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ABSTRACT
Integrity constraints are an essential part of modern schema
de�nition languages. They are useful for semantic speci�ca-
tion, update consistency control, query optimization, infor-
mation preservation, etc. In this paper, we propose UCM, a
model of integrity constraints for XML that is both simple
and expressive.
Because it relies on a single notion of keys and foreign

keys, the UCM model is easy to use and makes formal rea-
soning possible. Because it relies on a powerful type system,
the UCM model is expressive, capturing in a single frame-
work the constraints found in relational databases, object-
oriented schemas and XML DTDs. We study the problem
of consistency of UCM constraints, the interaction between
constraints and subtyping, and algorithms for implementing
these constraints.

Keywords
XML, XML Schema, Integrity Constraints, Keys, Object
Identity, Subtyping, Constraint Reasoning

1. INTRODUCTION
XML has become the universal format for the representa-

tion and exchange of information over the Internet. In many
applications, XML data is generated from legacy reposito-
ries (relational or object databases, proprietary �le formats,
etc.), or exported to a target application (Java applets, doc-
ument management systems, etc.). In this context, integrity
constraints play an essential role in preserving the original
information and semantics of data. The choice of a con-
straint language is a sensitive one, where the main challenge
is to �nd an optimal trade-o� between expressive power
(How many di�erent kinds of constraints can be expressed?)
and simplicity (Can one reason about these constraints and
their properties? Can they be implemented eÆciently?).
The ID/IDREF mechanism of XML DTDs [3] (Document
Type De�nitions) is too weak in terms of expressive power.
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On the other hand, XML Schema [17] features a very pow-
erful mechanism with three di�erent forms of constraints,
using full XPath expressions, and therefore the reasoning
and implementation of XML Schema constraints has a high
complexity.
In this paper, we introduce UCM, a model of integrity

constraints for XML. UCM relies on a single notion of keys
and foreign keys, using a limited form of XPath expressions.
The main idea behind UCM is a tight coupling of the in-
tegrity constraints with the schema language. This results
in a model which is both simple and expressive enough to
support the classes of constraints that are most common in
practice. UCM constraints are easy to manipulate in the-
ory: we study the consistency of UCM schemas and how
their constraints interact with subtyping. UCM constraints
are easy to manipulate in practice: we illustrate their use
with a number of examples and give simple algorithms for
their implementation. In particular, we make the following
technical contributions:

� We extend the type system of [13], along with the sub-
typing mechanism of [15], with a notion of keys and
foreign keys. This constitutes UCM, a schema lan-
guage for XML with integrity constraints.

� We show that UCM schemas can capture relational
constraints, object-oriented models (with object iden-
tity and scoped references), and the ID/IDREF mech-
anism of DTDs.

� We show that, as for XML Schema, deciding consis-
tency over full UCM schemas is a hard problem. We
then propose a practical restriction over UCM schemas
that guarantees consistency. This restriction is general
enough to cover both the relational and object-oriented
cases.

� We propose an algorithm for propagating constraints
through subtyping. This mechanism is the basis for
supporting the notion of object-identity of object mod-
els within UCM schemas.

� We present algorithms for schema validation in the
presence of UCM constraints

The paper is organized as follows. Section 2 illustrates
the issues involved through examples from relational, OO
and XML data sources. Section 3 presents the UCM con-
straint model by means of examples, showing how to repre-
sent DTDs, relational and ODMG schemas. Section 4 gives
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the complete syntax and semantics of UCM schemas. Sec-
tion 5 considers the formal properties of the model, notably
the consistency of UCM schemas with constraints and the
interaction between subtyping and constraints. Section 6
describes some basic algorithms for using UCM constraints,
illustrating the feasibility of the approach. Section 7 con-
cludes the paper and outlines future research directions.

2. INTEGRITY CONSTRAINTS IN EXIST-
ING MODELS

The need to handle integrity constraints originating in
a variety of di�erent application domains imposes strong
requirements on the expressive power of the model. To give
a 
avor of the various types of constraints that one needs to
capture, we give examples of integrity constraints in some
of the most popular data models, namely relational, object-
oriented schemas and DTDs.

Capturing constraints from legacy sources
Example 2.1. Our �rst example is a relational database

with two tables, one for companies and one for the depart-
ments in the companies, whose schema is de�ned with the
following SQL statements.

CREATE TABLE Company ( co CHAR(20),
stock REAL,

PRIMARY KEY (co) )
CREATE TABLE Dept ( dname CHAR(20),

co CHAR(20),
topic CHAR(100),
PRIMARY KEY (dname,co),
FOREIGN KEY (co)

REFERENCES Company(co) )

INSERT INTO Company ( co, stock )
VALUES( "Locent", 25;

"IT&T", 25;
"Maxihard", 25 )

INSERT INTO Dept ( dname, co, topic )
VALUES( "11358", "Locent", "Databases";

"11279", "Locent", "Languages";
"11358", "IT&T", "Visualization" )

Note that each table comes with a structural speci�cation,
as well as with integrity constraints. The speci�cation of
keys and foreign keys is an essential part of a relational
schema: they prevent erroneous updates, and are used for
the choice of indices and for query optimization [16]. In the
above schema, the name of the company (attribute co) is a
key for the table Company, i.e., each row must have a distinct
value for attribute co. Hence, the name of the company can
be used to identify the company. A foreign key imposes
the requirement that values of a particular (sequence of)
attribute(s) in one relation must match the values of some
(sequence of) attribute(s) in another relation. For instance,
the co attribute of the table Dept must be a valid company
name in the table Company. Foreign keys provide the means
to represent references within the relational model. �

Example 2.2. The same information can be represented
in an object database using the following schema, written
using the ODMG data de�nition language [6]:

class Company

(key co)
{ attribute String co;

attribute Float stock; }

class Dept
(key (dname,co))

{ attribute String dname;
attribute Company co;
attribute String topic; }

�

In the ODMG model, every object has an identi�er (Oid),
which is unique across the whole database. This is a signif-
icant departure from the relational model, where keys are
local to a table: in the above example, objects of class Dept
and Company must all have distinct Oids. Oids can be used
as a reference to the object. For instance, attribute co of
class Dept is a reference to an object of class Company. The
ODMG model also supports a notion of a local key (e.g.,
attribute co for the class Company).
It is important to note that in the context of information

integration, both of these models, along with XML docu-
ments exported from other sources, may occur in a single
XML database. For instance, some tables in a relational
form may coexist with objects. This means that the con-
straint model must deal with several di�erent sorts of con-
straints in the same framework, and therefore that the re-
sults presented in [12] are not directly applicable.

