
Mining Web Logs to Improve Website Organization

Ramakrishnan Srikant

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120

Yinghui Yang
�

Dept. of Operations & Information Management
Wharton Business School
University of Pennsylvania

3620 Locust Walk, Suite 1300
Philadelphia, PA 19104

ABSTRACT
Many websites have a hierarchical organization of content. This
organization may be quite different from the organization expected
by visitors to the website. In particular, it is often unclear where
a specific document is located. In this paper, we propose an al-
gorithm to automatically find pages in a website whose location is
different from where visitors expect to find them. The key insight
is that visitors will backtrack if they do not find the information
where they expect it: the point from where they backtrack is the
expected location for the page. We present an algorithm for dis-
covering such expected locations that can handle page caching by
the browser. Expected locations with a significant number of hits
are then presented to the website administrator. We also present
algorithms for selecting expected locations (for adding navigation
links) to optimize the benefit to the website or the visitor. We ran
our algorithm on the Wharton business school website and found
that even on this small website, there were many pages with ex-
pected locations different from their actual location.

1. INTRODUCTION
Consider the quandary of visitors to Yahoo!: will a listing of

computer stores be in the “Business & Economy” directory (on Ya-
hoo!) or in the “Computers & Internet” directory? In this case,
Yahoo! has a link from both locations. However, in general, it is
hard to organize a website such that pages are located where vis-
itors expect to find them. This problem occurs across all kinds of
websites, including B2C shops, B2B marketplaces, corporate web-
sites and content websites.

We propose a novel algorithm to solve this problem by auto-
matically discovering all pages in a website whose location is dif-
ferent from the location where visitors expect to find them. The
key insight is that visitors will backtrack if they do not find the
page where they expect it: the point from where they backtrack is

�This work was partly done while the author was at IBM Almaden.

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

the expected location for the page. Expected locations with a sig-
nificant number of hits are presented to the website administrator
for adding navigation links from the expected location to the target
page. We also present algorithms for selecting the set of navigation
links to optimize the benefit to the website or the visitor, taking into
account that users might try multiple expected locations for a target
page.

Paper Organization We discuss related work in Section 1.1. We
describe the algorithm for finding expected locations in Section 2,
and show how to optimize the set of navigation links in Section 3.
We present results on the Wharton website in Section 4, and con-
clude in Section 5.

1.1 Related Work
There has been considerable work on mining web logs; however,

none of them include the idea of using backtracks to find expected
locations of web pages.

Perkowitz et al. [4] [5] investigate the problem of index page
synthesis, which is the automatic creation of pages that facilitate a
visitor’s navigation of a website. By analyzing the web log, their
cluster mining algorithm finds collections of pages that tend to co-
occur in visits and puts them under one topic. They then generate
index pages consisting of links to pages pertaining to a particular
topic.

Nakayama et al. [2] also try to discover the gap between the web-
site designer’s expectations and visitor behavior. Their approach
uses the inter-page conceptual relevance to estimate the former, and
the inter-page access co-occurrence to estimate the latter. They fo-
cus on website design improvement by using multiple regression to
predict hyperlink traversal frequency from page layout features.

Spiliopoulou et al. [7] [8] propose a “web utilization miner”
(WUM) to find interesting navigation patterns. The interesting-
ness criteria for navigation patterns are dynamically specified by
the human expert using WUM’s mining language which supports
the specification of statistical, structural and textual criteria.

Other related work includes the following: Chen et al. [1] present
an algorithm for converting the original sequence of log data into
a set of maximal forward references and filtering out the effect of
some backward references which are mainly made for ease of trav-
eling. Pei et al. [3] propose a novel data structure, called Web ac-

430

cess pattern tree for efficient mining of access patterns from pieces
of logs. Shahabi et al. [6] capture the client’s selected links, page
order, page viewing time, and cache references. The information is
then utilized by a knowledge discovery technique to cluster visitors
with similar interests.

