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ABSTRACT 
Learning is a socially embedded design process. But most of 
today’s hypermedia systems fail to properly support both the 
design-related and the social aspects of learning. Authoring and 
web-publishing systems aim to support the authors’ design 
process. Consequently, learners’ activities are confined to 
selecting and reading. Based on some fundamental reflections on 
the role of technology in learning processes, we conclude that top 
priority must be given to the construction of infrastructures that 
support cooperative learning processes if we are to properly 
harness technology’s potential. 
We present a learner-centered – wholly web-based – approach for 
structuring information in teams (sTeam). The key concept in 
sTeam is virtual space. It draws together cooperation and 
communication, at the same time embodying the common external 
memory of a (virtual) learning group. The focus is not, then, on 
interactive systems for individual accessing of knowledge bases, 
but rather on the cooperative management and structuring of 
distributed knowledge bases. 

Keywords 
cooperative learning, web-based learning and teaching, learner-
centered approaches, cooperation support, sTeam – structuring 
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1. INTRODUCTION 
Mainstream discussions on the role of technology in teaching and 
learning center on two basic paradigms. Hypermedia systems aim 
to support individual learning processes, special emphasis being 
placed on new didactic qualities, attributed to the interactive 
combination of different media types such as text, graphics, audio, 
video, etc. The second paradigm embodies the notion of 
“delivering education”, networking technology being used to 
distribute and access study materials as well as to establish 
communication channels between students and teachers. Although 
the idea of utilizing net services has strong collaborative 
connotations, the main argument in favor of networking is the 
temporal and spatial independence it offers and, consequently, 
independence from close collaboration with others.  
Students can now learn individually at their own pace and their 
own chosen location. 

However, many studies evaluating the role of technology in 
learning processes have yielded conflicting results, indicating that 
there is no general, clear-cut connection between the effort 
required to produce high-quality multimedia educational materials 
and improvements in the learning process. The problem is to 
attribute certain benefits to a single variable – say, the specific 
technology used. Mostly, the results are a combination of different 
variables such as didactic style, educational strategy, technology 
deployment, appropriate selection of content and the personal 
qualities of teachers and students. (see [11], [13]) Thus, the 
widely accepted idea that learning can be improved by the 
individualization of learning processes using hypermedia and 
networking technology is not generally borne out by scientific 
research. 
Instead of using technology to individualize learning processes, 
we have chosen the opposite approach – namely, using 
technology to support cooperative learning processes within the 
framework of traditional university education. Rather than trying 
to do away with the need for physical presence in the learning 
situation, we seek to support social processes in which students 
and teachers are physically present for a specific time at different 
places. Quite apart from practical considerations, theoretical 
research reveals that, ultimately, the social embedment of learning 
is a crucial factor in success.  
Furthermore, our approach is based on the general assumption 
that technology can only solve technological problems, didactic 
problems requiring didactic solutions. Teaching activities cannot, 
then, be replaced by technological functions, and the embedding 
of technology into teaching and learning activities must be 
carefully studied. 
To design a learning-supportive infrastructure, it is therefore 
necessary to identify which of the problems connected with the 
learning process are technological problems and which are the 
main technological functions for problem solution. In the 
following sections, we briefly sketch the theoretical framework 
enabling us to identify general technological functions that need 
to be implemented. However, empirical investigations are 
required to properly determine the specific implementation of 
these functions because it is the fine tuning of all variables, of 
technical means and didactic concepts, innovative ideas and 
available resources that ultimately determines how to set up an 
appropriate infrastructure. The sTeam approach focuses on the 
collaborative exploration and maintenance by students of a 
complex hypermedia knowledge base – a concept we call self-
administration.  
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2. MEDIA AS EXTERNAL MEMORIES 
Theoretical frameworks fail to provide a sufficient basis for the 
design of cooperative learning-supportive infrastructures. They 
do, however, help to define a general strategy for their 
development, especially when the overall development cycle 
spans several years. Such a framework must provide some 
guidance on how to specify goals, set priorities and formulate 
hypotheses to be validated in actual use, as well as helping to 
distinguish between technical and nontechnical problems and to 
analyze how they are interconnected.  
Two general ideas might be useful to illustrate briefly the 
approach we have adopted. The first is based on an argument put 
forward by J.J. Gibson [7]. Gibson came to the conclusion that it 
is human information processing that allows us to distinguish 
between what is imagined and what is real. When we view a 
phenomenon from different perspectives, or when we modify what 
we perceive and interpret the respective changes, we gather 
information through our bodily activities. We cannot, as Gibson 
claims, gather information about a purely imagined phenomenon 
because the result of any purely mental modification or change in 
perspective is completely controlled by our mind. Thus, no 
difference between what is imagined and what is real can be 
detected. To carry this argument a step further, we could say that 
nothing can be learned about a certain phenomenon if we are 
unable to generate and interpret different patterns of perceivable 
responses. Learning, then, requires feedback through personal 
observation or social response; it is generally a combination of 
both. Hence, in order to gain information about a certain 
phenomenon, we must create an environment that can be 
perceived and manipulated (i.e. an experimental setting or 
symbolic description). 
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Figure 1: media functions 