Reasoning with XML constraints
Integrity constraints have been extensively studied in the
relational database context [1, 16], which is a much simpler
model than XML. Despite this, the experience with the re-
lational mode shows that reasoning about constraints is a
non-trivial task. Simple constraint languages can have high
complexity, the best-known example of this being the unde-
cidability of implication for functional and inclusion depen-
dencies (the most widely used relational constraints).
For DTDs, determining whether a speci�cation is consis-

tent or not requires a complex analysis of the interaction
between structural constraints, keys, and foreign key con-
straints [11]. A number of restricted cases with good com-
plexity properties are proposed in [12], but none of the cor-
responding languages can capture all of the above uses of
constraints in the same framework.
Following ideas in [11], one can easily de�ne non-consistent

XML Schema speci�cations. For instance, consider the fol-
lowing schema describing people and their parents.

<element name="root">
<complexType>

<xsd:group ref="Person" minOccurs="0"
maxOccurs="unbounded"/>

</complexType>

<key name="personName">
<selector xpath="//person"/>
<field xpath="@name"/>

</key>
<key name="parentName">

<selector xpath="//parent"/>
<field xpath="@name"/>

</key>
<keyref name="parent_isa_person" refer="personName">

<selector xpath="//parent"/>
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<field xpath="@name"/>
</keyref>

</element>

<group name="Person">
<element name="person">

<complexType><attribute name="name" type="string">
<element name="parent" ref="Parent">
<element name="parent" ref="Parent">

</complexType>
</element>

<group>
<group name="Parent">

<element name="person">
<complexType><attribute name="name" type="string">
</complexType>

</element>
<group>

Each person has two parents and an attribute name, and
each parent has a pointer back to itself as a Person, which is
described as a foreign key. This seemingly simple schema is
actually inconsistent: there are no (non empty) documents
that comply with it. The reason is that the key on Parent

requires that each such object be uniquely identi�ed by its
name, and point to a Person with a di�erent name. This
means that the number of objects of type Parent is less than
the number of objects of type Person, whereas the de�nition
of Person implies that the number of objects of type Parent
is at least twice the number of type Person.
The problem is made even harder by the fact that XML

Schema [17] provides three di�erent constraint mechanisms:
ID/IDREF, unique constraints, and keys/foreign keys. Fur-
thermore, it allows speci�cations using full XPath expres-
sions, which include upward navigation as well as some form
of recursion and function calls, each of these mechanisms
having been introduced to simulate some of the constraints
found in traditional models. As a result of this, even rea-
soning about consistency for these constraints is very hard.

3. UCM BY EXAMPLES

3.1 XML algebra support
The UCM model relies on the XML algebra of [13] for the

structural part of the schema language and for the semantics
of integrity constraints. This algebra uses a type system that
is similar to other proposals [2, 8, 14] and that captures the
structural aspects of XML schema [17]. In this section, we
review those features of the algebra that we use, and extend
the algebra to support ID values.
Documents and types

The XML algebra uses a \square brackets" notation for
types and documents. For instance, the following XML doc-
ument and DTD:

<companies>
<company co="Locent">

<stock>25</stock>
</company>

<company co="IT&T">
<stock>25</stock>

</company>
</companies>

<!ELEMENT companies company*>

<!ELEMENT company stock>

<!ATTLIST company co #PCDATA #required>

<!ELEMENT stock #PCDATA>

are represented in the algebra as:

type Companies = companies [ Company* ]

type Company = company [ @co [ String ],
stock [ String ] ]

let doc0 : Companies =
companies [ company [ @co [ "Locent" ],

stock [ "25" ] ],

company [ @co [ "IT&T" ],
stock [ "25" ] ] ]

The notation doc0:Companies indicates that document doc0
is of type Companies. A tag pre�xed by @ corresponds to
an attribute. The type system uses regular expressions, as
in DTDs, with a * to indicate a collection of elements. ~
is a wildcard, meaning that any element name is allowed.
Similarly, @~ means that any attribute name is allowed.

Path expressions and for loops

The XML algebra uses path expressions for navigating
in documents and for loops for iterating over them. The
following expression accesses the content of the co attribute
of each company:

query doc0/company/@co/data()

==> [ "Locent", "IT&T" ]

: String*

The algebra supports a type inference algorithm which com-
putes the type of each expression. In the examples, `==>'
indicates the value of the expression and `:' its type (here
a collection of String values). The ./data() notation is
used to access the atomic value of an element, playing a role
similar to that of ./text() in XPath.
The following for loop iterates over each company in the

document, thus constructing a collection of elements, each
of which has a tag k and contains the name of a company.
Note that for loops can be used to express joins.

query for v in children(doc0) do
k [ v/@co/data() ]

==> k [ "Locent" ], k [ "IT&T" ]

: (k [ String ])*

Representing and accessing ID types

In order to support DTDs, we need to represent the type
of an object ID, a notion that is not in the XML algebra.
To do this, we simply add a new data type, with name ID,
and provide a syntax for values of this type. The following
example adds an attribute compid of type ID to the previous
schema and document:

type Companies' = companies [ Company'* ]
type Company' = company [ @compid [ ID ],

@co [ String ],
stock [ String ] ]

let doc0' : Companies' =
companies [ company [ @compid [ ^c1 ],

@co [ "Locent" ],

stock [ "25" ] ],
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company [ @compid [ ^c2 ],

@co [ "IT&T" ],
stock [ "25" ] ] ]

We indicate values of type ID by using identi�ers pre�xed by
^. In a similar way to the use of ./data() for other atomic
values, ID values can be accessed using ./ID(), which selects
all children with type ID. For instance, the following expres-
sion retrieves all ID values from companies, from within any
attribute.

query doc0/company/@~/ID()

==> ^c1, ^c2
: ID*

An important di�erence between UCM and XML schema
is that the semantics of the ID type in UCM is no di�erent
from the semantics of any other data type: we shall see later
how the uniqueness of ID values is enforced by an appropri-
ate key constraint, and how referential integrity is enforced
by an appropriate foreign key constraint.

