
XML Query Forms (XQForms):  
Declarative Specification of XML Query Interfaces

Michalis Petropoulos* 
Dept. of Computer Science and 

Engineering, University of California, 
San Diego 

mpetropo@cs.ucsd.edu 

Vasilis Vassalos 
Information Systems Dept., 
New York University and 

Enosys Markets, Inc. 

vasilis@enosysmarkets.com 

Yannis Papakonstantinou 
Dept. of Computer Science and 

Engineering, University of California, 
San Diego and Enosys Markets, Inc. 

yannis@cs.ucsd.edu 
 

ABSTRACT 
XQForms is the first generator of Web-based query forms and 
reports for XML data. XQForms takes as input (i) XML Schemas 
that model the data to be queried and presented, (ii) declarative 
specifications, called annotations, of the logic of the query forms 
and reports that will be generated, and (iii) a set of template 
presentation libraries. The output is a set of query forms and reports 
that provide automated query construction and report formatting in 
order for the end users to query and browse the underlying XML 
data. Thus XQForms separates content (given by the XML Schema 
of the data), query form logic (specified by the annotations) and 
presentation of the forms and reports. The system architecture is 
modular and consists of four main components: (a) a collection of 
query form controls that incorporate query capabilities and allow 
parameter passing from the end users via the form page. A set of 
query form controls makes up a query form. (b) An annotation 
scheme for binding these controls to data elements of the XML 
Schema and for specifying their properties, (c) a compiler for 
creating the HTML representation of the query forms, and (d) a run-
time engine that constructs and executes the queries against the 
XML data and renders the query results to create the reports. 

General Terms 
Design, Standardization, Languages. 

Keywords 
Query Forms & Reports, XML Query Language, XML, XSL. 

1. INTRODUCTION 
Vast amounts of information, stored in a variety of information 
systems, are made accessible to people worldwide through Web-
based query forms that allow users to selectively view the 
information. At the same time, XML provides a powerful and 
simple way to represent and exchange structured and semistructured 
data.XML is being widely adopted and increasing amounts of data 
are made available and are exchanged in XML format [16, 17]. 
XML Schemas [14] are used to model the information and an XML 
query language [13] allows users and applications to select, extract 
and filter XML data, which may come from XML files or from other 

information sources, such as relational databases, that export an 
XML Schema of themselves. 
Powerful access to XML-modeled data through query forms 
accessible via browsers and other Web-enabled devices is crucial. 
Moreover, recent research on how to develop and maintain web sites 
[3, 5, 11] indicates that, as the interaction between the Web and end 
users becomes more complex and information-rich, it is important to 
separate  
• the page information content and how it is organized in the 

back-end, 
• the logic of the web site pages and 
• the presentation that renders the data for a specific device. 
XQForms focuses on declaratively defining and generating query 
forms and reports for XML data modeled by XML Schemas. As 
Figure 1 illustrates, the end users submit form pages, which 
construct and issue XML queries to an XML data server and the 
corresponding XML results are rendered to HTML in order to 
produce the report pages. XQForms accomplishes the separation of 
content, logic and presentation by representing an XQForm by three 
components: an XML Schema, which represents the information 
content (i.e. models the data), an annotation that specifies 
declaratively the logic of the query forms and reports, and template 
presentation libraries that are used to produce a presentation of the 
generated pages. 

 
Figure 1 - XQForms Overview 

Each one of these components is developed by, potentially, different 
people, namely the data modeler, the annotations author and the 
web designer. The components are independently customizable and 
extensible and allow for modular form development. For example, 
the annotations author can change the form’s logic, while at the 
same time the web designer is adjusting the look and feel of the 
presentation. By providing this development flexibility, XQForms 
offer significant reduction in development and maintenance costs of 
a Web site. 

 

*This work was performed while the author was at Enosys Markets Inc. 

Copyright is held by the author/owner(s). 
WWW10, May 1-5, 2001, Hong Kong. 
ACM 1-58113-348-0/01/0005. 
 

