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Abstract 
Multicast audio and video conferences are today commonplace in 
certain parts of the Internet. The vast majority of Internet users, 
however, are not able to participate in these events because they 
either lack multicast network connectivity, are located behind 
firewalls, have insufficient network resources available or don't 
have access to the proper software tools. In many cases all of 
these restrictions apply. This paper presents an effort to extend the 
scope of multicast video conferencing by the development of an 
Internet video gateway that interconnects multicast networks with 
the World Wide Web. The overall design of the gateway software 
is outlined and a novel algorithm for rate control of the multicast 
video flows is described. Some performance tests that show the 
efficacy of the system in terms of resource utilisation and 
scalability are presented. 
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1. INTRODUCTION 
The explosive growth of the Internet has so far mostly been 
related to its success in supporting asynchronous applications like 
WWW-browsing and file transfers. Within the research 
community, however, the Internet has for many years been 
successfully utilised in supporting synchronous multimedia 
conference sessions, most notably within the Mbone initiative [1]. 
The Mbone is a virtual network implemented on top of the 
Internet that enables multicast packet delivery; a technology 
crucial for implementing scalable multipoint communication 
systems. Nevertheless, the vast majority of Internet hosts are not 
connected to multicast-enabled networks, so inter-operation with 
Mbone-type services need some sort of gateway function or 
tunnelling mechanism that can forward IP multicast datagrams in 
a controlled manner over unicast network connections. Several 
software tools have been designed for this purpose, including 
mrouted [6] and mTunnel [3], but there are still other difficulties 
that need to be overcome to make audio and video conferencing 
ubiquitous on the Internet. One difficulty is that the bandwidth 
available on many dialup links is too low to sustain the potentially 
broadband traffic of audio and video sessions. A solution to this 
problem is to employ media transcoding gateways that convert the 
transmitted media to a lower bandwidth format suitable for 
transmission over low-bandwidth links. One such approach is 
presented in [2]. Yet another obstacle is the fact that many 
Internet hosts are located behind firewalls. In the general case 
firewalls don’t allow UDP-based real time traffic to pass through 

and in many cases they also employ techniques like network 
address translation that complicate end-to-end real-time 
communication. Moreover, the rather sophisticated applications 
required for real-time audiovisual communication might not be 
available on every computing platform and troublesome 
installation and configuration procedures will in any case restrain 
the applicability of the services in question. 

This paper presents a novel software tool that has been developed 
to partially circumvent the aforementioned impediments to extend 
the range of synchronous multimedia communication.  

2. BACKGROUND AND MOTIVATION 
Synchronous collaboration tools like audio and video 
conferencing applications are becoming increasingly more 
popular on the Internet. Simple synchronous communication tools 
like ICQ [4] and IRC [5] have rapidly reached a large number of 
users due to their applicability virtually anywhere on the Internet. 
This is due to the fact that they rely only on the core protocols of 
the Internet (TCP/IP) and require very little network resources to 
be useful. Sophisticated multimedia collaboration software on the 
other hand require substantially more bandwidth and build largely 
on protocols that are not supported everywhere on the Internet (IP 
multicast [7], RTP/RTCP [11], UDP [13]). Although these 
technologies are expected to reach an increasingly more 
widespread deployment, there will always be heterogeneity in 
terms of network resources and services. In an effort to extend the 
scope of multicast video conferences we have developed an RTP 
to HTTP gateway software that makes it possible for an Internet 
user to take part of multicast video streams, albeit at potentially 
high latency and low frame-rate, with the only prerequisite being 
access to the WWW through a standard browser. Figure 1 shows 
an example configuration of a network that connects WWW users 
to a multicast network. 

 
Figure 1. Typical network configuration using 

gateways 
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Note that the video gateway presented in this paper only enables 
users to receive video streams of multicast conference sessions. It 
doesn’t provide any support for transmitting video to conference 
sessions.  