3.2 Keys and foreign keys in UCM
We are now ready to write our �rst UCM constraints.

The following description captures the structural part of the
relational database we saw in the introduction:

schema rel =

root Companies,Depts

type Companies = companies [ Company* ]
type Company = company [ co [ String ],

stock [ Decimal ] ]
type Depts = depts [ Dept* ]

type Dept = dept [ dname [ String ],
co [ String ],
topic [ String ] ]

Note that each UCM schema has a root described by a type
expression, in this example a sequence composed of the two
tables. In order to represent the corresponding integrity
constraints, we just have to declare appropriate keys and
foreign keys:

key Company [| ./co/data() |]
key Dept [| ./dname/data(), ./co/data() |]

foreign key Dept [| ./co/data() |]
references Company [| ./co/data() |]

end

The �rst declaration corresponds to table Company's pri-
mary key. UCM constraints are similar in syntax and spirit
to relational constraints. They are composed of a type name
and a sequence of path expressions starting at the current
node (.). Here, the key constraint states that for any two
distinct objects of type Company their co sub-elements must
have two di�erent values. The foreign key states that any
value of the co element in an object of type Dept is also the
value of the co element in some object of type Company.
As a convenience, we allow keys to be named. For in-

stance, the previous constraints could also be written as:

key compk = Company [| ./co/data() |]

key deptk = Dept [| ./dname/data(),

./co/data() |]

foreign key Dept [| ./co/data() |]
references compk

But as opposed to XML Schema, UCM foreign keys do not
have to refer to an explicitly declared key. We will see later
on examples where it is useful to de�ne foreign keys whose
right-hand side is not declared, but can be inferred by the
system.
As opposed to other approaches [4, 5], and especially XML

Schema [17], UCM keys and foreign keys are de�ned over
type names. The �rst argument for this choice is a logical
one: type names play a role similar to table names in the
relational model or to class names in object models. This
makes them natural entities on which to add additional se-
mantics by means of integrity constraints. The second ar-
gument is technical: (1) this approach takes advantage of
the expressive power of the type system to de�ne the set
of elements on which a constraint applies, and (2) a mini-
mal subset of XPath is then suÆcient for the de�nition of
components for keys and foreign keys.

3.3 Interaction between types and constraints
XML has a much more 
exible type system than the re-

lational model. Very often, XML documents have optional
components, alternative structures, or allow repetition over
certain sub-elements. Assume for instance, that companies
and departments may have several alternative names (in at-
tribute @co and @dname, as well as element co):

schema
root companies [ Company* ], dept [ Dept* ]

type Company = company [ @co [ String* ],
stock [ String ] ]

type Dept = dept [ @dname [ String* ],
co [ String* ] ]

let doc0 : Companies =
companies [ company [ @co [ "Locent",

"Locent Corp.",
"Lo. Corp." ],

stock [ "25" ] ],
company [ @co [ "IT&T",

"IT&T Corp." ],
stock [ "25" ] ] ]

dept [ @dname [ "Databases",
"BL1135" ],

co [ "Locent" ] ]

key Company [| ./@co/data() |]
key Dept [| ./@dname/data(), ./co/data() |]

foreign key Dept [| ./co/data() |]
references Company [| ./@co/data() |]

end

We still want to be able to identify speci�c companies or
departments, even though each of them may declare several
variations of their name. The semantics of UCM constraints
is such that any one of the values of attribute @co is con-
sidered to be a key for the company, and any pair of val-
ues (@dname,co) is a key for the department. For example,
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"Locent" and "Locent Corp." are both keys for Company,
while ("Databases","Locent") and ("BL1135","Locent")
are both keys for Dept. In the latter case, the foreign key
then says that "Locent" must be one of the keys for some
element of type Company.
One can exploit the typing of the XML algebra to better

understand the structure allowed in elements of a key. In
this example, the key for Company has a unique element de-
�ned by the path ./@co/data(). The type of information
reached from Company through this path is String*, indicat-
ing several values, each of which will identify the company.
The static typing of the XML Algebra can be used to en-
force that components of a key are unique and not empty,
although this restriction is not required for UCM constraints
to work.
One must be more careful with foreign keys, for which it

is important to check that the types of their components
are type-compatible. In this example the type of each co
element of Dept and of each @co attribute of Company are
both String, so the key is valid. If, on the other hand, Dept
had been declared as

type Dept = dept [ @dname [ String ],
co [ Integer ] ]

then

foreign key Dept [| ./co/data() |]
references Company [| ./@co/data() |]

would not be valid due to an incompatibility between the
types of the corresponding keys.

