Like the primary media functions, objects serve as
a basis for learners’ potential artifacts. Unlike a conventional
object, a document is characterized by the fact that it has content.
This comprises the data of any file stored in the database, e.g. a
graphic or word-processing document, or the content of a web
document. Different document types are distinguished by a MIME
type stored within an attribute – no specific document objects are
needed, then, for different types of learning materials or
application objects introduced to the sTeam system. The only
exception here is the management of hypertext documents. The
object type “document” is derived from a container’s basic class,
thus being able to encapsulate different objects. Such a
mechanism enables, say, potential user annotations or comments
on documents to be to be stored simply and neatly – they are
stored in the environment of the respective object. Technologies
such as version management or multilinguality of documents will
in future be realizable using mechanisms of this sort.
Strictly separating an object, its attributes and its actual content in
this way allows flexibility in the handling of document content.

81

Current sTeam system prototypes store the document content in
the connected relational database. Another conceivable way of
storing document content, keeping the effort involved at a
reasonable level, would be to use special multimedia databases or
even simple file systems.
Separating the document object itself from its content also allows
documents to be simply and efficiently managed within sTeam
rooms. Only actual accessing of document content by the user
(e.g. through an upload or download) causes the respective
document content to be loaded from the database.
Special rules apply to the handling of various types of hypertext
documents such as HTML or XML6. These can contain links to
external documents (URLs) in the document (i.e. in the object
content). To avoid inconsistencies when inserting such documents
in the sTeam environment or when subsequently shifting
documents, links are to be handled separately. In the current
implementation, a parsing of the HTML documents takes place
and links are extracted and replaced by links that are unequivocal
in the sTeam environment. (This replacement is carried out, when
inserting document content into or reading it out from the
database, by overwriting the corresponding functions in the
object.)

6.2 Factories – Selective Generation of sTeam
Objects
If new instances of objects are generated, this is done using so-
called factories available for each object type. Every class has an
assigned object with a function for providing instances of the
class. The idea of having a definite location for generating new
objects has a number of advantages. For one, objects can be
updated at runtime – a feature that few systems offer and one
which underlines sTeam’s claim to be a flexible, user-extendable
system. Here, factories administer the instances of objects at
runtime, updating them, among other things. This enables
attributes or methods to be added to existing classes without
having to restart the sTeam server. Living instances of the relevant
object type are updated.
A second advantage is that attributes are registered to objects
within the factory. Such a mechanism enables clients to register
new attributes to existing objects or even new object types and
implement specific required features without modifying the sTeam
core server. For instance, if a specific client needs an attribute of
the local distance of people from a table – perhaps to represent
some sort of seating arrangement, the client in question can
register this new attribute at the factory of the class room and
thenceforth use it.
Finally, the idea of special objects that generate instances of a
class allows security to be extended to the object and class
structure of the sTeam server. Only authorized users or user
groups are able to generate instances of a class and thus
permanently modify the system. No security check is made, then,
at the level of the user interface, sTeam having a thoroughly
uniform security concept, right down to the generation of
individual objects. Factories are thus basic prerequisites for
building a cooperative application at runtime and for extension of
the environment by the users themselves. The idea of self-

6 For information on the Extensible Markup Language (XML), cf.

http://www.w3.org/XML/

administration, i.e. granting system users the right to administer,
restructure and extend the environment, is based originally on this
sort of protected object instantiation.