 
The second idea draws on the fact that the biological (genetic) 
basis for cognition has not changed for at least the last several 
thousand years of human evolution. Our cultural accomplishments 
do not reflect an improvement in our biological capacity for 
intelligent behavior, but rather our ability to create ever better 
means of  expression to support productive thinking and to create 
a socio-symbolic universe that enables us to base our learning 
activities on the ideas and accomplishments of our ancestors (see 
[4]). In terms, then, of both the evolution of culture in general and 
the evolution of the individual’s mental capacity, it can be said 

that learning is an inherently social activity based on the use of 
physical artifacts, semiotic artifacts such as drawings, 
calculations, verbal descriptions or formal notations also playing a 
crucial role. Of course,  symbolic artifacts are of paramount 
importance: “...the use of signs appears to be indispensable to the 
use of reason.” (see [16], p.135). However, the use of symbolic 
artifacts requires technology, so the crucial question is: Which 
specific technological functions adequately support learning? 
To answer this question, we begin by distinguishing between the 
terms memory and storage. Human memory is dynamic, 
irreversible (one cannot deliberately forget or erase something), 
selective and subject to individual experiences and views. A 
storage is a repository generally used for depositing physical items 
for later retrieval. The storing and retrieving functions should not 
modify the items being stored (authenticity). The human memory, 
then, processes information, whereas computers store data.  
Apart from the human brain and its memory functions, we talk of 
external memories in cases where the items in a storage are 
continuously interpreted and modified as a result of some 
individual or socio-intellectual process. A university library, for 
instance, is not just a storage (a repository for books and 
magazines), but a living body of knowledge available to a 
scientific community and continuously modified to reflect the 
current state of knowledge. To this extent, a library serves as an 
external memory.  
The same holds for course material in an education context. 
During a course, students learn to explore the material, associating 
meaning with formulas and data, to assess and discuss the 
relevance of examples and to add their own material − which may 
be individually produced, copied from some other source or the 
result of collaborative work. The way they use the external 
memory reflects their current state of knowledge, changing as they 
become more knowledgeable. By the end of a course, participants 
will have acquired their own personal understanding, but they will 
also share a common understanding of the material commensurate 
with their active involvement in its collaborative use and redesign; 
a somewhat arbitrary repository of semiotic artifacts has thus 
evolved into an external memory. Items in a storage can be 
created, moved, arranged or deleted to express people’s 
understanding and support their mental activities. However, the 
actual physical state of an external memory can only embody this 
knowledge to a limited extent because it fails to provide a detailed 
account of the knowledge’s evolution and why it evolved in that 
particular way. This holds for textbooks, formal notations and 
software.  
By way of conclusion, it may be said that technology supports 
learning processes by providing appropriate means to create and 
maintain storage that functions as an external memory. 

3. ENHANCING LEARNING VS. 
REPLACING TEACHING 
The concept of external memories constitutes an initial attempt to 
separate the technical (product) from the human (process). 
However, to design suitable external memories, we have to go a 
step further. We do so by distinguishing three classes of media 
functions and showing their implications for the interplay of 
technology and learning. 
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3.1 Primary media functions 
Media are generally viewed in terms of communication, based in 
most cases on the classical transmitter/receiver or producer/ 
consumer model. The integration of different media types such as 
text, image and sound (multimedia) made possible by computers, 
together with the fusion of transmission channels and services 
(Internet), means that we must extend the concept of media. 
Media are no longer simply means of communication; they are – 
and have always been – both means of expression/ cognition and 
means of organization. Without media, our cultural achievements 
are inconceivable. Complex social processes based on the division 
of labor are just as reliant on media as are science and education. 
Media, for their part, require technology to create an objective, 
mostly symbolic world. To determine the potential and 
possibilities offered by the new media, we must first remind 
ourselves of what constitutes, in technical terms, the benefits they 
provide. Here, four basic categories can be defined for technical 
functions, whose implementation can help better support 
cognitive processes: 

• CREATING: Media serve to create a perceptual space 
allowing conception and reality to be correlated by action and 
the relevant conclusions to be drawn. Scientific instruments, 
experimental apparatus, models and simulation programs are 
just as much instances of artifacts that perform this function as 
are symbolic descriptions, diagrams, images, formalisms and 
visualizations of large datasets. 

• ARRANGING: To attain new insights, it is necessary to 
correlate different documents. Problem solving and learning 
invariably involve identifying differences and concurrences, 
combining different types of descriptions and representations or 
weighing statements from different sources against one another. 
To support these processes, the artifacts to be correlated must be 
brought into the field of perception, simultaneously if possible. 
Here, logical connections should be represented, if possible, by 
spatial connections as well, to enable them to be swiftly 
identified and processed. 

• TRANSMITTING: Cultural learning achievements are social 
processes. Reducing learning to the individual processing of a 
document, for example, means failing to appreciate that this 
document is already being used, assessed and passed on in a 
specific social teaching/learning situation. Furthermore, 
contemporary university learning situations are often such that 
course materials are processed, exchanged or compared in 
groups. In such a context, learning is a disparate process taking 
place in a variety of forms in different places and at different 
times. The required material must be uniformly available at all 
learning locations, i.e. it must be transmitted there. 

• LINKING: Arrangements embodying an important 
connection should be preserved after the act of arranging so that 
they do not need to be regenerated at a later point in order to 
continue working with them. Suitable links, for example, enable 
users – ideally in a single step – to refer to all documents that 
are of relevance for the respective meaning context. Equally 
important here is the fact that the meaning context may cover 
only part of the material and documents. For instance, an author 
may refer to the works of other authors by citing or 
paraphrasing them, linking together certain statements by these 
authors to form a new line of reasoning. The relevant 
statements, quotes and paraphrases are fused with the author’s 

own statements to form a new physically coherent textual entity, 
e.g. an anthology or an article. Besides a physical coupling of 
this sort, such linking can also be done by grouping, i.e. the 
physically unconnected objects are brought together at a 
specific place and – if necessary – structured, i.e. arranged 
according to one or more criteria. And it is also possible, instead 
of linking the artifacts themselves, to create references to them 
and then link them physically via these references (hypertext). 