642



The output of XQForms is a set of query forms and reports that 
support automated query construction and report formatting and 
provide advanced functionality to the end users in terms of querying 
and browsing the underlying XML data. XQForms can 
accommodate any of the XML query languages recently proposed 
[4, 6], as well as any presentation language for rendering of results 
(e.g., HTML, WML, XML, etc.) A summary of the functionality 
that the XQForms-generated forms and reports provide to the end 
user is the following: 
• Ability to express arbitrary selection and projection conditions 

on the query form. 
• Ability to express arbitrary sorting conditions. 
• Control on the number of elements that are returned from the 

data server. 
• Advanced navigation capabilities in the returned reports. 
• Ability to dynamically summarize and filter the query results 

on the reports pages. 
XQForms delivers this rich functionality while providing rapid 
implementation of the Web site, since the query construction and the 
report formatting are automated, and the separation of form content, 
logic and presentation clearly decouples web design from the forms 
and reports development. 
In the following section we introduce our running example of an 
XQForm. In Section 3, we present in detail the development process 
of the XQForms and we describe the main modules of the XQForms 
architecture. In Section 4 the annotation scheme for defining the 
logic of the XQForms is described. Section 5 describes the 
automatic creation of reports and Section 6 presents the XQForms 
Editor, a graphical interface for the currently available 

implementation of XQForms. Sections 7 and 8 discuss related work 
and offer some conclusions. 

2. XQFORMS EXAMPLE 
In this section we introduce our running example of an XQForm for 
querying and browsing sensor products that we will use to illustrate 
the XQForms development process. The set of form and report 
pages and the functionality they provide is displayed in Figure 2. 
The Query Form on the left panel consists of a set of query 
elements, such as the Manufacturer selection list and the Part 
Number text box. Each such query element is generated by a query 
form control provided by XQForms that is bound to a data element 
of the proximity sensors’ XML Schema (shown in Figure 3). The 
binding between the query form control and the data element to be 
queried is specified by an annotation to the XML schema of the data 
(XQForm annotation). In the lower left corner, the user can 
determine the sort-by list and the type of sorting (ascending, 
descending) by choosing and adding elements from a drop-down 
list. The possible values contained in the drop down list are also 
determined by a query form control provided by XQForms, and 
again the binding of the data element (such as output_type) to 
the particular control is specified by the XQForm annotation. By 
using the query elements on the form, the end user is able to 
constrain desirable characteristics of the product being sought, such 
as Manufacturer, Body Type, Dimensions, etc., and then, submit the 
query form. 
The Report page is displayed on the right panel. The main entity 
returned is a proximity sensor product. The columns shown in the 
report correspond to elements of the XML Schema of the proximity 
sensors in Figure 3. Both the main entity of the report and the data 

Figure 2 - XQForms-generated forms and reports 

643



elements to be shown in the columns of the report are specified in 
the XQForm annotation. The structure of the page follows the XML 
Schema of the proximity sensors. Notice, for example, that a sensor 
may have multiple supply voltages, i.e., supply_voltage is a 
repeatable element. In that case, multiple triplets of voltage type, 
min and max appear for the each sensor. 

 
Figure 3 - Sample Data XML Schema 

Under the headers of the table there are summarization/filtering lists 
that show the possible values for each column for the specific report. 
By selecting one of these values, the results are constrained to this 
particular value. The XQForm annotation specifies which elements 
in the XML Schema the report will include summarization/filtering 
lists for. 
Note that the elements added by the end user to the sort-by list of the 
query form are displayed grouped in the report, like the 
Manufacturer and Output Type values. Finally, note that the overall 
presentation of the pages displayed in Figure 2 (fonts, color scheme, 
etc.) is automatically generated by XQForms and can be easily 
customized by a web designer using standard web design tools and 
methods (e.g., Cascading Style Sheets). 

3. XQFORMS’ DEVELOPMENT PROCESS 
As Figure 4 indicates, XQForms’ development process consists of 
three steps. During the first step, the design phase, the annotation 
author declaratively specifies the logic of the forms and reports to be 
generated using the annotation scheme. In the second step, the 
compilation phase, the presentation of the forms and reports is 
generated from the compiler module of XQForms. In the last step, 
the run-time phase, the end users access the generated pages and the 
run-time engine module constructs queries out of the submitted 
values and issues them against the data server in order to render the 
returned XML data to the reports that are sent back to the end users. 
More specifically, in the design phase, the starting point of 
developing a single XQForm is the XML Schema, which describes 
the structure of the XML data to be queried. Figure 3 displays in 
graphical form, provided by the XML Authority® schema editor, 
part of the XML Schema for proximity sensors that is used in our 
running example, expressed in the XML Schema Definition (XSD) 
language. From this schema, the annotation author uses the 
annotation scheme to create a declarative specification of the form 
and report to be generated (an annotation). The annotation scheme 
is a language that defines an easily extensible collection of query 
form controls, such as text boxes and selection lists, their properties, 
and how they are bound to data elements of an XML Schema. It also 
allows the expression of potential dependencies between these 
controls, and the specification of the data elements that will appear 
in the report. An annotation is an instance of the annotation scheme 