6.3 The sTeam Event System
As with MUDs, the sTeam server is event-driven. Events play a
prominent role in the design of the sTeam system’s overall
architecture. Nearly all communication between objects within the
sTeam system is done through events, e.g. “a user addresses the
room”. Inside the sTeam core server, such events are processed in
the order they occur and forwarded to affected objects.
The sTeam environment is based on a flexible event system.
Events are triggered by arbitrary objects and can be processed by
other objects. A whole series of events have already been defined,
and adding new events is an easy matter. Events may have a
limited range, e.g. be transmitted to only a limited number of
objects, the subscribers to the event (e.g. all users in the room) or
globally address all objects in the environment. All the sTeam
server’s internal structures are event-driven. For instance, the
module security, sTeam’s key security system, subscribes to all
global events and, after a required security check, forwards them
to the relevant objects. sTeam’s whole authorization system is
based on this mechanism.
The ability to generate new tools or document types shows just
how powerful sTeam’s event system is. Cooperative applications
such as a shared whiteboard (a cooperative synchronous drawing
area on which the users of a room can make drawings or diagrams
or deposit documents) can be easily integrated into the sTeam
environment using a powerful event system of this sort. To do so,
a new shared whiteboard object is generated in the room (e.g.
derived from a container) which − functioning, so to speak, as the
common external memory of the room’s users − manages the
cooperatively administered drawings and documents. At the same
time, special methods are provided enabling the data to be
accessed inside the shared whiteboard container. If a user now
accesses the database via a special client that suitably edits the
whiteboard content (e.g. by drawing a new element in the drawing
area), these state changes are passed on via events to all
subscribers, i.e. those clients (objects) participating in the
whiteboard session. Essential characteristics of cooperative
applications of this sort are a common persistent data space and
the propagation of events to the relevant participants in a
cooperative session.
Other, less complex tasks can also be performed using the sTeam
event concept. For instance, a simple protocol tool for recording
chat conversations in a room can be easily implemented using a
container object that subscribes to the relevant communication
events of a discussion’s participants.
The sTeam event concept is rigorously implemented right up to
the client level. Like any server objects, clients can process
events, call server functions and thus trigger events. For this
purpose, a special COAL-based (COAL = Client Object Access
Layer)7 server API was designed that forwards events via so-
called sTeam connectors to the Java client. This enables a
completely object-oriented representation of server objects within
the sTeam clients. Benefits of object-oriented design that are often

7 The acronym COAL was also chosen because a sTeam engine cannot

function without coal!

82

attributed to pure Java client-server solutions are thus integrated
in the hybrid sTeam architecture.

6.4 sTeam Access Rights Model
Multi-user systems such as operating systems traditionally make
access rights to a file dependent on ownership conditions and
membership of a specific user group (cf. the UNIX operating
system in which access rights to a file can be specified for the
user, the user group and other system users by three access-right
attributes only.) These rights are evaluated according to a user’s
membership of specific groups. The classical model for assigning
access rights of users and groups to objects is the Access Control
List (ACL) according to Lampson. [14]. For every single sTeam
object, the users and groups are defined in an ACL along with
their respective access rights: read, write, delete, delegate rights
to others (sanctioning). Sanctioning is an extension of
administration rights as proposed by Satyanarayanan [18]. This
right allows the explicit modification of an ACL (in the case of
our system, the ACL of a directory) and is thus an important first
step toward decentralized administration. The sTeam system
extends the right to administer an object, i.e. to modify access
rights (sanctioning), by adding the option of delegating
responsibility for an object. This delegation option for objects is
taken from access-right models in drafts for relational databases.
A formal model for the delegation of access rights to database
tables was already drawn up by Griffiths and Wade [8]. (The
creator of a table can delegate administration rights to other
users.)
A meaningful and widely used strategy for administering access
rights is to tie such rights primarily to user groups. With this
approach, access rights are tied to the relevant user groups and
only rarely granted to individual users. (Thus, most ACLs for a
particular object list user groups only). The objective is to keep
track of who has access to specific objects by granting as few
rights as possible.

Such an approach implies that in many cases it will be difficult −
if not impossible − to express a specific state of affairs in terms of
purely positive rights. For instance, if an individual user is to be
denied access to a particular object, the above approach would
appear to necessitate removing the user from the group granted
the access right in question and explicitly redefining all other
access rights relating to that group − certainly a lot of effort to
express the simple situation “person X is not allowed to access
object Y”. One solution here would be to use exclusive access
rights – so-called negative rights that explicitly exclude users or
user groups from a particular access right. Unlike some database
systems, the sTeam system currently uses a model in which
negative rights are only admissible for individual users, not for
whole groups of users. While such an approach admittedly
restricts somewhat the scope and powerfulness of the negative-
rights model, it makes it easier to keep track of granted access
rights and interpret them unequivocally in cases of conflict.
In daily life, authorizations and rights are dynamic, but at the
same time shaped by social laws and norms. We take it, then, as a
matter of course that, when being passed from one person to
another, materials adapt their status in a number of ways to the
respective use context, the actors involved or the place in
question. For instance, a set of test questions changes its status
from that of a highly confidential object accessible only to the
teacher, before the test, to a freely available document that can be