2.1 Multicast Conferencing Tools 
A suite of tools generally referred to as “the Mbone tools” have 
been used for some time on the global experimental multicast 
network known as the Mbone. The Mbone tools include real-time 
audio and video conferencing applications, shared whiteboards, 
text chat tools and more. These tools communicate using IP 
multicast group addresses and encapsulate real-time data in IP 
datagrams as specified by the Real-time Transport Protocol 
(RTP) [11], and the associated RTP-profiles for various media 
encodings. Basic session management and control as well as 
miscellaneous status report functions are handled by the Real 
Time Control Protocol, RTCP [11]. In addition, the Session 
Announcement Protocol (SAP) [14] and the Session Description 
Protocol (SDP) [15] are used to announce the lifetime of 
multicast sessions and describe what media format will be used 
for each session. 

2.2 Video on the WWW 
Except for experimental systems within the research community, 
the first large-scale use of live video on the WWW was so-called 
web-cameras. A web-camera is a device that is attached to a web-
server that transmits live video images to a WWW-browser using 
HTTP. Although HTTP was originally designed for strictly 
asynchronous applications, extensions have been developed to 
enable web-servers to send continuous media streams to the client 
browser. This is known as “push”-technologies or HTTP 
streaming. Another class of applications that has emerged on the 
WWW is media on demand servers that transmit pre-recorded 
media clips to the client browser using HTTP-streaming or some 
other streaming protocol. 

2.3 Packet Video Gateways 
The concept of active media processing within multicast networks 
as a solution to the network heterogeneity problem was pioneered 
by Turletti and Bolot in [16] and by Pasquale et al. in [17]. Amir 
et al. elaborate on these ideas in [2] with the presentation of an 
application level video gateway that performs transcoding 
between JPEG and H.261 RTP streams. A classification of active 
networking applications is given in [18], wherein a distinction is 
made between transport gateways that bridge networks with 
different characteristics and applications services that perform 
active processing of the transmitted data, such as transcoding of 
video streams between different encodings. In [19] Ooi et al. 
present an architecture for a programmable media gateway that 
can be remotely configured to perform user-defined processing of 
media streams.  

3. WEBSMILE: OVERALL 
ARCHITECTURE 
WebSmile is a software component that is installed on an ordinary 
web-server that is connected to a multicast capable network. The 
software gives users access to multicast RTP video streams 
through the web-server using HTTP streaming. 

3.1 Client Side 
Two different techniques are used to enable the client browser to 
display the video that is streamed over HTTP; an experimental 
MIME-extension [20] for displaying moving images and a Java 
applet. The MIME extension, known as multipart/x-mixed-
replace, makes it possible to display sequences of JPEG or GIF 
images in an HTML page. Since it is not supported in all 
browsers, this technique is complemented with a Java video 
player applet that is downloaded from the WebSmile server. 

 
Figure 2: Conceptual model of the WebSmile 

server architecture 

3.2 Server Side 
The WebSmile gateway is implemented as a server program 
executed on a web server through the common gateway interface 
(CGI) [21]. The program performs three separate functions 
depending on the parameters with which it is invoked:  

• Monitor a multicast session and report back information 
about the video sources that are identified.  

• Join a session and return an HTML-page with video 
displays.  

• Start forwarding video over HTTP.  

The first function is performed by joining the multicast address 
and port specified and listening to RTCP source description 
(SDES) advertisements. The members of the session are identified 
by a canonical name in the format user@host.domain and 
optionally by more verbose information like a real name, address, 
phone number, etc. This information is reported back to the 
browser that originated the CGI-request as an HTML-form with a 
checkbutton associated with each identified session member. The 
user then indicates which video sources are to be monitored by 
checking the appropriate checkbuttons and posting the form back 
to the server. This invokes WebSmile in the second mode as 
described above to join the session and return the video display 
HTML page. This page contains a Java applet to display the video 
in case the browser has been identified (through CGI environment 
variables) as non-capable of displaying multipart/x-mixed-replace 
content. The third mode of WebSmile is invoked when the 
references in the video HTML-page to the HTTP-streamed video  
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are resolved. This is either an image hyperlink looking something 
like  

<IMG SRC="http://server:port/cgi-bin/websmile?-s+1234+-
a+224.2.2.2+-p+5566"> 

(where 1234 is the source id of the video to be monitored, 
224.2.2.2 is the multicast address and 5566 is the UDP port 
number) or an applet connecting explicitly to the web server with 
the same CGI parameters. In both cases the video streamed over 
HTTP conforms to the multipart MIME specification with a 
content type of image/jpeg for each multipart entity.  