The rationalization potential of the new media lies in the 
implementation and integration of these primary media functions, 
the concern being to achieve more effective handling of the 
physical artifacts in terms of the four basic areas of functionality. 
Here, the new media offer a wealth of new forms for effectively 
generating, transmitting, arranging and linking semiotic artifacts, 
ranging from the integration of different types of media to net-
based services and search facilities.  
To this extent, learning-supportive infrastructures, like the 
Paderborn DISCO (Digital Infrastructure for Computer-Supported 
Cooperative Learning) [12], make use of all materials at any 
location where learning takes place. 

3.2 Secondary Media Functions 
Primary functions are essential means for creating and 
maintaining external memories to the extent that they should 
allow students and teachers to create and arrange any sort of 
educational material in any way, without enforcing specific 
teaching methods or didactic concepts. This allows a high degree 
of flexibility, but it may not provide adequate support. A textbook 
or CD-ROM is not just an arbitrary physical arrangement of 
different media types such as text, graphics or video; it constitutes 
specifically selected and designed material, taking the form of, 
say, introductions, examples, exercises or suggestions for further 
reading. The arrangement and selection of the material follows 
didactic principles, and in many cases it may be useful to suggest 
a certain sequence of learning activities (select and arrange 
materials) or guide learners through the material along a pre-
specified path. We call such technological functions that support 
learners or enforce specific sequences of activities according to 
underlying didactic principles secondary media functions of the 
external memory, because these functions embody specific 
(empirical) knowledge about learning processes and their context. 
We group these functions into three categories: 

• STRUCTURE: Providing operations to create and maintain 
specific arrangements of tools and documents such as learning 
units, which may be defined as a compound document 
containing a specification of the learning goal, an introductory 
text, some examples, a set of interactive tests and further 
references.  

• INSTRUCT: Developing means for instructional design, 
especially tutoring and feedback mechanisms for self-guided 
learning. 

• COOPERATE: Creating environments that support specific 
methods for cooperative learning and problem solving, such as 
brainstorming, role games or future workshops. 

The implementation of secondary functions requires careful 
analysis of the specific knowledge to be taught and should be 
based on theoretical principles and empirical investigations to 
justify the additional resources needed to design the tools and 
materials. Since secondary functions are tied to a specific didactic 
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approach, they have to be re-implemented for different learning 
environments. 

3.3 Tertiary Media Functions 
In the literature, there are instances of attempts to implement 
tertiary functions, although such approaches have not yet yielded 
very promising results. Tertiary functions embody generic 
knowledge of problem solving and human understanding. The 
idea is to build smart or intelligent systems that are capable of 
understanding users or learning from their behavior, enabling the 
systems to adapt to the learners’ individual needs. Tertiary 
functions are: 

• ADAPTATION: Designing mechanisms that analyze the 
learner’s input and change the system’s behavior in accordance 
with this ongoing analysis.  

• INTELLIGENT TUTORING: Developing systems that are 
able to cope with unanticipated or wrong input by users in an 
intelligent manner. The system must embody models of the 
learner’s knowledge, the problem-solving knowledge of domain 
experts and knowledge about teachers’ intervention strategies. 

• NATURAL-LANGUAGE PROCESSING: Enhancing the 
system’s ability to “understand” the input of learners by 
incorporating natural-language-processing mechanisms. 

Tertiary functions represent the most ambitious goals in designing 
learning environments, and it seems doubtful whether this 
approach will ever lead to practical solutions. This is why we 
made it our highest priority to implement the primary media 
functions, which allow collaborative solutions. Secondary 
functions are often regarded as playing a key role for a new 
generation of learning environments, such as computer-based 
training (CBT) or computer-aided instruction (CAI). However, 
implementing secondary functions generally culminates in 
supporting individual learning and so often runs counter to 
attempts to establish infrastructures that support collaborative 
learning. 

3.4 Product and Process 
In a formal system, each operation performed by a machine is 
determined by the form and arrangement of symbols in the input 
sequence, the machine storage being independent of what these 
symbols represent. Every software system, then, embodies a 
syntactic machine (product). In teaching and learning, however, 
signs and symbols have to be interpreted in terms of personal 
experience and knowledge, individual preferences and interests. 
The respective consequences become apparent through human 
actions (process). This sort of knowledge is therefore often 
described as tacit or implicit. Implementing different classes of 
media functions forces us to make more and more tacit/implicit 
knowledge explicit. In the case of tertiary media functions – and 
to some extent secondary media functions – the kind of 
knowledge involved is typically that possessed by teachers. The 
learner can proceed individually because the teacher’s functions 
are increasingly replaced by a machine that the learner can use 
anywhere, any time. Incidentally, the same holds true for 
traditional print media. The closer we come to the technical 
implementation of tertiary media functions, the greater the risk we 
run of trying to build a technical solution for a nontechnical 
problem − a hugely expensive undertaking.  