that binds particular query form controls to elements in a particular 
XML Schema and sets their properties. The annotation describes the 
logic of the XQForm, is saved in an XML file, and is used by the 
run-time engine to produce a query upon the form submission. 

 
Figure 4 – XQForms’ Development Process 

In the compilation phase, the XQForms compiler takes as input the 
XML Schema, the XQForm annotation and a predefined template 
presentation library, and outputs a presentation of the query form 
and report pages. The template presentation library is used to 
translate the XQForm annotation into the pages that the end user 
interacts with. In particular, each query form control has a 
presentation template that is instantiated during the compilation 
based on the settings for the query form control properties in the 
XQForm annotation. As a result, query elements such as text fields, 
drop-down selection lists, etc., appear on the query form as shown 
in Figure 2. Also, an XSL script can be generated during this phase 
that will be used during run-time to create the report pages from the 
query results, as explained in more detail in Section 5. 
Finally, in the run-time phase, when the end user requests an 
XQForm, she gets back the query form page as a response from 
where the XQForms run-time engine resides. At this step, the run-
time engine receives the submitted parameters from the end user and 
constructs an XML query that retrieves the data elements to be 
presented in the report, constrained according to the conditions 
imposed from the query form controls. In particular, each query 
form control incorporates query capabilities such as selection 
conditions. The query form controls included in the XQForm 
annotation contribute accordingly to the query constructed by the 
run time engine. The constructed query is submitted to the data 
server and the returned XML data are rendered from an XSL 
processor and sent back to the end user. The XSL processor uses the 
XSL script that was created during the compilation phase. 

3.1 XMAS Query Language 
XQForms communicates with the data server by using the XMAS 
(XML Matching And Structuring) query language [8]. The XMAS 
query in Figure 5 is an example of the queries that the XQForms 
run-time will produce from the pages in Figure 2. We briefly explain 
the XMAS query language in the next paragraphs. It is 
straightforward to adjust the query form controls to produce query 
statements of most proposed XML query languages [13]. 
The semantics of XMAS are similar to OQL. The query consists of 
two parts or clauses: the construct and where clauses. The where 
clause specifies which elements of the input XML source are needed 
to produce the output and it is composed of path expressions similar 
to OQL’s. A path expression is matched against the source and 
results in bindings to variables for XML fragments that matched the 

644



expression. The construct clause specifies how the output should be 
produced from the fragments supplied by the where clause. 
The query shown in Figure 5 is generated from the query form of 
Figure 2. In line 15 the path proximity_sensors.product is 
matched against the XML source proxSource. Variable $P 
receives the resulting bindings. In lines 16-17 the element 
base_part_number and the value of the manufacturer 
element are extracted from every binding of $P, to be included in 
the query result. In line 18, the variable $SPEC binds to the element 
specs so that the condition on diameter, shown in Figure 2, can 
be imposed in line 19 and the value of the output_type element 
retrieved in line 20. 

 
Figure 5 - XMAS Query 

The construct clause specifies how the XML output is assembled 
from the variable bindings produced from the where clause. The 
construct clause uses tree patterns along with grouping and sorting 
expressions. In our example, in line 2 an answer element is 
constructed as the root of the XML output. Inside it, the element 
product is constructed. Inside the product element, we 
construct all elements that are included in the report shown in Figure 
2 (supply_voltage is omitted from the query for simplification) 
by following the exact structure of the data XML Schema (lines 5-
9). 
There are two kinds of grouping expressions used in the above 
construct clause: 

• $V {$V1, …, $Vn}, as in line 6. 

• element {$V1, …, $Vn}, where element is an element 
pattern, as in line 10. 