3.4 The UrSchema with ID types
It is not surprising that one can capture relational con-

straints with a notion of keys and foreign keys. More sur-
prising is the fact that UCM schemas can capture the se-
mantics of the ID/IDREF mechanism. Once again, this is
possible by exploiting the expressive power of the schema
language, using a generic schema and imposing the appro-
priate constraints on values of type ID. This schema, called
the UrSchema, describes all possible documents, enforcing
uniqueness of ID, and referential integrity.

schema UrSchema =
(* atomic types *)

type UrScalar = String|Integer|Boolean

(* standard attributes and elements *)
type UrTree = ~[ UrAttForest, UrForest ]
type UrAtt = @~[UrScalar*]

(* collections of elements and attributes *)
type UrForest = (UrScalar|UrTree|UrTreeID|UrRef)*
type UrAttForest = (UrAtt|UrAttRef)*

(* element identified with an ID *)
type UrAttID = @~[ID]
type UrTreeID = ~[ UrAttID, UrAttForest, UrForest ]

(* references *)
type UrRef = &[ID]
type UrAttRef = @~[UrRef]

(* root documents *)
root UrTree*

(* key constraint for uniqueness of ID *)

key UrTreeID [| ./@~/ID() |]

(* foreign key for referential integrity *)
foreign key UrRef [| ./ID() |]
references UrTreeID [| ./@~/ID() |]

end

The �rst part is similar to the UrTree type in the XML
algebra, as used to captures XML Schema wildcards: trees
are either leaves with atomic values (UrScalar), or elements
with a name (~), any attributes (UrAttForest) and an ar-
bitrary number of children (UrForest).
We extend the notion of UrForest to allow two other types

of objects: trees with an ID, and references. A tree with an
ID (UrTreeID) is basically an UrTree with a special attribute
at the beginning corresponding to the ID of the object1. A
reference is simply an ID with a special tag `&'. This syn-
tactic separation between ID values that identify elements,
and ID values that references them is necessary to avoid am-
biguity in the schema, i.e.,to ensure that a given document
cannot be typed in multiple ways.
The key toward the end of the de�nition of UrSchema en-

sures that no two distinct objects have the same ID value.
Note that an attribute wildcard (@~) is used to access the ID
value of each tree without requiring one to know the corre-
sponding attribute name. The foreign key ensures that every
reference points to an existing ID value in the document.

3.5 Subsumption between UCM Schemas
All well-formed documents are instances of the UrSchema

and all UCM schemas are required to be smaller (in terms of
subtyping) than the UrSchema. We model subtyping using
the notion of subsumption introduced in [15]. Subsumption
is a relation between two schemas, that relies on a mapping
between their type names, and on inclusion between regular
expressions over type names.
For instance, assume a schema with type Companies', as

de�ned above, as a root. This schema is subsumed by the
UrSchema, under the following subsumption mapping :2

Companies' <: UrTree
Company <: UrTreeID
...

For each two mapped types (here those in Companies and
in UrTree), containment must hold between the respective
element names (e.g., companies in ~), and their correspond-
ing regular expressions must be contained under the given
mapping (e.g., here UrTreeID* in UrAttForest,UrForest).
The reason for declaring a subsumption mapping is that

it has an impact on the constraints that hold on the new
schema. In our example, the fact that Company is subsumed
by UrTreeID implies that all ID values in the company ele-
ments must be distinct. This constraint is derived from the
key constraint that holds over elements of type UrTreeID.
Propagation of constraints through subsumption in fact pro-
vides a mechanism that captures the nature of ID/IDREFs

1A more precise representation would require the use of un-
ordered collections for attributes. To simplify the presenta-
tion, we deal only with ordered collections in this paper.
2Note that the subsumption mapping is limited to type
names associated to elements. See [15] for more details on
the properties of subsumption and its relationship to XML
Schema.
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in DTDs (resp. object ids in object models): i.e., uniqueness
across the whole document (resp. the whole database).
Finally, consider the ODMG schema of Example 2.2. Once

again, it is straightforward to convert the structural part of
an object schema into an UCM schema. We use one type
name for each class, and map each data structure to a sim-
ple XML equivalent. We also add a constraint for each key
and a foreign key constraint that restrict the scope of ID ref-
erences. This allows us to capture typed object references,
and results in the following schema:

schema COMPANY <: UrSchema =
root Company*,Dept*

type Company = tuple [ @oid [ ID ],
name [ String ],
stock [ Float ] ]

type Dept = tuple [ @oid [ ID ],
name [ String ],
co [ &[ID] ],
topic [ String ] ]

key Company [| ./name/data() |]
key Dept [| ./name/data(), ./co/data() |]

foreign key Dept [| ./co/&/ID() |]
references Company [| ./@oid/ID() |]

end

Note the declaration of the subsuming schema (UrSchema)
for the new schema (COMPANY). Once again, propagation of
constraints from UrSchema makes sure that the @oid[ID]
attributes behave like object ids, and that &[ID] elements
behave like object references. The process of constraint
propagation through subsumption is described in Section 5.
Together with structured types, subsumption, and integrity
constraints, UCM covers almost every aspect of the ODMG
model, with the notable exception of multiple inheritance
which can involve attribute renaming: this cannot be han-
dled due to the structural nature of subsumption.

4. SYNTAX AND SEMANTICS OF UCM

4.1 Syntax of UCM schemas
The �rst part of the syntax is the type speci�cation, which

is summarized in Figure 1. This is similar to the syntax of
types in the XML Algebra [13], with the addition of at-
tributes, of the type ID, and of the special tag &. The syn-
tax of types is based on attribute and element names, scalar
types, and the ID type. One can give names to types, con-
struct elements, attributes and references, and build regular
expressions over types using sequence, choice, and repetition
(Kleene star).
The second important part of the schema language is the

subset of path expressions that are used to de�ne the compo-
nents of keys and foreign keys. Paths used in UCM are given
in Figure 2. These are only very simple paths, that per-
form navigation by selecting children, elements, attributes,
or values of a given node. Note the use of ./ to denote
navigation from the current node. Remember that one can
use wild cards for navigation, selecting all the elements or
attributes, while disregarding their names. ./ID() accesses
all the nodes whose value is of type ID. This is indeed a
very small subset of XPath [7], notably we do not allow:

navigation among ancestors or siblings, predicates, recur-
sive navigation (i.e., //), and function calls.
Finally, Figure 3 gives the syntax of keys, foreign keys,

and top level schema declarations. As we have seen in the
introduction, the de�nition of keys and foreign keys is com-
posed of a type name and a sequence of path expressions.
A schema is composed of a root, plus a number of type, key
and foreign key declarations.
Note that the syntax allows one to de�ne schemas that

would be out of the scope of the XML model (e.g., a com-
plex attribute de�nition like @a[@b[ID]*]. This allows us
to keep the grammar as simple as possible, while avoiding
such erroneous schemas by forcing UCM schemas to be sub-
sumed by the UrSchema. By default, if no subsuming schema
is declared, it is assumed to be the UrSchema.
We will call element type names of a schema S, the subset

of type names X of S whose de�nition is of the form type
X = l[t]. We will use name() and regexp() for the opera-
tions that access, for an element type name, the tag and the
regular expression over its children.