4. THE PADERBORN DEVELOPMENT 
The more we succeeded in solving the problems originally 
connected with the establishment and use of learning-supportive 
infrastructures in Paderborn, the more apparent became the 
direction the next development steps should take. Our orientation 
to the constructive use of media and the social embedding of 
learning increasingly revealed certain discontinuities in the use of 
media. Our distributed document management approach is a 
marked improvement on classical Web Publishing, but it still has 
its shortcomings: the volume of the teaching material and the 
access authorizations are determined by the teachers.  
This means that the learner’s scope is invariably confined to the 
content and access structures laid down by the respective teacher. 
The extent to which learners can arrange and structure the 
material to suit their own needs is therefore limited. They are not, 
then, able to establish their own learning environment, in which 
they could, for example, link documents from different courses or 
even different universities to match their own learning path and 
knowledge level. 
It is, of course, possible in principle to use all the material freely 
available in the Net in different contexts. However, to effectively 
utilize and manage such material, activities like copying, 
transforming or indexing are needed that can soon involve a great 
deal of effort. Also, such individually structured knowledge bases 
are an obstacle to cooperative processing and generation. It is the 
discontinuities in the use of media and shortcomings like this that 
we aim to avoid by using the sTeam approach, a sort of learning 
lab for studying new forms of distributed knowledge organization, 
implementing them to meet everyday practical requirements and 
providing the necessary tools for this purpose on an open-source 
basis. To this extent, sTeam is not a finished product, i.e. a 
learning tool, but is itself the object of a learning process that 
needs to be further developed cooperatively.  

5. sTeam – OUR PHILOSOPHY 
In its basic sense, distributed knowledge organization means the 
cooperative generation, management and maintenance of artifacts 
embodying knowledge. Artifacts represented by documents, 
graphics, notes and comments, and their linking by learners, thus 
form the basis of any method for supporting learning processes 
using suitable environments and tools. The temporal component 
of an interaction or communication between learners can be seen 
as another essential factor as well as the spatial differentiation of 
cooperation. Existing environments and approaches can in most 
cases be assigned either to the class of synchronous, i.e. 
temporally concurrent, systems (supporting one session), or to the 
class of asynchronous systems centering on a common location 
(see [5]). The sTeam approach focuses on integrating the learners' 
temporal and spatial differentiations. Asynchronous mechanisms 
for handling multimedia learning components or hypertexts, such 
as are frequently familiar from document management, are 
combined with strongly synchronous approaches from the area of 
session support. Such a synthesis allows new, less familiar, hybrid 
forms of asynchronous and synchronous cooperation between 
learners.  
Of the cooperation-supporting environments, Multi-User Object-
Oriented Environments (MOOs) and Multi-User Domains 
(MUDs) (see [3]) are basic architectures that have proved well 
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suited for bringing learners together in common learning and 
working areas.1 
Rooms are a key concept in all these approaches (see [10]). They 
are structured entities that can be dynamically linked together. 
The room structure enables positions to be defined for objects, 
representing people, documents, tools and services, that allow a 
knowledge space to be cooperatively established and, at the same 
time, responsibilities, rights or competences to be structurally 
mapped. To this extent, rooms constitute a key metaphor of virtual 
learning communities. Irrespective of the chosen representation of 
the room structure (two-dimensional, three-dimensional, as a tree 
structure or a textual description) the room is viewed as the 
meeting-point, “playground” and “lifeline” of a virtual 
community.  
The sTeam system combines the idea of a room-based virtual 
world with the basic functionalities of document management. 
Rooms function not only as a social meeting-point and center of a 
virtual learning community but also as a collective external 
memory, providing the primary media functions as a basis for 
cooperative learning. 
In the different virtual rooms, it is now possible to observe which 
cooperation partner is currently dealing with which documents 
and knowledge sources, provided this is explicitly permitted by 
the students. One use of such mechanisms is to create new forms 
of cooperative learning. During a seminar, for example, all the 
participants can be assembled in specific rooms and a “virtual 
ballot” conducted to evaluate specific documents. Another 
application is to set up a shared whiteboard that allows not only 
the students currently present in the room but also those hooked 
up externally to jointly process objects or to transfer elements of 
their desktop, graphics, references or entire documents to this 
synchronous work area, i.e. a work area that is simultaneously 
visible to all participants at a virtual location, using drag and drop 
functions. For instance, dragging a reference from a browser 
directly generates a link object in the room corresponding to the 
whiteboard. In the following section, we focus on the technical 
architecture of the sTeam environment; for a description of typical 
learning scenarios of the sTeam system, refer to [9]. 

6. THE TECHNICAL ARCHITECTURE  
To support the primary media functions within a cooperative 
learning environment, a specific web-based architecture is needed. 
It proved possible to continuously further develop such an 
architecture, through a series of different prototypes, culminating 
in an open, modern platform. The presented architecture reflects 
the current status of the Paderborn sTeam development and 
pursues a rigorous open-source approach. 
The sTeam architecture (cf. Figure 2) consists of the sTeam 
server, an external web server connected with the sTeam server 
and various clients. A standard Internet browser can also be used 
as a sTeam client to access most of the asynchronous 
functionality. Specific functionalities such as synchronous 
communication (chat) or cooperative applications are provided via 
Java clients. In early sTeam prototypes, the web server was 
                                                                 
1 Computer Science graduates Richard Bartle and Roy Trubshaw 

wrote the world’s first Multi-Dungeon (MUD) game while they 
were still students at the University of Essex, U.K., in the late 
1970s. 

integrated in the sTeam server proper. In the latest version, an 
external web server was coupled with the sTeam server. Here, the 
sTeam server acts as a sort of virtual file system for the web 
server. This type of architecture allows web accesses (requests) to 
be handled by the web server. The freely available Roxen web 
server2 currently in use is a modern web server supporting all 
essential features, e.g. different security facilities, Javascript and 
server-site Java.  
 