2. FINDING EXPECTED LOCATIONS
We describe our model of visitor search patterns in Section 2.1,

and discuss the problem of identifying target pages in Section 2.2.
Section 2.3 gives the algorithm for finding expected locations. We
discuss the limitations of our approach in Section 2.4. Throughout
this section, we use “search” to denote that the visitor is browsing
for a specific page or set of pages, and do not imply the use of a
search engine.

2.1 Model of Visitor Search Patterns

Single Target Consider the case where the visitor is looking for
a single specific target page T . We expect the visitor to execute the
following search strategy:

1. Start from the root.

2. While (current location C is not the target page T) do

(a) If any of the links from C seem likely to lead to T ,
follow the link that appears most likely to lead to T .

(b) Else, either backtrack and go to the parent of C with
some (unknown) probability, or give up with some prob-
ability.

Note that when the visitor reaches the same page again in step 2(a),
she will follow a different link since the estimates of whether a link
is likely to lead to will have been updated.

Set of Targets Now consider the scenario where the visitor wants
to find a set of target pages T1; T2; : : : ; Tn . The search pattern is
similar, except that after finding (or giving up on) Ti , the visitor
then starts looking for Ti+1 :

1. For i := 1 to n

(a) If i = 1, start from the root, else from the current loca-
tion C .

(b) While (current location C is not the target page Ti) do

� If any of the links from C seem likely to lead to
Ti , follow the link that appears most likely to lead
to Ti.

� Else, either backtrack and go to the parent of C
with some probability, or give up on Ti and start
looking for Ti+1 at step 1(a) with some probabil-
ity.

In this scenario, it may be hard to distinguish the target pages
from the other pages by simply looking at the web log. We discuss
this issue after first giving an example.

Example 1 Figure 1 shows a hierarchically organized website,
and a traversal path f1A, 2A, 3A, 2A, 3B, 2A, 1A, 2C, 9g. If

pages are cached in the browser, the web log will only contain f1A,
2A, 3A, 3B, 2C, 9g, not the entire path. We give three possible
interpretations of this path:

� The visitor is looking for a single target page 9. She starts at
the root, expects to find page 9 under 2A, goes to 2A and then
3A, realizes that 9 is not under 3A, backtracks to 2A, tries 3B,
realizes that 3B does not contain 9 either, backtracks all the
way to the root, and finally finds 9 under 2C. The expected
locations for target page 9 are 3A and 3B, and the actual
location is 2C.

� The visitor is looking for the target pages f3A, 9g. She starts
at the root, expects to find 3A under 2A, and successfully
reaches 3A. She then starts looking for 9. She goes back to
2A, tries 3B, backtracks to the root, and then finds 9 under
2C. The expected location for the target page 9 is 3B, and the
actual location is again 2C.

� The set of target pages was f3A, 3B, 9g. In this case, all the
target pages were located where the visitor expected them.

Notice that it is not easy to figure out which is the correct interpre-
tation, unless 3A and 3B are index or navigation pages, while 9 is a
content page. In this case, the first interpretation is the correct one,
since 3A and 3B cannot be target pages.

2.2 Identifying Target Pages
For some websites like Amazon and Ebay, there is a clear separa-

tion between content pages and index (or navigation) pages; prod-
uct pages on these websites are content pages, and category pages
are index or navigation pages. In such cases, we can consider the
target pages for a visitor to be exactly the set of content pages re-
quested by the visitor. Other websites such as information portals
or corporate websites may not have a clear separation between con-
tent and index pages. For example, Yahoo! lists websites on the
internal nodes of its hierarchy, not just on the leaf nodes. In this
case, we can use a time threshold to distinguish whether or not a
page is a target page. Pages where the visitor spent more time than
the threshold are considered target pages. We can also combine
these two methods, and have different time thresholds for different
classes of pages.