4.2 Semantics of UCM schemas
We now describe the formal semantics of UCM schemas,

in terms of the set of documents that they validate.

4.2.1 Databases.
Integrity constraints are used to identify nodes in XML

documents. Therefore, we need to extend the data model
of the XML algebra by a notion of node identity. In the
following, we assume o to range over an in�nite set of OIDs
O. XML data is represented in the following simple data
model.

Definition 4.1. [database] A database consists of a se-
quence of documents, as written in the syntax given in Fig-
ure 4. Each document has a tree structure, in which each
node (value, reference, attribute or element) has an associ-
ated OID o.

Note again that the grammar of Figure 4 allows invalid
XML documents. In the following, we will assume all docu-
ments are instances { see de�nition below { of the UrSchema.

4.2.2 Path expressions.
In the XML Algebra, path expressions are de�ned using

the more basic operations children() (that returns the list
of children of a node), for loops, and match expressions. We
will use the same static (typing) semantics for path expres-
sions as the one given in [13], but we extend the evaluation
semantics so it takes the notion of OID and the ID type into
account.

Definition 4.2. [value, tag, and children]
Let o be an OID. We write val(o) for the value associ-

ated with the node o, name(o) for the tag of the node o,
and children(o) for the list of OIDs that are children of o
(including attributes which appear at the begining, ordered
alphabetically by name), respectively.

Definition 4.3. [path expressions]
Now that children() is de�ned over OIDs, we can reuse

the same de�nitions for path navigation as in the XML alge-
bra. For lack of space, we only give the corresponding rule
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name a a1 j a2 j � � �
attributes, element name l ::= a element name

j @a attribute name
j ~ element name wildcard
j @~ attribute name wildcard
j & reference tag

type name X X1 j X2 j � � �
scalar type s ::= Integer

j String

j Boolean
ID type i ::= ID
type t ::= X type name

j s scalar type
j i id type
j l[t] element and attributes
j t , t sequence
j t | t choice
j t* repetition
j () empty sequence
j ; empty choice

Figure 1: Types

path p ::= l name selection
j data() scalar selection
j ID() ID selection
j l / p nested path

path sequence ps ::= ./p single path
j ps , ./p path sequence

Figure 2: Path expressions

key name k k1 j k2 j � � �
schema name S S1 j S2 j � � �
schema item i ::= keyX [| ps |] key

j key k =X [| ps |] named key
j foreign keyX [| ps |] referencesX [| ps |] foreign key
j foreign keyX [| ps |] references k named foreign key
j type X = t type declaration

root r ::= root t root declaration
schema U ::= schema S = r i... i end schema

j schema S <:S = r i ... i end subsumed schema

Figure 3: Keys, foreign keys, and UCM Schemas
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integer cint ::= � � � j �1 j 0 j 1 j � � �
string cstr ::= "" j "a" j "b" j � � � j "aa" j � � �
boolean cbool ::= false j true
ID cID ::= ^c1 j ^c2
constant c ::= cint j cstr j cbool j cID
data d ::= c scalar constant

j a[d] element
j @a[d] attribute
j &[d] reference
j d , d sequence
j () empty sequence

database db ::= d , d , � � � document sequence

Figure 4: XML data

that deals with navigation among ID values. See again [13]
for more details about the semantics of the match expression.

e / ID() = for v1 in e do
for v2 in children(v1) do

match v2
case v3 : ID do v3
else ()

Definition 4.4. [path sequences]
Last, we need to de�ne the semantics of values accessed

by the sequence of paths which compose keys and foreign
keys. Recall from Section 3.3, that key components are ac-
tually compared through a cross product semantics. This is
captured using a series of nested for loops that iterate over
each key component.

e/[| p1 , : : : , pn |] = e[| ./p1 , : : : , ./pn |]
= for v1 in e / p1 do

� � �
for vn in e / pn do

k[v1 , : : : , vn]

This results in a sequence of key elements k, each containing
a sequence of values that participate in the de�nition of a
key or foreign key.

4.2.3 Equality.
Finally, our constraints rely on two di�erent notions of

equality: node equality, which is used to identify nodes in
the document, and value equality, which is used to compare
values of keys. Node equality is de�ned to be equality on
OIDs. We assume that value equality is de�ned over atomic
values in the straightfoward way.

Definition 4.5. [value equality]
Let o1 and o2 be OIDs. o1 =v o2 i� o1 and o2 contain

two atomic values that are equal, or (1) o1 and o2 have
the same tag, (2) attributes(o1) = attributes(o2), and
(3) if children(o1) =

�
o11 , : : : , o

k
1

�
and children(o2) =�

o12 , : : : , o
l
2

�
, then k = l and oi1 =v oi2 for all 1 � i � k.

4.2.4 Typing.
Typing corresponds to the structural part of schema val-

idation. Following the approach of [2, 15], typing consists
of �nding a mapping, or type assignment from OIDs to type
names for which names match, and for which the children
verify the regular expression de�ning the type of the parent.

Definition 4.6. [Typing]
Let D be a database and S a schema. We say D is of type

S under the type assignment �, and write D :� S, i� � is a
function from the set of OIDs in D to the set of element type
names X1, . . . , Xn in S such that for each OID o

1. name(o) satis�es the label (wildcard) of type �(o), and

2. if children(o) = (o1 , : : : , om), then the word �(o1),
: : : , �(om) is in the language de�ned by the regular
expression of �(o) over its element type names compo-
nents.