 

database 

LPC 

COALCOAL
COAL 

Web - interface Roxen 

sTeam core 

clients 

modules 

 
Figure 2: The sTeam architecture 

 
The sTeam server proper comprises the sTeam core server, a 
number of extension packages and an external SQL database used 
as an object repository. Extension packages can be easily 
integrated into the sTeam server. For instance, there is currently 
an initial extension package (sTeam module) providing a web 
front-end for access to sTeam functionality via a standard Internet 
browser.  
The architecture of the actual sTeam server was tailored to the 
needs of supporting cooperation processes. Human interaction in 
virtual space, awareness mechanisms and in particular the 
cooperative use of teaching material such as documents or 
arbitrary objects calls for a specialized management of objects, 
users and different events. 
In terms of its realization, the sTeam server is based on an 
implementation of the classes and object structure in the 
interpreter language LPC3. The freely available − subject to GNU 
Public Licence (GPL) − and widely used LPC Interpreter PIKE4 
serves as the runtime environment. Besides offering good 
performance, PIKE features a broad code basis and a large 
number of existing libraries that can be implemented in the 
programming language C. For instance, the PIKE database 
interface for coupling SQL databases and an HTML parser5 were 
used. 
The sTeam system is completely object-oriented. Internally, the 
sTeam environment maps both users and documents − and rooms  
− as specific variants of objects. These have particular attributes 

                                                                 
2 cf. http://www.roxen.com 
3 LPC is a C-style interpreted programming language developed 

by Lars Pensjö for LP-MUD. 
4 cf. http://pike-community.org/ 
5 cf. http://www.gingerall.com 
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or content, e.g. the document types. Interaction between objects 
takes place via mutual method calls or events. This is an extension 
of the well-known concepts from the MUDs family, or more 
specifically their object-oriented relations, the MOOs (“Mud 
Object Oriented”). 

6.1 sTeam Class Structure 
To illustrate the specific features of the server architecture, the 
classes and object structure are shown in simplified form, along 
with their basic object types, e.g. “object”, “container”, “user”, 
“group” and “document” (cf. Figure 3). In a second step, the event 
system as well as the sTeam server’s access rights model is 
sketched. 
The sTeam class structure consists of the basic components 
“object”, “container”, “user”, “group” and “document”. All 
classes are derived from the basic class “object”. It is therefore 
imperative that an sTeam object be derived within the 
environment of “object” to maintain elementary system security. 
 

 object object container container 

Room room document document 
group group 

User User 

link link  
Figure 3: The sTeam class structure 

 
Object: An “object” constitutes the basis of every element of the 
sTeam environment. Essential features here are object persistence, 
an unequivocal Object ID, available methods, events that can be 
linked with objects, and a number of possible attributes (these can 
be specified or re-registered when instantiating objects). Objects 
are persistently administered in the sTeam database. The − for the 
server − unequivocal object ID serves as a primary key to definite 
identification. 
Objects within the sTeam environment have an unambiguous 
environment, which we shall henceforth simply term 
“environment”. This is intended to create an object structure, 
every object existing at precisely one point within the sTeam 
system. (Such a structure forms a tree and has its root in the 
sTeam-root-room). 
Container: One of the simplest variants (derivations) of an object 
is doubtless the sTeam container. It is used for the logical 
encapsulation of objects. In accordance with the object-oriented 
philosophy, a container can hold other objects. To this extent, the 
internal object representation is implemented analogously to a 
semantic grouping of materials (documents, graphics) in 
containers. Similarly, a user’s rucksack, in which materials can be 
carried around and exchanged with other users, is realized by the 
object representation as a container. Direct results of this feature 
are the fairly universal characteristics of containers within the 
sTeam environment, such as the grouping of arbitrary objects. 
This basic MUD feature enables a room to be implemented as a 
specific variant of a container. A room groups materials, 
documents, graphics and tools, i.e. all sTeam objects, as well as 