2.3 Algorithm
If there is no browser caching, it is conceptually trivial to find a

backtrack point: it is simply the page where the previous and next
pages in the web log (for this visitor) are the same. The HTTP stan-
dard states that the browser should not request the page again when
using the browser’s history mechanism. In practice, some browsers
use the cached page when the visitor hits the “back” button, while
others incorrectly request the page again. It is possible to disable
caching by setting an expiration date (in the meta tag in the page),
but this can significantly increase the load on the website.

Rather than rely on disabling browser caching, we use the fact
that if there is no link between pages P1 and P2, the visitor must
have hit the “back” button in the browser to go from P1 to P2. Thus
to find backtrack points, we need to check if there is a link between
two successive pages in the web log. We build a hash table of the

431

Visitor Navigation

Website Link

E.L. : Expected Location

E.L.#2

2A

3A 3B

1

E.L.#1

6

10

2C

9

Target Page

1A

2B

87

Root

52

Actual
Location

Figure 1: Website & Search Pattern

1. Build hash table of links in the website.

2. Partition web log by visitor:

� Sort the web log file by visitor ID as the primary key and time as the secondary key, or

� Partition the web log file by hashing on visitor ID and sort each partition separately, or

� Scan web log and extract sequence of pages for each visitor ID, passing them onto step 2.

3. For each visitor, partition web log such that each subsequence terminates in a target page.

4. For each visitor and target page, find any expected locations for that target page:

Let fP1; P2; : : : ; Png be the set of visited pages, where Pn is a target page.
Let B := � denote the list of backtrack pages.

a) for i := 2 to n�2 begin
b) if ((Pi�1 = Pi+1) or (no link from Pi to Pi+1))
c) Add Pi to B. // Pi is a backtrack point.

end
if (B not empty)

Add hPn; B;Pn�1i to hcurrent URL, backtrack list, Actual Locationi table;

Figure 2: Algorithm: Find Expected Location

432

edges in the website to efficiently check if there is a link from one
page to another.

Figure 2 shows the algorithm. In Step 1, we build the hash ta-
ble. We partition the web log by visitor in Step 2. In Step 3, we
split the sequence of accesses for each visitor by the target pages
they visit. We assume that the website administrator either spec-
ifies the set of possible target pages, or specifies a time threshold
to distinguish between target pages and other pages. In Step 4, we
find all expected locations (if any) for that target page, and add it
to a table for use by the next step of the algorithm. The detection
of backtracks occurs in Step 4(b). In addition to checking for the
absence of a link from the current to the next page, we also check
if the previous and next pages are the same. The latter check takes
care of the case where visitors use a navigation link to go to the
previous page instead of using the “back” button in the browser.

2.4 Limitations
As we discussed in Example 1 and in Section 2.2, it can be hard

to distinguish between target pages and other pages when the web-
site does not have a clear separation between content and index
pages. Hence the algorithm may generate false expected locations
if it treats target pages as backtrack points, and may miss expected
locations if it treats backtrack points as target pages. Increasing the
time threshold will result in fewer missed expected locations at the
cost of more false expected locations, while decreasing the thresh-
old will have the opposite effect. Hence for websites without a clear
separation between content and navigation, the administrator will
have to spend some time to determine a good value for the time
threshold, as well as sift through the discovered expected locations
to drop any false patterns.

Another limitation is that only people who successfully find a
target page will generate an expected location for that page. We
cannot track people who tried the expected location and gave up
after not finding the target page.

3. OPTIMIZING THE SET OF NAVIGATION
LINKS

We consider three approaches for recommending additional links
to the web site administrator (or automatically adding links):

1. FirstOnly: Recommend all the pages whose frequency of
occurrence in the first expected location is above an admin-
istrator-specified threshold.

2. OptimizeBenefit: Recommend the set of pages that optimize
benefit to the website, where benefit is estimated based on the
fraction of people who might give up on not finding a page.

3. OptimizeTime: Recommend the set of pages that minimize
the number of times the visitor has to backtrack, i.e., the
number of times the visitor does not find the page in an ex-
pected location.

The three approaches can generate very different answers, as we
illustrate in Examples 2 through 4.