3.3 Transcoding 
In case the multicast video is not JPEG over RTP as specified by 
RFC2435 [12] the gateway needs to transcode the video into 
JPEG. Currently no transcoding support is implemented in 
WebSmile so only JPEG-compressed video will be forwarded. 
However, specialised transcoding gateways are available, 
including [2], that can be used in combination with WebSmile to 
support other formats. 

4. RATE CONTROL 
Since the bandwidth available for users connected through HTTP 
is, in most situations, expected to be less than the bandwidth used 
for the multicast sessions, rate control must be applied to the 
video traffic forwarded by WebSmile. This is performed by 
adapting the frame rate of the outbound video to the available 
bandwidth of each HTTP connection. The WebSmile gateway 
accomplishes this by writing video image data on the TCP socket 
of each HTTP connection until the socket buffer is filled. Images 
arriving on the multicast network while a socket is blocked (due 
to a full buffer) will not be sent to the corresponding client. When 
the socket is unblocked, forwarding of images is resumed. This 
modus operandi is simple to implement and will result in each 
client receiving video at a frame rate determined by TCP’s flow 
control. 

Considering the fact that the frame rate sustainable over the HTTP 
connections might be substantially less than the frame rate of the 
video being multicast, it would be desirable if the gateway could 
control the multicast video flow being received so that it conforms 
to the target bandwidth of the rate-controlled video. Otherwise 
network resources will be wasted on the multicast data path 
between the sender and the gateway, since many of the video 
frames simply will be dropped by the gateway. 

4.1 Layered Multicast 
An elegant solution to multicast flow control is to subdivide the 
data stream into a hierarchy of cumulative layers each of which is 
transmitted to a unique multicast address. Thus, each individual 
receiver can control the bandwidth of the data stream being 
received by subscribing to an appropriate number of multicast 
groups. The quality of the reconstructed data depends on how 
many layers are available in the decoding process. The flow 
control problem is thereby reduced to finding a way for the 
receivers to determine the optimal number of layers to subscribe 
to. Unfortunately, this is not so easy to do in the general case. 
Several approaches have been suggested [8, 9, 10]. In the present 
case, however, given our assumption that the bandwidth 
bottlenecks are the HTTP connections rather than the multicast 
backbone, we can use information about the bandwidth 

constraints of the HTTP connections as input to the multicast flow 
control algorithm. Since HTTP is transported over TCP we can 
actually let the flow control algorithm of TCP drive the decision 
algorithm for subscribing to multicast layers. What we need is a 
way to measure the bandwidth that TCP allocates for the HTTP 
connections. We also need a layered representation of the video 
signals to be transmitted. The easiest way to achieve a layered 
video encoding is to distribute the individual video frames 
temporally over the group of layers. Thus, subscribing to an 
increased number of layers will result in a higher frame rate of the 
decoded video. The temporal layering is simplified if only intra-
frame compression is used, as is the case with the JPEG encoding 
used in WebSmile. 

4.2 The TCP-Driven Multicast Flow Control 
Algorithm 
Since one WebSmile gateway can support many HTTP-connected 
clients with video from the same session, the client with the 
fastest connection determines how many multicast layers must be 
subscribed to, in order to support the desired frame rate for each 
client. That is, if a gateway is serving n clients with TCP 
connections of bandwidth Bi, i=1..n, respectively, with video 
distributed uniformly across L distinct layers with an aggregate 
bandwidth of Btot, then the number of multicast layers the gateway 
should subscribe to, LGW, is given by 

         (1) 

Note that the value we get must be rounded up since only integral 
layers can be received. To determine the effective bandwidth of 
the HTTP connections WebSmile measures the time each socket 
write operation consumes and calculates the mean sending time 
for each transmitted image. Since a blocking socket interface is 
used, the sending time for an individual image will sometimes be 
very short (in case of an empty output socket buffer) and 
sometimes disproportionately long, but on the average a good 
estimation of the actual throughput is achieved. 