The list of variables included in the curly brackets is called a 
collection list. Both expressions create a list of elements or values 
for each distinct combination of variable bindings in the collection 
list. If the collection list appears in the scope of another collection 
list, as in the case of {$BPN} in line 6 appearing within {$M, 
$OUT, $P} in line 10, then the inner collection list produces a list 
of elements or values that occur within a distinct combination of 
variable bindings of the outer collection lists. 
In our example, in line 6, one base_part_number element is 
created for each binding of the $BPN variable within each distinct 
combination of the $M, $OUT and $P variables. In line 10, one 
product element is created for each binding of the $M, $OUT 
and $P variables. Finally, in line 11, the sorting expression sorts the 
product elements by the variables $M (manufacturer) and 
$OUT (output_type), again as specified in Figure 2. 

4. ANNOTATION SCHEME 
The annotation scheme is a language that defines an easily 
extensible collection of query form controls, such as text boxes and 
selection lists, their properties, and how they are bound to data 
elements of an XML Schema. It also allows the expression of 

potential dependencies between these controls, and the specification 
of the data elements that will appear in the report. The annotation 
scheme itself is modeled by an XML Schema, part of which is 
shown in Figure 6 below. Particular XQForms are defined via 
instantiations of this annotation scheme, called XQForms 
annotations (or simply annotations). In this section we elaborate on 
the query form part of an XQForm, which is specified by the form 
subelement of the xqform root element. Section 5 presents in detail 
the specification of an XQForm report. 
Continuing with our running example, we use the data XML 
Schema in Figure 3 to generate the XQForm that appears in Figure 
2. 

 
Figure 6 - Annotation Scheme Overview 

4.1 Forms and Query Form Controls 
The building blocks of the query part of an XQForm are the query 
form controls, referred to simply as ‘controls’ in the rest of the 
presentation. Each consists of two components, the server-side 
component and the client-side component. The server-side 
component implements the query capability of the control, i.e., it is 
responsible for constructing the appropriate selection condition or 
sorting condition that will potentially be included in the XML query 
when the user submits the form with appropriate input parameters. 
The client-side component presents the control on the query form 
page, and is the instantiated presentation template for the control, as 
mentioned in Section 3. This architecture allows the specification of 
the query capabilities of the control to be decoupled from their 
presentation, as in [7]: the one defines the way to construct query 
conditions, while the other defines the way to interact and exchange 
data with the end user. 
The current implementation of XQForms supports five types of 
controls, as Figure 6 indicates: text, for conditions involving 
string and relational predicates, range, for range conditions, 
select, for conditions involving a set of constant values and 
string, relational and element existence predicates, boolean, for 
boolean conditions, and sortbys, for specifying the data elements 
that the end user can sort the query result by in the report page. This 
set of controls is easily extensible depending on the query 
capabilities we want to incorporate. 

645



As shown in Figure 6, the form subelement of the xqform 
element contains the specifications of the controls. The details of 
these specifications are not shown in Figure 6. The details of the 
specification for the select control are shown in Figure 8. The 
annotation scheme organizes the controls into an arbitrary hierarchy 
of categories as the structural recursion involving the category 
element denotes. Each category has a label attribute and 
contains a set of controls and nested categories. This hierarchy is 
useful for the management and customization of large forms. In our 
running example displayed in Figure 2, the XQForms annotation 
(which as we explained is an instance of the annotation scheme) 
defines a first-level category with the label “Proximity Sensors” and 
organizes the query form controls into two second-level categories 
named “General” and “Mechanical.” 
Let us explain in more detail how the end user can impose a 
condition on the manufacturer element of the XML Schema in 
Figure 3 using a select control. The lifecycle of a query form 
control involves all three phases of the development process of 
XQForms, shown in Figure 4, and is summarized in Figure 7. 

 
Figure 7 - Query Form Control’s Lifecycle 

1. In the design phase, the annotation author decides which data 
elements in the XML schema she wants to include in the query 
form. For each one of them she picks a control and sets its 
properties that are given in the annotation scheme. For the 
manufacturer element, a select control is chosen and its 
properties are set according to the relevant part of the 
annotation scheme shown in Figure 8. In particular, the 
values property is set by: 
a. specifying the values of the select list for the control in the 

label subelement in Figure 8 
b. specifying the values as they appear in data, if different 

that label, in the data_value subelement 
c. specifying the elements of the data XML Schema these 

values bind to in the binding_path subelement, and 
d. specifying which predicate (such as ==, <=, etc) will be 

used in association with the values. 
An example annotation setting these properties is shown in 
Figure 9 and described in detail later in this section. 