From the algorithm in Figure 2, we get a table with the following
columns: T̂ , Ê1, Ê2, : : : , Ên, Â, where T̂ contains the target page,

Count the support for all the pages in Ê1.
Sort the pages by their support.
Present all pages whose support is greater than or equal to S

to the administrator.

Figure 3: Algorithm: FirstOnly

Â the actual location (parent) of the target page, and Ê1 through
Ên the first n expected locations for the page for a specific visitor.
Note that only Ê1 is guaranteed to be non-empty: if the visitor
found the page after the kth expected location, Êk+1 through Ên

will be empty in the corresponding record.
For ease of exposition, we assume that the set of records has been

partitioned based on the value of T̂ . Let T1; T2; : : : ; Tr denote the
r unique target pages (in the T̂ column). Then the algorithms in 3.1
through 3.3 will be called once for each Ti, on the set of records
where value(T̂) equals Ti .

3.1 FirstOnly
Figure 3 describes the FirstOnly algorithm. This algorithm rec-

ommends the frequent first expected locations (the pages that occur
frequently in Ê1) to the website administrator, ignoring any second
or subsequent expected locations the visitor may have considered.

We define the support for a page as the count of the page. The
administrator specifies a minimum support S for the first choice
for the expected location. All expected locations whose support is
greater than or equal to S are presented to the administrator.

Example 2 We will use the following example to illustrate the dif-
ferences between the three approaches. There are five visitors who
generated expected locations for the target page T1 . For instance,
record 1 says that the visitor first looked at page P1, backtracked
and tried P2 before finally locating T1 in AL.

T̂ Ê1 , Ê2 , Ê3, Ê4 Â

Record 1 T1 P1, P2 AL
Record 2 T1 P1 AL
Record 3 T1 P2, P3, P4, P1 AL
Record 4 T1 P3, P2 AL
Record 5 T1 P4, P2 AL

Let S = 2. With FirstOnly, we only look at the frequency in Ê1 .
Hence P1 is the only recommendation, with a count of 2.

3.2 OptimizeBenefit
Let bk represent the benefit to the website of visitors finding their

target web page in their kth attempt, i.e., in the kth expected loca-
tion. For instance, bk could represent the fraction of visitors who
give up if they do not find their target page in their kth attempt.
We can then order pages based on the benefit to the website of not
losing a visitor. Let Sb be the minimum benefit threshold specified
by the website administrator.

Figure 4 describes the OptimizeBenefit algorithm. This is a greedy
algorithm that attempts to maximize the benefit to the website of
adding additional links. In each pass, it finds the page with the
maximum benefit, adds it to the set of recommendations, nulls out

433

// bk : benefit of finding the target page in the kth expected location.
repeat

foreach record begin
for j := 1 to n

Increment support of value(Êj) by bj .
end
Sort pages by support.
P := Page with highest support (break ties at random).
if support(P) � Sb begin

Add hP , support(P)i to list of recommended pages.
foreach record begin

for k := 1 to n begin
if value(Êk) = P

Set Êk; Êk+1; : : : ; Ên to null;
end

end
end

until (support(P) < Sb);

Figure 4: Algorithm: OptimizeBenefit

all instances of this page and succeeding pages, and recomputes the
benefit.

Example 3 We use the same table from Example 2:

T̂ Ê1 , Ê2 , Ê3, Ê4 Â

Record 1 T1 P1, P2 AL
Record 2 T1 P1 AL
Record 3 T1 P2, P3, P4, P1 AL
Record 4 T1 P3, P2 AL
Record 5 T1 P4, P2 AL

Let b1 = 1, b2 = 0:5, b3 = b4 = 0:25, and Sb = 2. Then bene-
fit(P2) = 1�1+3�0:5= 2.5, benefit(P1) = 2.25, benefit(P3) = 1.5
and benefit(P4) = 1.25. We add P2 to the list of recommendations,
and drop P2 and all items that follow P2, resulting in the following
table:

T̂ Ê1; Ê2; Ê3 Â

Record 1 T1 P1 AL
Record 2 T1 P1 AL
Record 3 T1 AL
Record 4 T1 P3 AL
Record 5 T1 P4 AL

In the next pass, benefit(P1) = 2, benefit(P3) = 1, and benefit(P4) =
1. We add hP1,2i to the table.1 At this point, none of the remaining
pages have support above S b. Hence P1 and P2 are the only two
recommendations.