If the expression in (1) was to be used directly by WebSmile in 
the multicast flow control algorithm, the total bandwidth of the 
video stream (Btot) must be known. However, this parameter may 
change during the session, so it would be better if an equivalent 
expression not including Btot could be derived. Furthermore, since 
the parameter being measured is the average socket send time for 
an image, it would be easier if that parameter could be used 
directly instead of calculating the bandwidth. 

Now, if we let t denote the average time to send an image on the 
HTTP socket connected to receiver k, where Bk=max(Bi), then the 
average frame size of the video, J, will be given by 

 
Observing that the average frame size can also be written as 

, 

where f is the frame rate of the video, we note that the fraction in 
(1) can be written as 

501



.          (2) 

Substituting (2) in (1) gives the simple formula 

,          (3) 

where L and f are constants. Thus the optimal number of layers to 
subscribe to can be determined by measuring only the 
transmission time for the video frames, providing we have an a 
priori knowledge of the number of layers used and the frame rate 
of the video. (Strictly speaking, the frame rate could be 
experimentally learned by receiving one layer and multiplying the 
observed frame rate with the total number of layers, L.) 

The algorithm is continually monitoring the average image 
transmission time to compute the optimal subscription level and 
thus dynamically adapts to bandwidth fluctuations on the HTTP 
connections in response to TCP’s flow control. 

Note that the parameter t in (3) was defined to be the average 
transmission time for an image on the TCP socket with the fastest 
connection. This implies that the gateway must keep track of 
which TCP connection has the lowest average sending time 
(highest throughput) at any time and use that value as input to the 
flow control algorithm. However, in the actual implementation of 
WebSmile, each HTTP-connected user is served by a separate 
process. Running the flow control algorithm independently in all 
processes using (3), with t being the average image sending time 
for the process’ own TCP connection, will in effect lead to an 
allocation of multicast addresses where the set of addresses 
allocated by the process with the fastest TCP connection will be a 
superset of the sets of addresses allocated by the other processes. 
The total allocation of multicast addresses on the gateway is 
hence determined by the process with the fastest TCP connection. 
Thus, the desired behaviour is achieved without the processes 
having to synchronize their operation (or even be aware of the 
other processes’ existence.) 

Finally, note that the bandwidths Bi and Btot used in (1) in the 
deduction of (3) represent the actual throughput of image data, 
excluding transport protocol overhead. Thus, the difference in 
protocol overhead between HTTP/TCP and RTP/UDP doesn’t 
impact the flow control algorithm, although it affects the overall 
bandwidth consumption. The transport protocol overheads are 
estimated in section 5.1. 

5. Performance 
To measure how well the flow control algorithm allocates 
bandwidth on the multicast network in relation to the throughput 
on the HTTP/TCP-connection, a test environment was set up with 
the configuration shown in Figure 3.  

The line speed of the dialup connection was configurable so that 
different network access technologies could be emulated (in terms 
of bandwidth). The connection was configured at a number of 
different speeds ranging from 30 kbps to 2 Mbps and the resultant 
bandwidths allocated by WebSmile on the HTTP/TCP-connection 
and on the multicast connection were measured. The video was 
transmitted at 25 frames per second in 10 distinct temporal layers. 
The image resolution was 192 by 144 pixels, which after JPEG 
compression resulted in a total bitrate of about 650 kbps, or about 
65 kbps per layer. In Figure 4 the multicast bandwidth is plotted 
against the HTTP/TCP bandwidth. 