Note that all the types involved in that de�nition must be
element type names (i.e., describing elements), and require
regular expressions to be over each element type names. The
user syntax, however, allows the use of anonymous types,
by nesting sub-elements, and therefore typing also requires
type names to be generated. But as type assignment is
only an internal structure, this can be done by the system,
transparently for the user. Whenever we need to talk about
such system-generated type names, we use strings preceded
by '_'. For example, the de�nition of the type Company could
be mapped to:

type Company = company[_t1, _t2, _t3]
type _t1 = @compid[ID]

type _t2 = @co[String]
type _t3 = stock[String]

We assume that each schema is unambiguous, i.e., if � ex-
ists, it is unique. This is a necessary assumption for the
semantics of constraints, reasoning, and any practical im-
plementation.
We write Models(S) for the set of databases of type S, i.e.,

fD j 9�; D :� Sg.
We write extD(X) for the extension of type X (with re-

spect to schema S), i.e., the set of objects of D of type X, or
extD(X) = fo j o 2 D; �(o) = Xg.

4.2.5 Key and foreign key.
We now give the notion of satisfaction for keys and foreign

keys.

Definition 4.7. [Key satisfaction]
Let S be a schema, X a type of S, and k a key of S de�ned

over type X with key component [| ./p1 , : : : , ./pn |].
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A database D satis�es the key k i�, for all OIDs o1 and o2
in extD(X), if there exist ke1 in o1/[| p1 , : : : pn |] and ke2
in o2/[| p1 , : : : pn |], such that ke1 =v ke2, then o1 = o2.

Definition 4.8. [Foreign key satisfaction]
Let S be a schema, X and X' types of S, and fk a foreign key

of S from type X with component [| ./p1 , : : : , ./pn |] to
X' with component [| ./p0

1 , : : : , ./p
0

n |].
A database D satis�es fk i�, for all OIDs o in extD(X), and

all ke in o/[| p1 , : : : pn |], then there exists o0 in extD(X')
and ke 0 in o0/[| p1 , : : : pn |], such that ke =v ke 0.

4.2.6 Subsumption.
Recall from the object-oriented examples in the previous

sections that a complete de�nition of UCM requires con-
straint propagation through subsumption. We borrow the
de�nition of subsumption from [15]. Subsumption is a rela-
tionship between types that is strictly more expressive than
subtyping in XML schema, while still being easy to manip-
ulate. Subsumption relies on an idea similar to typing, i.e.,
it is de�ned through a mapping between type names, called
a subsumption mapping.

Definition 4.9. [Subsumption]
Let S and S' be two schemas. We say that schema S'

subsumes S under the subsumption mapping �, and write
S <:� S', i� � is a function from element type names in S to
element type names in S', such that:

1. for all element type names X in S, name(X) is smaller3

than name(�(X)),

2. for all element type names X in S, �(L(regexp(X))) �
L(regexp(�(X))), where L(r) is the language gener-
ated by regular expression r.

3. �(L(regexp(root(S)))) � L(regexp(root(S'))).

We write S <: S' if there exists a � such that S <:� S'.

4.2.7 Schema validation.
Finally, we de�ne the notion of validation of documents

by UCM schemas with constraints.

Definition 4.10. [Validation of UCM schemas]
Let D be a database and S an UCM schema whose type

is subsumed by S'. We say D validates S under the type
assignment �, and write D ::� S, i�

1. D :� S,

2. D validates S',

3. for all key k in S, D satis�es k,

4. for all key fk in S, D satis�es fk .

The second condition is not as expensive as it may seem:
we know already that S' subsumes S, and as a consequence
we can deduce the extensions of the types in S' from the
extensions of the types in S and from the subsumption map-
ping �4. Therefore, we only need to check that D satis�es
the constraints in the subsuming schema.

3Where smaller is de�ned with the obvious meaning: a<a,
a<~. etc.
4This is done by composition of subsumption and type map-
pings; see [15] for more details.

5. REASONING ABOUT CONSTRAINTS
In this section we study several forms of reasoning about

constraints. As already pointed out, this is, in general, a
diÆcult task. We therefore concentrate on �nding prac-
tical solutions for two important problems in our context.
The �rst problem is to tell whether a schema speci�ed by
the user makes sense or not, i.e., whether there exists at
least one nonempty database that satis�es the schema. The
second problem is the propagation of constraints through
subsumption, which, as we have seen, is needed to capture
object-oriented schemas.

5.1 Consistency
The consistency problem for UCM schemas is to deter-

mine whether a given schema is consistent, i.e., whether
there exists at least one nonempty database that satis�es
the schema. This issue is important because one wants to
know whether a schema speci�cation makes sense.
Relational schemas (with keys and foreign keys) are al-

ways consistent if they are syntactically correct and do not
have type mismatch. Under the same assumptions, object-
oriented schemas are also consistent. But, as we have seen
in Section 2, the situation is more complicated for XML
schema speci�cations, as a schema can impose cardinality
dependencies on elements, and these cardinality dependen-
cies can interact in turn with the keys and foreign keys.
As a result, the interaction between structural and integrity
constraints makes the consistency analysis of XML schema
languages much harder than it was for relational and object-
oriented schemas.

Proposition 5.1. The consistency problem is undecid-
able for UCM schemas, even when the paths in keys and
foreign keys are restricted to be of length 1.

This undecidability result suggests that we look for re-
stricted classes of UCM schemas for which the problem is
decidable. As a �rst attempt, one might consider schemas
with unary keys and foreign keys, i.e., ones that contain only
one path. This is the case, for example, for keys and foreign
keys speci�ed with ID and IDREF in XML. Unary keys and
foreign keys are commonly used and have been well studied
for relational databases. In particular, Cosmadakis, Kanel-
lakis and Vardi [9] have shown that the �nite implication
problem for unary keys and foreign keys is decidable in linear
time in relational databases (in contrast to the undecidabil-
ity of the problem for multi-attribute keys and foreign keys).
Another restriction we might consider is the primary key re-
striction, which says that at most one key can be speci�ed
for any type in a schema. One might expect that the con-
sistency problem would become much simpler under these
restrictions, but that is not the case. Decidability itself is
an open problem, but we can show that even consistency is
decidable, the problem remains intractable:

Proposition 5.2.