3.3 OptimizeTime
The goal of this algorithm is to minimize the number of back-

tracks the visitor has to make. (We use the number of backtracks
as a proxy for the search time.) Let St denote the threshold for the

1Notice that the benefit of P2 would have been 2 and not 2.5 if
we had added P1 first. We could optionally go back and recount
supports to avoid this double counting, but we do not expect this to
make a significant difference to the final answer.

repeat
foreach record begin

Let m be the number of expected locations in this record.
for j := 1 tom

Increment support of value(Êj) by m+1�j.
end
Sort pages by support.
P := Page with highest support (break ties at random).
if support(P) � St begin

Add hP , support(P)i to list of recommended pages.
foreach record begin

for k := 1 to n begin
if value(Êk) = P

Set Êk; Êk+1; : : : ; Ên to null;
end

end
end

until (support(P) < St);

Figure 5: Algorithm: OptimizeTime

number of backtracks we must save in order to add a link. Fig-
ure 5 describes the OptimizeTime algorithm. This algorithm also
does a greedy search, and is quite similar to the OptimizeBenefit
algorithm, except for how we count support.

Example 4 We apply the algorithm to the dataset from Example
2:

T̂ Ê1 , Ê2 , Ê3, Ê4 Â

Record 1 T1 P1, P2 AL
Record 2 T1 P1 AL
Record 3 T1 P2, P3, P4, P1 AL
Record 4 T1 P3, P2 AL
Record 5 T1 P4, P2 AL

Let St = 4. Then TimeSaved(P2) = 1 + 4 + 1 + 1 = 7, Time-
Saved(P1) = 4, TimeSaved(P3) = 4, and TimeSaved(P4) = 3. We
add hP2,7i to the list of recommendations, and drop all items that
follow P2, resulting in the following table:

T̂ Ê1; Ê2; Ê3 Â

Record 1 T1 P1 AL
Record 2 T1 P1 AL
Record 3 T1 AL
Record 4 T1 P3 AL
Record 5 T1 P4 AL

TimeSaved(P1) = 2, TimeSaved(P3) = 1, and TimeSaved(P3) = 1.
Hence P2 is the only recommendation.

4. EXPERIMENTS
We used the web server log from http://www.wharton.upenn.edu

(Wharton Business School, University of Pennsylvania) to evaluate
our algorithm. Figure 6 shows the structure of the website. There
are 7 levels in this website hierarchy. Starting with the root as level
1, there are 7 directories (interior nodes in the hierarchy) in level
2, 20 directories in level 3, 21 directories in level 4, 13 directories
in level 5, 2 directories in level 6 and 2 directories in level 7. The

434

Leaf Pages

Level 1:

Level 2:

ROOT: www.wharton.upenn.edu

Wharton Now Research Students Executives Alumni

Level 3:

Level 4:

Level 5:

Level 6:

Level 7:

Programs Faculty

MBA Programs

MBA Student Life

Student-to-Student Programs

Student Resources

Student Profile

Leaf Pages

Figure 6: Wharton Website Structure

website has 240 leaf pages. We defined any leaf pages in the log to
be a target page, and did not use a time threshold. We made some
judgment calls about what was a leaf page versus a directory. For
instance, we treated the index of faculty web pages as a leaf page,
since our primary interest was in the structure of the Wharton site
rather than individual faculty member pages.