2. In the compilation phase, the XQForms compiler takes as input 
the annotation and the template presentation library. The 
library contains a template for each control. The compiler 
instantiates the template and thus creates the client-side 
component of the control. The client-side component of the 
control is included on the query form page and presented to the 
end user. In this example, the presentation template for the 
select control renders the manufacturer control as a single-
selection drop-down list including the possible values specified 
in the design phase. Note that this is one way to present this 
control. Another way would be a set of radio buttons, or a 
multiple-selection drop-down list. In these cases the annotation 

scheme remains the same but the presentation template 
changes. 

3. When the end user hits the XQForm, the run-time engine takes 
as input the annotation and creates the server-side component 
of each control. This component receives the parameters the 
end user submits and contributes accordingly to the XMAS 
query sent to the data server. Figure 7 shows the part that the 
server-side component of the manufacturer control contributes 
to the XMAS query when the Turck value is submitted via the 
query form. As can be seen in Figure 7 and the annotation 
shown in Figure 9, the XML Schema element specified in the 
binding path of the value Turck is used to bind variable $M to 
the manufacturer data element of the proxSource XML 
data source. Similarly, the equality predicate is used in the 
query to impose the condition on the Turck submitted 
parameter, as specified in the annotation. If multiple values 
were selected, the condition would be a disjunction of these 
values. 

Figure 8 shows in detail the specification of the select control as 
it appears in the annotation scheme and how its properties are 
structured. The set of properties common to all controls include the 
label of the control and the info. The info is ‘attached’ to the 
label and is rendered as a hyperlink to an explanatory text. The 
additional element specifies if the control is initially hidden, as 
is the Part Number control, rendered in darker background color, in 
Figure 2. The unit element specifies if the bound data elements 
have a specific measuring unit and the precision that will be used to 
show the returned values in the report. Controls can be easily built 
that give the ability to the end user to choose among several units in 
which she can express the parameters1, like the Dimensions control 
in Figure 2. The rest of the elements are specific to the select 
control. 
The values element models the possible values of the select 
control. These values can either be specified manually using the 
value elements or they can be extracted from the data at run-time 
using the dynamic element. The value elements can bind to 
different data XML Schema elements via different binding paths 
and can use different predicates to apply a condition to the XML 
data. Their label and data_value subelements give the option 
to the author to rename a data value to something more meaningful 
to the end user, because the possible data values might be 
constrained by other factors (e.g., whitespace is not allowed for 
XML element names). The dynamic element is used when the 
possible values appearing in the form are extracted directly from the 
XML data by executing an XMAS query. This feature is very useful 
in the case of frequently updated data. The multiple element 
determines if the end user will be allowed to select multiple values, 
in which case a disjunction of the conditions generated from each 
value will be included in the XMAS query. The dependencies 
element is used from the annotation author to express dependencies 
among the controls and is further discussed in section 4.2. 

                                                                 
1 XQForms already includes controls, beyond the basic five we described, 

with this capability. 

646



 
Figure 8 - select Control Detail Specification 

The part of an example annotation referring to the Manufacturer 
select control in Figure 2 is shown below. Note the 
correspondence of the properties of the control to its presentation 
and the condition that it imposes in the XMAS query as they appear 
in Figure 7. The presentation of the control places the Manufacturer 
label next to the drop-down list, which lists the possible values 
based on the label subelement of each value element. If the end 
user chooses the Turck value, the binding_path and 
condition subelements of the specific value element are used 
to construct the XMAS query fragment shown in Figure 7. 
<select> 
  <label>Manufacturer</label> 
  <values> 
    <value default=”true”>  
      <label>No preference</label>  
      <data_value>any</data_value> 
      <binding_path></binding_path> 
      <condition>EQ</condition> 
    </value> 
    ... 
    <value> 
      <label>Turck</label> 
      <binding_path> 
proximity_sensors/product/manufacturer 
      </binding_path> 
      <condition>EQ</condition> 
    </value> 
  </values> 
  <multiple>false</multiple> 
  <additional>false</additional> 
</select> 