1. The consistency problem for UCM schemas is NP-hard
when all keys and foreign keys are unary.

2. The consistency problem remains NP-hard for UCM
schemas with unary keys and foreign keys, even when
we allow at most one key on each type in the schema
(the primary key assumption). 2
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Propositions 5.1 and 5.2 follow from similar results [11] for
DTDs and (primary, unary) key and foreign key constraints.
It should be mentioned that these results also hold for XML-
Schema.
These negative results suggest that we consider restric-

tions on the type de�nitions instead. In particular, we would
like to identify a class of UCM schemas that can express both
relational and object-oriented schemas, but with consistency
being decidable.
We identify a class of consistent UCM schemas as follows.

Definition 5.3. A schema S is said to have the database
property if it is of the form:

schema S =
type root = X1*,..., Xn*
type X1 = t1
...
type Xn = tn

key X [| p1,..., pn |]
...
foreign key X [| p1,..., pn |]
references Y [| p1',...,pn' |]
...

end

such that

� Xi does not appear in tj for any i, j;

� for any foreign key X [|p1,..., pn|] references
Y [|p1',...,pn'|] in S, X/pi and Y/pi' have the
same unit type, and the regular expression in the def-
inition of this type does not use the union construct
`|'. In addition, if type(X=pi) is ID, then pi has the
form p'/&/ID() and pi does not appear in foreign key
of X referencing Z for Z 6= Y .

Unit types are de�ned as either elements, scalar types or
the ID type. These two restrictions are designed to avoid
the complex interaction between typing and integrity con-
straints. By restricting the use of type names, the �rst con-
dition also restricts the constraints that one can de�ne in
a schema. The second condition prevents having complex
types in the key components.

Proposition 5.4.
Let C denote the class of UCM schemas that have the

database property. Then (1) All schemas in C are consistent,
and (2) It is decidable in quadratic time whether a UCM
schema is in C. 2

These restrictions might seem very strong, but they still
cover a lot of practical cases:

Proposition 5.5.
All relational and object-oriented database schemas can

be expressed as schemas in C. 2

See the extended version of the paper [10] for sketches of
the proofs of Propositions 5.4 and 5.5.

5.2 Constraints through subsumption
As explained above, the semantics of OIDs in an OO

schema is captured in UCM by the constraints in UrSchema,
i.e., by the fact that OIDs are unique, and that every refer-
ence is to an OID that is present in the database. The de�-
nition of a schema permits the user to reference keys without
declaring them explicitly. For example, in Section 3.5, we
described a schema where a Dept has a foreign key that ref-
erences the value of @oid in Company, relying implicitly on
the fact that UrSchema implies that the latter is a key.
In order to verify that the schema, as speci�ed by the

user, is indeed valid, we have to study the interaction be-
tween subsumption and integrity constraints. In order to do
this, we �rst extend the notion of key to apply to unions
of types, rather than just to single types. For example, we
want the key on ID in UrSchema to imply that OIDs are
unique over all objects in the user schema (more precisely,
over those that have an ID), rather than just be unique
over objects of a speci�c type. We write such keys with the
syntax key (X1|...|Xj) [| ./p1, ..., ./pn |] The def-
inition of satis�ability for multiple types is the same as the
de�nition for single types, except that extD(X) is replaced by
extD(X1) [ � � � [ extD(Xj).
Let S be a schema subsumed by schema S' (S <: S'). We

have to check whether this declaration is valid. In order
to check this, we need to verify that, for each foreign key
foreign key Y [| ./p1, ..., ./pn |] references X [|
./q1, ..., ./qm |] in S, the right-hand side is indeed a
key.
We do this by propagating keys from S' to S. This new

set of keys, K = K(S; S0) is de�ned as follows. First, K
contains all the keys of S. Then, for every key X' [| ./p1,

..., ./pn |] in S', let X1, . . . , Xj be the set of types in S
that are mapped by � to the type X'. We then add the key
(X1|...|Xj) [| ./p1, ..., ./pn |] to K.

Proposition 5.6. Let S and S' be schemas, declared as
S<:S' Then S is a valid schema declaration i�, for every
foreign key

foreign key Y [| ./p1, ..., ./pn |]
references X [| ./q1, ..., ./qm |]

in S, there is a key of the form

key (X1|...|Xj) [| ./q1, ..., ./qm |]

in K(S; S0), where X is in fX1; : : : ; Xjg. 2

In the same way that we extended the de�nition of keys to
include multiple types, we could also extend the de�nition of
foreign keys. We would then obtain a nice correspondence
between subsumption and keys. To show this, we de�ne
FK = FK (S; S0) to take foreign keys into account. Start
with all the keys and foreign keys of S in FK , and add all
the keys in K(S; S0) to FK . Then, for each

foreign key (Y1|...|Ym) [| ./p1, ..., ./pn |]
references (X1|...|Xi) [| ./q1, ..., ./qm |]

in S', let X1, . . . , Xn be the set of types in S which are
mapped by � to types in X1', . . . , Xi', and let Y1, . . . , Yj
be the set of types in S which are mapped by � to types in
the set Y1', . . . , Ym'. Add the foreign key

foreign key (Y1'|...|Yj') [| ./p1,...,./pn |]

references (X1'|...|Xn') [| ./q1,...,./qm |]
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to FK .
We can then show

Proposition 5.7. Let D be a database and S an UCM
schema of subsuming type S'. Then D validates S under the
type assignment �, i� D :� S, and D satis�es all the keys in
FK (S; S0).