publicly discussed and commented on, after the test. Especially in
cooperative teaching and learning processes, it would appear
essential to dispense with a strict assignment of access rights to
documents.
Certainly the simplest example of access rights to documents and
materials is the above-described assignment of rights to users or
user groups. If access rights are granted to a user group as a
whole, all members of the group, and all members of its
subgroups, acquire those rights.
Such a mechanism can be used to map access rights resulting from
a user’s social status, i.e. his/her permanent membership of a user
group, but also dynamic processes such as the allocation of roles.
For instance, if a participant in a discussion is appointed
moderator and admitted to a corresponding group, he/she
automatically acquires the access rights to documents and
materials, or to the discussion environment, that go with this
appointment.
Besides the characteristics of the access-rights model described
here, sTeam allows such rights to be derived from the
environment of an object or from a fixed object (e.g. the room).
Rights can also be granted to groups as a whole, e.g. to enable
groups of administrators to be set up. These options are not
elaborated on here.

6.5 sTeam Clients
The sTeam clients constitute the real use interface to the sTeam
system. At an appropriate point in the development process,
implementation focused first on designing a powerful server and
enhancing the required server interfaces. This resulted in a
corresponding Java API and a number of experimental Java
clients. One of the key design decisions with respect to the sTeam
client-server architecture was to make the client-server interface
as universal as possible, thus allowing server and clients to be
largely decoupled in terms of enhancement. One of the essential
characteristics, then, is the lean client-server interface. Thus the
only commands provided by COAL are for logging a client on to
and off from the server and for up- and downloading files, as well
as a universal function for calling methods of objects in the
server.
For each server object, a corresponding Java object can be
replicated in the sTeam clients. The sTeam clients simply work
with these replicated cooperative objects (methods and attributes).
The access to attributes and methods within the corresponding
server objects is mapped onto the server by the COAL interface.
This process takes place transparently for the programmer of the
client application.
Events are thus subscribed to by the clients and transferred to
them from the server. To give a concrete example: to implement a
chat in a client, so-called chat listeners can be attached to the
corresponding user objects which, on receipt of a chat message,
call an appropriate function to display the chat message.
In this way, an sTeam client generates its own personal view of
objects in the server. The sTeam structure, consisting of persistent
objects and their attributes linked by events, is rigorously
implemented right up to the clients.
To this extent, the external Roxen web server connected to the
sTeam server works like an sTeam client. Accesses to the web
server (requests) are interpreted and converted into corresponding

83

sTeam object requests. The sTeam server controls the
authentification/authorization of Net accesses (requests), manages
the presented content from requested websites and simulates a
structure of URL addresses. Similarly, the uploading and
downloading of documents generates events in the server. The
universal nature of the COAL interface means that no special
interfaces are needed to attach the web server to the sTeam server.

6.6 Structure of Objects Within the sTeam
Environment – ORB: Object Request Broker
All learning materials like documents and graphics − but also the
sTeam users themselves − are represented in the server as sTeam
objects. Some sort of basic order in this free structure is provided
by sTeam rooms and containers which serve to encapsulate
documents and users. In this way, materials and persons can be
assigned an unequivocal position within a virtual world. The so-
called “root” room forms the basis of a hierarchy of rooms and
containers. Rooms are generally connected to other rooms by
links and are subrooms of a parent room or of the root room.
Architecturally, this means that each object has a definite
environment from which attributes, for example, can be inherited.
Various situations occur in which the sTeam structure of rooms
and documents must be searched or transformed. For instance, if
documents are transferred to the server via a file-system-oriented
protocol like FTP, a completely different structure must be
mapped than, say, in the case of a search request for objects in the
server.
The task of viewing the sTeam structure from different angles and
perspectives is performed by the sTeam ORBs (Object Request
Brokers).
An ORB is used to access the sTeam object structure. There are
currently three different ORBs: one simply assigning sTeam
objects an unequivocal ID − used, for instance, in object searches;
one enabling an sTeam object to be accessed via a URL
represented by a name, as typically used on standard web servers
(here, arbitrary sTeam objects can be assigned a URL attribute
that represents a sort of alias for accessing a particular document
via a WWW client); and a special ORB managing the mapping of
the sTeam structure by means of a hierarchy of rooms, containers
and objects (here, each object has a definite environment).
Only the first ORB, assigning objects an unequivocal ID, can
access all objects in the server. The hierarchical room structure
and the identification via name URLs only map part of the server
structure in each case.