Figure 9 - Example select Control Annotation 

4.2 Expressing Dependencies 
The dependencies element of the select control in Figure 8 
allows the annotation author to express dependencies among 
controls as the example in Figure 10 demonstrates. For each body 
type, a different set of controls has to be involved in querying the 
dimensions of the body type, and the appropriate set of client-side 
components for querying these dimensions has to be shown on the 

query form. The annotation author uses a select control to query 
the body_type element of the sensors’ XML Schema, which has 
one value with label Cylindrical that binds to the cylindrical 
subelement of the XML schema and one value with label 
Rectangular that binds to the rectangular subelement. The 
author also binds controls to the dimensions of either body type 
elements. She wants the corresponding controls to appear whenever 
one or the other value is selected. So when the Body Type control 
takes the value Cylindrical the client-side components of the 
controls for diameter and depth should appear on the page, and 
when Rectangular is selected, the corresponding components for the 
controls for height, width and depth controls should appear. 

 
Figure 10 - Expressing Dependencies 

The dependencies element gives the ability to express these 
dependencies. From Figure 8, the if subelement of the 
dependencies element captures the different cases for each 
possible value of the select control. The selection element is 
set to one of the label elements and the id identifies a query form 
control that has to appear upon value selection2. The action carried 
out when a dependency is detected is defined in the presentation 
templates of the query from controls, and thus can easily change. So, 
instead of the XQForms default ‘show/hide’ action, the controls 
could get disabled and enabled. Note that dependencies can be 
expressed among controls that bind to any element in the XML 
Schema. 

 
Figure 11 - Report Specification 

5. REPORTS 
Using the annotation scheme shown in Figure 6, the annotation 
author specifies the data element that will appear on the report page 
of the XQForm. She does it by instantiating the report 
subelement of the xqform element, whose structure is shown in 
detail in Figure 11. Each XQForm needs exactly one 
main_result_unit element. It serves as a projection over an 
element of the XML Schema of the data. Usually it is the first 

                                                                 
2 Note in Figure 6 that every control has an id subelement. 

647



repeatable element, as in our running example, where the main 
result unit is the product data element. But in big schemas it can 
be used to project out only a small subtree of it. All the data 
elements that are included in the report must be its subelements, 
since this element is always the first element constructed, under the 
answer element, in the XMAS query produced from the XQForms 
run-time engine. 
The result subelements of the report element capture the 
structure of the report. Each result element specifies which data 
subelement of the main result unit will be included in the report and 
its structure is quite simple. It has a label, a binding_path, 
which is pointing to the data element via an XPath, and a 
summarize element that indicates whether the distinct values of 
the corresponding element should be presented in the report, and if 
so, ascending or descending. The unit element has the same 
semantics with the one in the query form controls’ specification. The 
pattern and template elements are used to customize the 
presentation of the specific data element and are further discussed in 
section 5.2. The part of the annotation referring to the report page in 
Figure 2 is shown below: 
<report> 
  <main_result_unit> 
    <binding_path> 
      proximity_sensors/product 
    </binding_path> 
  </main_result_unit> 
  <result> 
    <label>Manufacturer</label> 
    <binding_path> 
proximity_sensors/product/manufacturer 
    </binding_path> 
    <pattern> 
      concat(., ‘ Manufacturer’)  
    </pattern> 
    <summarize order=”ASC”>  
      true 
    </summarize> 
  </result> 
  <result> 
    <label>Part Number</label>  
    <binding_path> 
proximity_sensors/product/base_part_number 
    </binding_path> 
    <template> 
      base_part_number.xsl 
    </template> 
    <summarize>false</summarize> 
  </result> 
  ... 
  <result> 
    <label>Min</label> 
    <binding_path> 
proximity_sensors/product/specs/supply_voltag
es/supply_voltage/min 
    </binding_path> 
    <unit> 
      <label>V</label> 
      <precision>0</precision> 
    </unit> 
    <summarize order=”ASC”>  
      true 
    </summarize> 
  </result> 
  ... 
</report> 