Example 5.8. We illustrate how OIDs are handled with
the propagation mechanism. Consider the schema COMPANY
from Section 3.5. With the system-de�ned types added, it
becomes:

schema COMPANY <: UrSchema =
root Company*, Dept*

type Company = tuple [ _coid, _cname, _cstock ]
type _coid = @oid [ ID ]
type _cname = name [ String ]
type _cstock = stock [ Float ]

type Dept = tuple [ _doid, _dname, _dco, _dtopic]
type _doid = @oid [ ID ]
type _dname = name [ String ]
type _dco = co [ _coref ]
type _dtopic = topic [ String ]

type _coref = &[ID]

key Company [| ./name/data() |]
key Dept [| ./name/data(), ./co/data() |]

foreign key Dept [| ./co/&/ID() |]
references Company [| ./@oid/ID() |]

end

We �rst observe that the declaration COMPANY<:UrSchema
is valid, under the following subsumption mapping �:

coref 7! UrRef

coid; doid 7! UrAttID
cname; cstock; dname; dco; dtopic 7! UrTree
Company; Dept 7! UrTreeID
Companies; Depts 7! UrForest

which then means that

key (Company | Dept) [| ./@~/ID() |]

is in K(COMPANY; UrSchema), and so the schema declaration
is valid.
Alternatively, FK (COMPANY; UrSchema) contains the fol-

lowing keys and foreign keys, as well as those in COMPANY.

key Company|Dept [| ./@~/ID() |]
foreign key _coref [| ./ID() |]
references Company|Dept [| ./@~/ID() |]

To test whether a document validates a schema, it therefore
suÆces to test that it satis�es these constraints, i.e., that it
satis�es the keys and foreign keys in COMPANY and (1) object
IDs are unique across all elements of type Company and Dept,
and (2) every reference points to an ID of some element in
Company or Dept. �

6. UCM IN PRACTICE
In this section, we describe simple algorithms for validat-

ing UCM schemas in the presence of integrity constraints.
The objective is only to demonstrate the practical feasibility
of our approach, not to present optimized algorithms.

We try to take as much advantage as possible of the cou-
pling between integrity constraints and type information, in
order to reduce the number of passes over the document.
In a nutshell, we try to perform both typing and constraint
checking within the same algorithm.
Since the use of keys in UCM is quite close to their use

in relational databases, we can exploit relational techniques.
In particular, while processing the keys, we build an index
which maps the values of keys to the internal node id of the
element. This index has two uses: verifying whether a given
key has already been used and checking validity of foreign
keys. Still, there are several aspects in which UCM diverges
the from the relational model.

Anonymous Keys

First, we must take into account that the right-hand side
of foreign keys can contain keys that are propagated via
subsumption from existing keys, as explained in 5.2, but are
not declared themselves as keys, and we must build indices
for such keys as well. Note that the set of these keys can be
determined at compile-time.

Cross-product semantics of constraints and typing.

Remember that because a key component can reach more
than one value, the de�nition of the semantics of UCM con-
straints uses a cross product. As a consequence, there may
be more than one key (in the same index) for the same node,
and the generation of the index must take this into account.

Equality.

The operations on the index are get(Index,value) and
insert(Index,value,node). These rely on value equality,
not node equality.
This said, let us look at the algorithm itself. During vali-

dation, the system assigns a type to each node. At the same
time, the system also considers all key constraints k that ap-
ply to this type. For each such key there is a corresponding
(global) index Ik;T , and the system calls index insert on
these indices. A pseudo-code description of this function is:

index insert ( n:Node, Ikt:Index, p:list(Path) )
key values := algebra eval(n=p);
for kv in key values do

n0 := get(Ikt ; kv);
if (n0 = Fail) then
insert (Ikt ; kv ; n)

else
if n0 6= n then Error;

endfor;

Subsumption

The constraints which need to be checked are not just
those that are declared explicitly in the schema, but also
those that arise due to subsumption. We must keep track
(in compile-time) of which types get mapped to which sub-
suming types, and verify the appropriate constraints on the
subsuming schema as well. In the following pseudo-code
this is represented as a recursive procedure of obtaining the
super_type of the current type, and reiterating until we
reach the UrTree.
The pre-processing needed in order to take subsumption

into account is therefore �rst to make sure that the right-
hand side of the foreign keys are key constraints, then to
build the the subsumption mapping, and to hook each type
in the subsuming schema, for which a constraint holds, to
the appropriate indices.
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This is summarized in the following pseudo-code, in which
key(t) returns true if a key has been de�ned for type t, and
get indices returns the set of indices (and corresponding
paths) for keys that apply to this type.

(* main procedure *)
check node ( n:Node, t: Type )

(* subsumption �rst *)
t0 := super type(t);
if (key(t0) and t 6= UrTree)
then check node(n; t0);

ixs := get indices(t);
for ix in ixs do
p := get paths(ix);
index insert(n; ix ; p);

forend;

Foreign keys

Foreign keys are easier to handle. They are validated dur-
ing a second path, so that we already know the extension of
each type, and have a full index for all the keys.

check foreign key ( n:Node, p:list(Path), ix:Index
)

fkey values := algebra eval(n=p);
for kv in fkey values do
n0 := get(ix ; kv);
if (n0 = Fail) then

Error
endfor;

7. CONCLUSION
We have proposed UCM, a schema language that supports

the speci�cation of structures, subtyping and integrity con-
straints for XML. UCM is simple, relying on a single notion
of keys and foreign keys. UCM allows one to capture, in
a uni�ed framework, constraints commonly found in di�er-
ent application domains, including XML DTDs, relational
and object-oriented schemas. We have also described pre-
liminary results for the analysis of speci�cation consistency,
constraint propagation through subtyping, and schema val-
idation.
This work is a step toward an expressive yet simple schema

language for XML. We are currently working on a �rst im-
plementation of the algorithms presented in Section 6, based
on our XML Algebra prototype. One of the objectives is to
obtain more precise performance analysis. On the theoret-
ical side, we plan to work on reasoning about UCM con-
straints, including but not limited to, questions in connec-
tion with consistency and implication.
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