users. The only other feature are special methods for 
communicating within the room. Connections between rooms are 
implemented as sTeam objects, for whose use special rights are 
needed. Using an exit or entering another room, then, presupposes 
the authorization to use − “execute” − a room object. 
User: There exists precisely one user object for each user within 
the sTeam environment. This user object is located within a 
specific room, depending on the “position” of the user. 
Communication between the real user, who has logged into the 
sTeam system via a client, and the user object is implemented by 
means of a communication object attached to the user object. 
(Since users can be connected to the sTeam system via several 
clients simultaneously, they can be in possession of several 
communication objects at the same time.) As can be seen in the 
class structure, the user object is inherited from the class 
container. It extends the class container with different attributes 
and methods. And, as a feature derived from the container’s class, 
it may also contain different objects. (This means that users’ 
rucksacks − their “inventories” − enable them to take “objects” (to 
use MUD terminology) with them.  
Special user attributes are, for instance, a user’s name, access 
password, etc. These are administered as attributes in the 
corresponding user object. As with MUDs, the chosen user name 
should be unequivocal, serving as it does to access, to address the 
user object within the sTeam environment. Communication 
between users within a room is realized by means of events. As in 
the case of an MUD, a user’s chat message (in an MUD, the “say” 
command) triggers an event within a room (“user X says: text”), 
which is processed by the recipients of the event. Various 
awareness mechanisms − in the simplest case, a list of the current 
visitors to the room − notify users about who is taking part in a 
discussion or cooperative session. 
Group: A group encapsulates a number of users. The class 
“group” is directly derived from the class “object” and has a 
similar status to that of a user. User groups may contain other 
groups and other users.  
This makes it possible to build a hierarchy of groups and users. 
Document: All interactions within the sTeam environment are 
based essentially on generating, manipulating and exchanging 
sTeam objects. Like the primary media functions, objects serve as 
a basis for learners’ potential artifacts. Unlike a conventional 
object, a document is characterized by the fact that it has content. 
This comprises the data of any file stored in the database, e.g. a 
graphic or word-processing document, or the content of a web 
document. Different document types are distinguished by a MIME 
type stored within an attribute – no specific document objects are 
needed, then, for different types of learning materials or 
application objects introduced to the sTeam system. The only 
exception here is the management of hypertext documents. The 
object type “document” is derived from a container’s basic class, 
thus being able to encapsulate different objects. Such a 
mechanism enables, say, potential user annotations or comments 
on documents to be to be stored simply and neatly – they are 
stored in the environment of the respective object. Technologies 
such as version management or multilinguality of documents will 
in future be realizable using mechanisms of this sort. 
Strictly separating an object, its attributes and its actual content in 
this way allows flexibility in the handling of document content. 
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Current sTeam system prototypes store the document content in 
the connected relational database. Another conceivable way of 
storing document content, keeping the effort involved at a 
reasonable level, would be to use special multimedia databases or 
even simple file systems.  
Separating the document object itself from its content also allows 
documents to be simply and efficiently managed within sTeam 
rooms. Only actual accessing of document content by the user 
(e.g. through an upload or download) causes the respective 
document content to be loaded from the database.  
Special rules apply to the handling of various types of hypertext 
documents such as HTML or XML6. These can contain links to 
external documents (URLs) in the document (i.e. in the object 
content). To avoid inconsistencies when inserting such documents 
in the sTeam environment or when subsequently shifting 
documents, links are to be handled separately. In the current 
implementation, a parsing of the HTML documents takes place 
and links are extracted and replaced by links that are unequivocal 
in the sTeam environment. (This replacement is carried out, when 
inserting document content into or reading it out from the 
database, by overwriting the corresponding functions in the 
object.) 

6.2 Factories – Selective Generation of sTeam 
Objects 
If new instances of objects are generated, this is done using so-
called factories available for each object type. Every class has an 
assigned object with a function for providing instances of the 
class. The idea of having a definite location for generating new 
objects has a number of advantages. For one, objects can be 
updated at runtime – a feature that few systems offer and one 
which underlines sTeam’s claim to be a flexible, user-extendable 
system. Here, factories administer the instances of objects at 
runtime, updating them, among other things. This enables 
attributes or methods to be added to existing classes without 
having to restart the sTeam server. Living instances of the relevant 
object type are updated.  
A second advantage is that attributes are registered to objects 
within the factory. Such a mechanism enables clients to register 
new attributes to existing objects or even new object types and 
implement specific required features without modifying the sTeam 
core server. For instance, if a specific client needs an attribute of 
the local distance of people from a table – perhaps to represent 
some sort of seating arrangement, the client in question can 
register this new attribute at the factory of the class room and 
thenceforth use it.  
Finally, the idea of special objects that generate instances of a 
class allows security to be extended to the object and class 
structure of the sTeam server. Only authorized users or user 
groups are able to generate instances of a class and thus 
permanently modify the system. No security check is made, then, 
at the level of the user interface, sTeam having a thoroughly 
uniform security concept, right down to the generation of 
individual objects. Factories are thus basic prerequisites for 
building a cooperative application at runtime and for extension of 
the environment by the users themselves. The idea of self-
                                                                 
6 For information on the Extensible Markup Language (XML), cf. 

http://www.w3.org/XML/ 

administration, i.e. granting system users the right to administer, 
restructure and extend the environment, is based originally on this 
sort of protected object instantiation. 

6.3 The sTeam Event System 
As with MUDs, the sTeam server is event-driven. Events play a 
prominent role in the design of the sTeam system’s overall 
architecture. Nearly all communication between objects within the 
sTeam system is done through events, e.g. “a user addresses the 
room”. Inside the sTeam core server, such events are processed in 
the order they occur and forwarded to affected objects. 
The sTeam environment is based on a flexible event system. 
Events are triggered by arbitrary objects and can be processed by 
other objects. A whole series of events have already been defined, 
and adding new events is an easy matter. Events may have a 
limited range, e.g. be transmitted to only a limited number of 
objects, the subscribers to the event (e.g. all users in the room) or 
globally address all objects in the environment. All the sTeam 
server’s internal structures are event-driven. For instance, the 
module security, sTeam’s key security system, subscribes to all 
global events and, after a required security check, forwards them 
to the relevant objects. sTeam’s whole authorization system is 
based on this mechanism.  
The ability to generate new tools or document types shows just 
how powerful sTeam’s event system is. Cooperative applications 
such as a shared whiteboard (a cooperative synchronous drawing 
area on which the users of a room can make drawings or diagrams 
or deposit documents) can be easily integrated into the sTeam 
environment using a powerful event system of this sort. To do so, 
a new shared whiteboard object is generated in the room (e.g. 
derived from a container) which − functioning, so to speak, as the 
common external memory of the room’s users − manages the 
cooperatively administered drawings and documents. At the same 
time, special methods are provided enabling the data to be 
accessed inside the shared whiteboard container. If a user now 
accesses the database via a special client that suitably edits the 
whiteboard content (e.g. by drawing a new element in the drawing 
area), these state changes are passed on via events to all 
subscribers, i.e. those clients (objects) participating in the 
whiteboard session. Essential characteristics of cooperative 
applications of this sort are a common persistent data space and 
the propagation of events to the relevant participants in a 
cooperative session. 
Other, less complex tasks can also be performed using the sTeam 
event concept. For instance, a simple protocol tool for recording 
chat conversations in a room can be easily implemented using a 
container object that subscribes to the relevant communication 
events of a discussion’s participants. 
The sTeam event concept is rigorously implemented right up to 
the client level. Like any server objects, clients can process 
events, call server functions and thus trigger events. For this 
purpose, a special COAL-based (COAL = Client Object Access 
Layer)7 server API was designed that forwards events via so-
called sTeam connectors to the Java client. This enables a 
completely object-oriented representation of server objects within 
the sTeam clients. Benefits of object-oriented design that are often 