5.1 Report Formatting 
When the end user submits the query form, an XMAS query is 
constructed from the run-time engine on the server side using the 
submitted parameters. This query is sent to the data server, and asks 
only for the data elements that have been included in the annotation 
from the annotations author. The data server responds with the 
XML data that satisfy the query. These data are rendered with an 
automatically generated XSL script and the resulting report is sent 
back to the end user’s browser. 
The idea of using templates is applied in the formatting of the report, 
where templates are used for the presentation of simple elements 
(leaves in the data XML Schema), one for each data type supported, 
and for the presentation of complex elements (elements that have 
subelements). Putting these templates together to construct the final 
XSL script is done by the XQForms run-time engine. 
The run-time engine, in order to produce the final XSL script, takes 
as input the XSL templates for simple and complex elements, which 
are provided from the template presentation library, and the 
construct clause of the XMAS query. The construct clause reveals 
the structure of the XML data that are sent back from the data 
server. The engine applies a special XSL script, a metaXSL script, 
which follows the structure of the construct clause and attaches to 
the simple and complex elements the XSL templates that will render 
them in the presentation language. Essentially, a metaXSL script is 
applied to the metadata of the XML result data in order to produce 
the XSL script for the actual data. 
In our running example, the final XSL script that renders the query 
result to the report shown in Figure 2 is constructed from several 
different XSL templates as Figure 12 shows. The functionality these 
XSL scripts encapsulate, and the way they are composed to form the 
final XSL script, are described next. 
The template named top.xsl contains the main XSL stylesheet that is 
used to render the XML query result. This template is static in the 
sense that it is executed directly against the XML data and is the 
same for every XQForm. The XSL templates created from all the 
other metaXSL scripts are appended to this stylesheet. It also 
contains the declarations of all the global parameters that are passed 
to the final XSL script. The templates listed next are metaXSL 
scripts in the sense that they are dependent on the query executed 
and they change depending on the query result. 

• head.xsl 
Displays the headers of the of the XML data, which can be 
arbitrarily nested as the Supply Voltage Ranges column in 
Figure 2 shows. The tree structure for the headers is 
constructed from the result elements, which are specified 
through the annotation scheme and the XMAS construct 
clause. The nodes of this structure are of the special type 
header and so they are presented using the same XSL template. 

• summarize.xsl 
This template detects the columns that are summarized in the 
XMAS query and shows the drop-down lists under the leaves 
of the headers tree structure. These lists contain the possible 
distinct values of the corresponding columns. In this example, 
these lists are included in their own HTML forms that are 
submitted any time the end user selects a specific value in order 
to filter the data presented in the report. 

• body.xsl 
This XSL template also follows the structure of the XMAS 

648



construct clause and attaches the XSL templates for complex 
elements in order to reveal this structure visually. It also checks 
the data type of each simple element that is presented and 
attaches the corresponding XSL template to it. 

 
Figure 12 - Automatic Report Formatting 

The paradigm of nested tables is heavily used for the visual 
translation of nested and/or repeatable elements. The visual 
presentation of tables is specific to the presentation language. As a 
structure, nested tables are quite general and intuitive. In particular, 
from a practical point of view, in an important application for query 
forms, complex product catalogs for e-commerce use nested tables 
as the basic presentation structure. Also, from a theoretical point of 
view, the complex value algebra uses the similar notion of nested 
relations as the basic structure [1]. 
Note that the automatic XSL script creation described above can be 
carried out in two different phases of the XQForms development 
process. The script can be created at run-time, as described so far, if 
we want to support dynamic report structure, e.g., personalized 
settings. This does not add any latency to the query response since 
the creation of the final XSL script can start as soon as the XMAS 
query is constructed and is carried out in parallel with the query 
execution. In this case, the web designer can only customize the 
presentation templates for simple and complex elements as the next 
section describes. The final XSL script can also be created during 
the compilation phase. The web designer can then customize the 
whole script and the XQForm uses this static customized script to 
render the reports on the fly. 

5.2 Report Customization 
As mentioned in the previous section, XQForms provide a separate 
XSL template for each data type of a simple element and a generic 
one for complex elements. Currently, the simple data types of the 
XML Schema specification that supported are integer, float, 
boolean, and string. The web designer can customize the 
default presentation of the data elements using either the pattern 
or the template element of the report specification of Figure 11. 
Using the first option, we can define a pattern, which is a standard 
XSL function that manipulates the data value for a specific element 
in the report. In our running example, we defined a pattern for the 
Manufacturer element that concatenates the element value with the ‘ 
Manufacturer’ string (not shown in Figure 2). 