We obtained a web log covering 6 days. There were 15,575
unique visitors, and 2,988,206 records (hits) in the log. For each
hit, we extracted the IP address, time, and URL from the log. A
sample record might then be:

202.104.29.xxx, 00:15:10, /mba/admissions/index.html

If the page the visitor requested contains images, a record is gener-
ated for each image. We dropped all image request records, since
they are not relevant to our algorithm. In addition, two other Whar-
ton sites, http://inside.wharton.upenn.edu and http://spike.wharton.
upenn.edu/spike6/interface, are independentof http://www.wharton.
upenn.edu and have their own structure. So we also dropped records
for pages in these two sites. This left us with 102,540 records.

According to our experimental results, 25 leaf pages (out of a
total of 240) have expected locations different from their actual lo-
cation at a support threshold of 5. Figure 7 shows five examples

from this set. “Support” refers to the number of visitors who ex-
pected to find the page at the given expected location, while “Total
Hits” is the total number of hits for the leaf page. While some of
the supports may seem low (relative to the hits), only people who
successfully found the page contribute to the support. We cannot
track people who tried the expected location and gave up after not
finding the leaf page.

Example W1 (in Figure 7) is perfect: it’s obvious that the page
should be relocated or an additional link added. Examples W2 and
W3 are also straightforward: clearly the target page could be in
either location. Examples W4 and W5 are more ambiguous, and
we present two possible explanations:

� Visitors may be looking at the student pages, and then back-
tracking to look at the curriculum.

� Visitors may really expect to find “Curriculum” under “Stu-
dents” rather than “Programs”.

This brings us back to the issue we discussed in Section 2.4: with-
out a clear separation between content and navigation, it can be dif-
ficult to differentiate between people browsing a set of target pages
versus people who are searching for a single target page. Recall
that we had proposed using a time threshold to distinguish between

435

Example W1 Target page: http://www.wharton.upenn.edu/mba/s2s/why wharton.html
Actual Location: http://www.wharton.upenn.edu/mba/s2s/s2s.html
Expected Location: http://www.wharton.upenn.edu/mba/s2s/s qa.html
Support: 6
Total Hits: 81
Explanation: Visitors expect to find the answer to “Why choose Wharton?” in the

“Student-to-Student Program’s Question & Answer Session” directory
instead of the “Student-to-Student Program’s General Description” directory.

Example W2 Target page: http://www.wharton.upenn.edu/mba/admissions/profile.html
Actual Location: http://www.wharton.upenn.edu/mba/admissions/index.html
Expected Location: http://www.wharton.upenn.edu/students.html
Support: 6
Total Hits: 882
Explanation: Visitors expect to find “MBA Student Profiles” under “Student”

instead of “MBA Admission”.

Example W3 Target page: http://www.wharton.upenn.edu/whartonnow/calendars.html
Actual Location: http://www.wharton.upenn.edu/whartonnow.html
Expected Location: http://www.wharton.upenn.edu/programs.html
Support: 7
Total Hits: 292
Explanation: Visitors expect to find “Calendar” under “Programs” instead of

the “WhartonNow” directory.

Example W4 Target page: http://www.wharton.upenn.edu/undergrad/curriculum/
concentrations.html

Actual Location: http://www.wharton.upenn.edu/undergrad/curriculum/index.html
Expected Location: http://www.wharton.upenn.edu/students.html
Support: 6
Total Hits: 293
Explanation: Visitors expect to find “Curriculum” under “Students”

instead of “Programs”.

Example W5 Target page: http://www.wharton.upenn.edu/mba/curriculum/curriculum.html
Actual Location: http://www.wharton.upenn.edu/mba/curriculum/index.html
Expected Location: http://www.wharton.upenn.edu/students.html
Support: 6
Total Hits: 555
Explanation: Visitors expect to find “Curriculum” under “Students”

instead of “Programs”.