7. RELATED WORK
A comprehensive treatment of the sTeam approach in relation to
other research work in the area of Computer-Supported
Cooperative Learning is beyond the scope of this paper. Engelbart
and English [6] were definitely among the first to address the idea
of computer-supported group work with their “augmention
system” research on supporting human skills by computer
technology. There are a whole series of approaches resembling the
sTeam architecture in specific features (see [1], [2], [15], [17]),
but none of them offers the sort of open and flexible object/event
structure that the sTeam approach does. The GMD, for example,
is developing the COAST platform [19] and its purely Java-based
successor DyCE for designing Net-based cooperative
applications. A characteristic feature of DyCE is its replicated

system architecture consisting of cooperative Java objects. Here,
though, the developers were not primarily concerned with
learners’ self-administration and the idea of fusing
communication and document-management mechanisms. The idea
of developing an environment for cooperative work based on
MUD architectural concepts has already been tried out by the
MITRE Corporation8 with its CVE environment. Unfortunately,
CVE’s room structure is quite rigid and it provides only weak
mechanisms for the distributed administration of rooms.

8. CONCLUSIONS
The sTeam’s cooperative learning approach aims to provide
primary media functions from the learners' perspective. In the
sTeam concept, rooms offer users considerable scope for self-
administration. Ideally, the participants in a virtual learning
community design their own learning environment. This process
begins with the creation of a virtual room and involves the
processing of objects such as documents, graphics and slides as
well as the selection of cooperative tools that are available
throughout the learning process.
However, the solutions presented in the sTeam approach are not
meant to compete with advanced technological solutions for
individual applications. Providing solutions for practical everyday
use − an objective calling for the integration of different tools and
environments into a sustainable infrastructure − is a research goal
in itself. It is not sufficient that technology work in principle; it
must work on a practical, everyday basis − a requirement that has
certainly been responsible for the spread of World Wide Web and
its fundamental success over the past ten years. Similar efforts and
quality standards must be applied in the future to the further
development of cooperative teaching and learning environments.
This paper attempts to bridge the gap between our underlying
theoretical ideas and our practical implementation of an open and
flexible client-server structure. It focuses not on reading and
browsing in the Net, but on cooperatively building and
maintaining distributed knowledge structures. The desire to create
a learning environment by learners for learners is what drives the
sTeam research. It is in this spirit, then, that we hope to find new
impetus and support, especially from proponents of the open-
source idea, in our efforts to develop a free and flexible computer-
supported cooperative learning platform. The rigorous application
of open standards, e.g. providing comprehensive support for XML
documents or developing powerful, interactive Java clients, will
constitute an important challenge in the near term.

ACKNOWLEDGMENTS
Our special thanks go to Thomas Bopp and Ludger Merkens and
all the other programmers and designers of the open-sTeam
system for their unceasing efforts to realize sTeam.

This work reported here was funded by the German Federal
Ministry for Education and Research (BMBF) and the DFN-
Verein as part of our open-sTeam Project.

8 cf. The open source Collaborative Virtual Workspace website,

MITRE Corporation, http://cvw.sourceforge.net/

84

REFERENCES
[1] Appelt, W. and Mambrey, P. Experiences with the BSCW

Shared Workspace System as the Backbone of a Virtual
Learning Environment for Students. Proceedings of the
World Conference on Educational Multimedia, Hypermedia
and Telecommunications ED-MEDIA 99, Seattle, June 1999,
USA. 1710-1715.