It is clear that the bandwidth allocated on the multicast network 
depends linearly on the bandwidth available to the TCP 
connection, as expected. It can also be noted that on the average a 
slightly higher bandwidth is allocated on the multicast network 
compared to the TCP bandwidth. (The dotted line in Figure 4 
delineates an identical allocation of bandwidth.) This is due to the 
fact that bandwidth is allocated at a much coarser scale on the 
multicast network, the granularity being the bandwidth of one 
layer compared to TCP’s byte-level congestion window 
adjustments. On average the over-allocation of bandwidth on the 
multicast network is one half of the layer bitrate, which, in the 
present case, is about 30 kbps.  

5.1 Transport Protocol Overhead 
The bandwidth measurements presented in Figure 4 include the 
overhead imposed by the transport protocols. To investigate what 
influence the difference in protocol overhead between HTTP/TCP 
and RTP/UDP transport has on the bandwidth allocation we 
roughly estimate the overheads. 

For the HTTP/TCP transport the overhead for each packet is 20 
bytes for the IP-header and 20 bytes for the TCP header. 
Furthermore, each image is encapsulated by an application-
specific MIME multipart boundary identifier. Also a content-type 
and content-length MIME-field is added for each image. The 
WebSmile implementation adds 65 bytes of MIME-information 
for each image. The total overhead depends on the data segment 
size chosen by the TCP implementation, the fragmentation 
occurring on the end-to-end network connection and the average 
size of the images transmitted. Assuming a packet size of 576 
octets including IP and TCP header (the default packet size in 
TCP), no additional fragmentation and an average image size of 

Figure 4: Multicast bandwidth allocation in relation 
to HTTP/TCP bandwidth 

Figure 3: Network configuration used for 
performance tests 
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3.5 Kb, a total overhead of 8.76% is obtained. Note that this 
estimation requires that the TCP sender always has enough data in 
the output socket buffer to transmit a full-sized packet. 

The RTP/UDP overhead consists of the 20 byte IP-header, 8 bytes 
for the UDP header, 12 bytes for the RTP header and 8 bytes for 
the JPEG/RTP profile header, giving a total of 48 bytes per 
packet. The same packet size and fragmentation situation as in the 
TCP case gives an overhead of 8.33%. However, on average, the 
last datagram of an image will be only half of the maximum 
datagram size. With a 3.5 Kb average image size this increases 
the overhead to 9.31%. 

Note that in the estimations above the overhead of retransmissions 
in the TCP protocol isn’t included and neither is the overhead due 
to periodic RTCP packet transmissions in the RTP case. 
Nevertheless, this rough estimation indicates that the overhead is 
approximately the same for both transports and accounts for about 
9 percent of the total bandwidth, both for HTTP/TCP and the 
RTP/UDP.  

6. Future Work 
The applet used for displaying live video in the client WWW-
browser will be extended with functionality to playback audio as 
well, so that the system can be used as both an audio and video 
gateway. Furthermore, the integration of media transcoding 
support into the WebSmile system will be studied in more detail. 

7. Summary 
In this paper the development of a novel Internet video gateway 
has been presented. The system, known as WebSmile, enables 
Internet users that normally would be unable to participate in 
multicast video conferences to partake using only a standard web 
browser. The need for a system like this is motivated by the fact 
that many Internet users will continually be unable to utilise many 
of the advanced technologies needed for multicast conferencing 
due to resource unavailability, security concerns and other 
shortcomings. The design and implementation of WebSmile as an 
application level gateway co-located with a WWW server was 
discussed in section 3. 

In section 4 a novel TCP-driven flow control algorithm for 
layered multicast video was introduced. The algorithm 
implemented in the video gateway works by adapting the rate of 
the multicast video flows to the bandwidth allocated by the 
HTTP/TCP connections to the receiving clients. A layered video 
encoding transmitted to a set of multicast addresses was suggested 
to enable the receiver-oriented multicast flow control. The 
performance of the flow control algorithm was measured in a test 
network configuration, and the results show that the multicast 
bandwidth allocated by the gateway closely match the TCP 
connection bandwidth. The transport protocol overheads for 
JPEG-video over HTTP and RTP, respectively, were estimated 
and found to be approximately the same. 
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