                                                                 
7 The acronym COAL was also chosen because a sTeam engine cannot 

function without coal! 
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attributed to pure Java client-server solutions are thus integrated 
in the hybrid sTeam architecture.  

6.4 sTeam Access Rights Model 
Multi-user systems such as operating systems traditionally make 
access rights to a file dependent on ownership conditions and 
membership of a specific user group (cf. the UNIX operating 
system in which access rights to a file can be specified for the 
user, the user group and other system users by three access-right 
attributes only.) These rights are evaluated according to a user’s 
membership of specific groups. The classical model for assigning 
access rights of users and groups to objects is the Access Control 
List (ACL) according to Lampson. [14]. For every single sTeam 
object, the users and groups are defined in an ACL along with 
their respective access rights: read, write, delete, delegate rights 
to others (sanctioning). Sanctioning is an extension of 
administration rights as proposed by Satyanarayanan [18]. This 
right allows the explicit modification of an ACL (in the case of 
our system, the ACL of a directory) and is thus an important first 
step toward decentralized administration. The sTeam system 
extends the right to administer an object, i.e. to modify access 
rights (sanctioning), by adding the option of delegating 
responsibility for an object. This delegation option for objects is 
taken from access-right models in drafts for relational databases. 
A formal model for the delegation of access rights to database 
tables was already drawn up by Griffiths and Wade [8]. (The 
creator of a table can delegate administration rights to other 
users.)  
A meaningful and widely used strategy for administering access 
rights is to tie such rights primarily to user groups. With this 
approach, access rights are tied to the relevant user groups and 
only rarely granted to individual users. (Thus, most ACLs for a 
particular object list user groups only). The objective is to keep 
track of who has access to specific objects by granting as few 
rights as possible. 

Such an approach implies that in many cases it will be difficult − 
if not impossible − to express a specific state of affairs in terms of 
purely positive rights. For instance, if an individual user is to be 
denied access to a particular object, the above approach would 
appear to necessitate removing the user from the group granted 
the access right in question and explicitly redefining all other 
access rights relating to that group − certainly a lot of effort to 
express the simple situation “person X is not allowed to access 
object Y”. One solution here would be to use exclusive access 
rights – so-called negative rights that explicitly exclude users or 
user groups from a particular access right. Unlike some database 
systems, the sTeam system currently uses a model in which 
negative rights are only admissible for individual users, not for 
whole groups of users. While such an approach admittedly 
restricts somewhat the scope and powerfulness of the negative-
rights model, it makes it easier to keep track of granted access 
rights and interpret them unequivocally in cases of conflict.  
In daily life, authorizations and rights are dynamic, but at the 
same time shaped by social laws and norms. We take it, then, as a 
matter of course that, when being passed from one person to 
another, materials adapt their status in a number of ways to the 
respective use context, the actors involved or the place in 
question. For instance, a set of test questions changes its status 
from that of a highly confidential object accessible only to the 
teacher, before the test, to a freely available document that can be 

publicly discussed and commented on, after the test. Especially in 
cooperative teaching and learning processes, it would appear 
essential to dispense with a strict assignment of access rights to 
documents. 
Certainly the simplest example of access rights to documents and 
materials is the above-described assignment of rights to users or 
user groups. If access rights are granted to a user group as a 
whole, all members of the group, and all members of its 
subgroups, acquire those rights.  
Such a mechanism can be used to map access rights resulting from 
a user’s social status, i.e. his/her permanent membership of a user 
group, but also dynamic processes such as the allocation of roles. 
For instance, if a participant in a discussion is appointed 
moderator and admitted to a corresponding group, he/she 
automatically acquires the access rights to documents and 
materials, or to the discussion environment, that go with this 
appointment.  
Besides the characteristics of the access-rights model described 
here, sTeam allows such rights to be derived from the 
environment of an object or from a fixed object (e.g. the room). 
Rights can also be granted to groups as a whole, e.g. to enable 
groups of administrators to be set up. These options are not 
elaborated on here.  