[2] Chabert, A., Grossman, E., Jackson, L.S., Pietrowiz, S.R. and
Seguin, C.: Java object-sharing in Habanero,
Communications of the ACM, 41, 6 (1998), 69-76.

[3] Curtis, P. Mudding: Social phenomena in text-based virtual
realities., 1992.
ftp://ftp.lambda.moo.mud.org/pub/MOO/papers

[4] Elias, N. Über die Zeit. Suhrkamp, Frankfurt (Main), 1988.
[5] Ellis, C.A., Gibbs, S.J. and Rein, G. Groupware: some issues

and experiences. Communications of the ACM 34, 1 (Jan.
1991), 39-58.

[6] Engelbart, D.C. and English, W.K. A Research Center for
Augmenting Human Intellect. AFIPS Conference
Proceedings of the 1968 Fall Joint Computer Conference,
San Francisco, CA, USA, (December 1968), Vol. 33,
(AUGMENT,3954), 395-410.

[7] Gibson, J.J. The Ecological Approach to Visual Perception.
Houghton-Mifflin, Boston, 1979.

[8] Griffiths, P.P. and Wade, B.W. An Authorization Mechanism
for a Relational Database System. ACM TODS, 1, 3
(September 1976), 242-255.

[9] Hampel, T. Scenarios of a New Dimension of Learning by
the Co-operative Structuring of Knowledge. In: Bourdeau, J.
and Heller, R. (eds.) Proceedings of ED-MEDIA 2000,
World Conference on Educational Multimedia, Hypermedia
& Telecommunications, Montreal Canada; (June 26 - July 1,
2000), 369-374.

[10] Henderson, A.J. and Card, S.A. Rooms: The Use of Multiple
Virtual Workspaces to Reduce Space Contention, ACM
Transactions on Graphics, 5, 3 (July), 1985, ACM Press.

[11] Hesse, F.W. Konzeption und Realisierung virtueller
Wissensvermittlung. In: Hamm, I. and Müller-Böling, D.

(eds), Hochschulentwicklung durch neue Medien, Gütersloh,
1997.

[12] Keil-Slawik, R. Evaluation als evolutionäre System-
gestaltung. Aufbau und Weiterentwicklung der Paderborner
DISCO (Digitale Infrastruktur für computerunterstütztes
kooperatives Lernen). In: Kindt, M. (ed.): Projektevaluation
in der Lehre – Multimedia an Hochschulen zeigt Profil(e).
Reihe: Medien in der Wissenschaft, Waxmann, 7, Münster,
1999, 11–36.

[13] Keil-Slawik, R., Klemme M. and Selke H. Information and
Communication Technologies in Education and Training
(Part A). STOA Programme, European Parliament,
Directorate General for Research, PE: 165.710.,
Luxembourg, 1996.

[14] Lampson, B. Protection. Proceedings of the 5th Princeton
Conference on Information Sciences and Systems, Princeton,
1971. Reprinted in ACM Operating Systems Rev. 8, 1 (Jan.
1974), 18-24.

[15] Patterson, J.F, Hill, R.D., Rohall, S.L. and Meeks, S.W.:
Rendezvous: an architecture for synchronous multiuser
applications. Proceedings of the Conference on Computer-
Supported Cooperative work, October 7-10, 1990, Los
Angeles, CA, USA, 317-328.

[16] Polya, G. How to solve it. Princeton, NJ: Princeton
University Press, 1971.

[17] Roseman, M. and Greenberg, S. TeamRooms: Network
Places for Collaboration. Proceedings of the ACM 1996
Conference on Computer Supported Cooperative Work,
November 16-20, Boston, USA, 325-333.

[18] Satyanarayanan, M. Integrating Security in a Large
Distributed System. ACM Transactions on Computer
Systems, 7, 3 (August 1989), 247-280.

[19] Schuckmann, C., Kirchner, L., Schümmer, J., and Haake J.
M. Designing Object-Oriented synchronous groupware with
COAST. In: Ackerman, M.S. (ed.) Proceedings of the ACM
1996 Conference on Computer Supported Cooperative Work
(CSCW'96), (November 16-20, 1996) Boston, USA, ACM
Press, New York, 30-38.

85