Figure 7: Examples from the Wharton Website Results

436

the two cases. For W4, the 6 visitors spent 3, 120, 25, 21, 4, and
11 seconds on the students.html page. For W5, they spent 5, 4,
68, 55, 19, and 35 seconds. With a time threshold of 30 seconds,
the support for W4 would drop to 5, i.e., the algorithm would con-
sider students.html to be a backtrack point in 5 of the 6 cases, and
as a target page in the remaining case. Similarly, the support for
W5 would drop to 3. Notice that it is hard to get the time thresh-
old exactly right. A time of less than 10 seconds clearly indicates
that the page is a backtrack point, while a time of more than 1
minute clearly indicates that the page is a target page. Any value
between 10 seconds and 1 minute would be a reasonable choice for
the threshold (for this domain), and the administrator can choose a
value in this range based on whether she wants to bias the algorithm
toward missed expected locations or false expected locations.

The Wharton website is well structured, and many leaf pages are
put under multiple directories (as the website designer took into
consideration the different expectations of different visitors), yet
we still discovered many missed expectations by analyzing the ac-
tual visitor traversal pattern. We expect our algorithm to work even
better on more structured websites, such as e-commerce websites
that have product hierarchies.

5. SUMMARY AND FUTURE DIRECTIONS
We proposed a novel algorithm to automatically discover pages

in a website whose location is different from where visitors expect
to find them. This problem of matching website organization with
visitor expectations is pervasive across most websites.

Our key insight is that visitors will backtrack if they do not find
information where they expect it. The point from where they back-
track is the expected locations for the page. We presented an al-
gorithm for discovering such backtracks that also handles browser
caching, and discussed the limitations of our approach. We also
presented algorithms that select the set of navigation links (to add
to expected locations) to optimize visitor time or benefit to the web-
site. We applied our algorithm on the Wharton website, and found
many pages that were located differently from where visitors ex-
pected to find them.

An interesting problem for future research is that in websites
without a clear separation of content and navigation, it can be hard
to differentiate between visitors who backtrack because they are
browsing a set of target pages, and visitors who backtrack because
they are searching for a single target page. While we have proposed
using a time threshold to distinguish between the two activities, it
will be interesting to explore if there are better approaches to solve
this problem.

Acknowledgments We would like to thank Rakesh Agrawal,
Roberto Bayardo and Balaji Padmanabhan for their comments and
suggestions.

6. REFERENCES
[1] M.-S. Chen, J. S. Park, and P. S. Yu. Data mining for path

traversal patterns in a web environment. In Proc. of the 16th
International Conference on Distributed Computing Systems,
pages 385–392, May 1996.

[2] T. Nakayama, H. Kato, and Y. Yamane. Discovering the gap
between web site designers’ expectations and users’ behavior.
In Proc. of the Ninth Int’l World Wide Web Conference,
Amsterdam, May 2000.

[3] J. Pei, J. Han, B. Mortazavi-asl, and H. Zhu. Mining access
patterns efficiently from web logs. In Proc. of the 4th
Pacific-Asia Conf. on Knowledge Discovery and Data Mining,
pages 396–407, April 2000.

[4] M. Perkowitz and O. Etzioni. Adaptive web sites:
Automatically synthesizing web pages. In Proc. of the
Fifteenth National Conf. on Artificial Intelligence (AAAI),
pages 727–732, 1998.

[5] M. Perkowitz and O. Etzioni. Towards adaptive sites:
Conceptual framework and case study. In Proc. of the Eighth
Int’l World Wide Web Conf, Toronto, Canada, May 1999.

[6] C. Shahabi, A. M. Zarkesh, J. Abidi, and V. Shah. Knowledge
discovery from users web-page naviagtion. In Proc. of the 7th
IEEE Intl. Workshop on Research Issues in Data Engineering
(RIDE), pages 20–29, 1997.

[7] M. Spiliopoulou and L. C. Faulstich. Wum: A web utilization
miner. In Proc. of EDBT Workshop WebDB98, Valencia,
Spain, March 1998.

[8] M. Spiliopoulou, L. C. Faulstich, and K. Wilkler. A data miner
analyzing the navigational behaviour of web users. In Proc. of
the Workshop on Machine Learning in User Modelling of the
ACAI99, Greece, July 1999.

437