6.5 sTeam Clients  
The sTeam clients constitute the real use interface to the sTeam 
system. At an appropriate point in the development process,  
implementation focused first on designing a powerful server and 
enhancing the required server interfaces. This resulted in a 
corresponding Java API and a number of experimental Java 
clients. One of the key design decisions with respect to the sTeam 
client-server architecture was to make the client-server interface 
as universal as possible, thus allowing server and clients to be 
largely decoupled in terms of enhancement. One of the essential 
characteristics, then, is the lean client-server interface. Thus the 
only commands provided by COAL are for logging a client on to 
and off from the server and for up- and downloading files, as well 
as a universal function for calling methods of objects in the 
server.  
For each server object, a corresponding Java object can be 
replicated in the sTeam clients. The sTeam clients simply work 
with these replicated cooperative objects (methods and attributes). 
The access to attributes and methods within the corresponding 
server objects is mapped onto the server by the COAL interface. 
This process takes place transparently for the programmer of the 
client application. 
Events are thus subscribed to by the clients and transferred to 
them from the server. To give a concrete example: to implement a 
chat in a client, so-called chat listeners can be attached to the 
corresponding user objects which, on receipt of a chat message, 
call an appropriate function to display the chat message. 
In this way, an sTeam client generates its own personal view of 
objects in the server. The sTeam structure, consisting of persistent 
objects and their attributes linked by events, is rigorously 
implemented right up to the clients.  
To this extent, the external Roxen web server connected to the 
sTeam server works like an sTeam client. Accesses to the web 
server (requests) are interpreted and converted into corresponding 
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sTeam object requests. The sTeam server controls the 
authentification/authorization of Net accesses (requests), manages 
the presented content from requested websites and simulates a 
structure of URL addresses. Similarly, the uploading and 
downloading of documents generates events in the server. The 
universal nature of the COAL interface means that no special 
interfaces are needed to attach the web server to the sTeam server. 

6.6 Structure of Objects Within the sTeam 
Environment – ORB: Object Request Broker 
All learning materials like documents and graphics − but also the 
sTeam users themselves − are represented in the server as sTeam 
objects. Some sort of basic order in this free structure is provided 
by sTeam rooms and containers which serve to encapsulate 
documents and users. In this way, materials and persons can be 
assigned an unequivocal position within a virtual world. The so-
called “root” room forms the basis of a hierarchy of rooms and 
containers. Rooms are generally connected to other rooms by 
links and are subrooms of a parent room or of the root room. 
Architecturally, this means that each object has a definite 
environment from which attributes, for example, can be inherited. 
Various situations occur in which the sTeam structure of rooms 
and documents must be searched or transformed. For instance, if 
documents are transferred to the server via a file-system-oriented 
protocol like FTP, a completely different structure must be 
mapped than, say, in the case of a search request for objects in the 
server. 
The task of viewing the sTeam structure from different angles and 
perspectives is performed by the sTeam ORBs (Object Request 
Brokers). 
An ORB is used to access the sTeam object structure. There are 
currently three different ORBs: one simply assigning sTeam 
objects an unequivocal ID − used, for instance, in object searches; 
one enabling an sTeam object to be accessed via a URL 
represented by a name, as typically used on standard web servers 
(here, arbitrary sTeam objects can be assigned a URL attribute 
that represents a sort of alias for accessing a particular document 
via a WWW client); and a special ORB managing the mapping of 
the sTeam structure by means of a hierarchy of rooms, containers 
and objects (here, each object has a definite environment). 
Only the first ORB, assigning objects an unequivocal ID, can 
access all objects in the server. The hierarchical room structure 
and the identification via name URLs only map part of the server 
structure in each case. 

7. RELATED WORK 
A comprehensive treatment of the sTeam approach in relation to 
other research work in the area of Computer-Supported 
Cooperative Learning is beyond the scope of this paper. Engelbart 
and English [6] were definitely among the first to address the idea 
of computer-supported group work with their “augmention 
system” research on supporting human skills by computer 
technology. There are a whole series of approaches resembling the 
sTeam architecture in specific features (see [1], [2], [15], [17]), 
but none of them offers the sort of open and flexible object/event 
structure that the sTeam approach does. The GMD, for example, 
is developing the COAST platform [19] and its purely Java-based 
successor DyCE for designing Net-based cooperative 
applications. A characteristic feature of DyCE is its replicated 

system architecture consisting of cooperative Java objects. Here, 
though, the developers were not primarily concerned with 
learners’ self-administration and the idea of fusing 
communication and document-management mechanisms. The idea 
of developing an environment for cooperative work based on 
MUD architectural concepts has already been tried out by the 
MITRE Corporation8 with its CVE environment. Unfortunately, 
CVE’s room structure is quite rigid and it provides only weak 
mechanisms for the distributed administration of rooms.  

8. CONCLUSIONS 
The sTeam’s cooperative learning approach aims to provide 
primary media functions from the learners' perspective. In the 
sTeam concept, rooms offer users considerable scope for self-
administration. Ideally, the participants in a virtual learning 
community design their own learning environment. This process 
begins with the creation of a virtual room and involves the 
processing of objects such as documents, graphics and slides as 
well as the selection of cooperative tools that are available 
throughout the learning process. 
However, the solutions presented in the sTeam approach are not 
meant to compete with advanced technological solutions for 
individual applications. Providing solutions for practical everyday 
use − an objective calling for the integration of different tools and 
environments into a sustainable infrastructure − is a research goal 
in itself. It is not sufficient that technology work in principle; it 
must work on a practical, everyday basis − a requirement that has 
certainly been responsible for the spread of World Wide Web and 
its fundamental success over the past ten years. Similar efforts and 
quality standards must be applied in the future to the further 
development of cooperative teaching and learning environments. 
This paper attempts to bridge the gap between our underlying 
theoretical ideas and our practical implementation of an open and 
flexible client-server structure. It focuses not on reading and 
browsing in the Net, but on cooperatively building and 
maintaining distributed knowledge structures. The desire to create 
a learning environment by learners for learners is what drives the 
sTeam research. It is in this spirit, then, that we hope to find new 
impetus and support, especially from proponents of the open-
source idea, in our efforts to develop a free and flexible computer-
supported cooperative learning platform. The rigorous application 
of open standards, e.g. providing comprehensive support for XML 
documents or developing powerful, interactive Java clients, will 
constitute an important challenge in the near term.  
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