The web designer can also use the template element to define an 
external XSL template that customizes the presentation of an 
element. In the sensors example, the base_part_number 
element is presented as a hyperlink to, possibly, a detailed product 
page. For this purpose, an XSL template is defined in 
base_part_number.xsl. The name of the XSL template is composed 
from the form name and the XPath that leads to the element that it 
will render. So the XSL template for the base part number is named 
prox/proximity_sensors/product/base_part_numb
er, where prox is the name of the XQForm. It presents the value 
of the base_part_number element as a hyperlink to 
some_target, as the following code shows. 
<?xml version=”1.0”?>  
<xsl:stylesheet 
xmlns:xsl=”http://www.w3.org/1999/XSL/Transfo
rm”> 
  <xsl:template 
name=”prox/proximity_sensors/product/base_par
t_number”> 
    <xsl:element name=”a”>  
      <xsl:attribute name=”href”>  
some_target?base_part_number= 
<xsl:value-of select=”.”/>  
      </xsl:attribute> 
      <xsl:attribute name=”CLASS”>  
        rowText 
      </xsl:attribute> 
      <xsl:value-of select=”.”/>  
    </xsl:element> 
  </xsl:template> 
</xsl:stylesheet> 

The XQForms run-time engine loads these templates and detects the 
bindings during the final XSL script construction. Finally, the styles 
applied to all presentation templates of XQForms are controlled 
from a central CSS file. The web designer can easily determine the 
look and feel of entire XQForms by changing the styles used across 
the presentation templates for the query form controls and/or the 
styles used in the XSL templates for simple and complex elements 
included in the report. 

6. XQFORMS EDITOR 
The XQForms Editor is a graphical user interface (GUI) for creating 
XQForms annotations. The basic editor screen is composed of the 
following three panes, as illustrated in Figure 13. 

• The schema pane on the left displays the data XML Schema in 
a simple format. 

• The query form annotation pane on the center displays the 
query form controls included in the form and provides an 
editor for the properties of each one of them. 

• The report annotation pane, positioned on the right, displays 
the data elements that will be presented in the report. 

7. RELATED WORK 
The XML Forms Language [7] also defines forms independent of 
how they are rendered and presented to the end user. On the 
submission of the form, though, an XSL script called Formsheet is 
applied to the form values in order to transform them into an 
arbitrary XML structure instead of producing a query against XML 
data. 
The same idea is adopted by XForms [12], a W3C working group 
that builds a specification on how to extend HTML forms. The goal 
is to enable the end user to communicate with the web server 

649



through XML structured documents that conform to XML Schemas 
instead of the current method of a list of parameter/value pairs. 
XForms also tries to push as much functionality as possible to the 
end user’s side. The idea of expressing dependencies between query 
form controls presented in this paper is also present in XForms. No 
capability for queries against XML data exists. We intend to fully 
implement the upcoming XForms specification that allows richer 
and more functional interfaces for data gathering and exchange. 
Strudel [5] is an integration system that is based on labeled directed 
graphs for both data and site modeling. The query language, 
StruQL, is used to define both the way data is integrated from 
multiple sources (data graph), and the pages that make up the web 
site and the way they are linked (site graph). A form is defined on 
the edges of the site graph by specifying a set of free variables in the 
query that produces the node underneath the edge. These variables 
will be bound by the controls of the query form. A major difference 
between this and our approach is that, in Strudel, the form designer 
needs to write the StruQL query to produce the reports. Another 
significant difference is that Strudel does not enable the automatic 
rendering of query results. 
There are also many web site development platforms, like 
Microsoft’s Visual InterDev, that implement an automated process 
to graphically build advanced query form and report pages with 
summarization and navigation capabilities. These platforms, though, 

operate only on top of relational databases and there is no separation 
between the specification and the implementation of the pages. 
The XQForms functionality is influenced from database interfaces 
and techniques to query XML and object oriented data [2, 9]. These 
systems use a graphical environment to navigate and drill-down into 
the instance of the data model by blending querying and browsing 
either on a tree or a graph structure. The summarization 
functionality is influenced from the work in [10], where advanced 
techniques and data structures for summarizing are presented. 

8. CONCLUSIONS 
This paper has presented the XQForms generator for declarative 
specifications of Web-based query forms and reports for XML data. 
The architecture consists of four main components: 

• The query form controls that are the building components of a 
query form. 

• The annotation scheme that allows the rapid and declarative 
specification of XML query forms and reports by binding 
query form controls to elements defined in the XML Schema 
of the data. 

• The compiler that translates the declarative specification of an 
XQForm to one or more query form and report pages. 

• The run-time engine that performs the automatic query 
construction and report formatting. 

Figure 13 - XQForms Editor 

650



XQForms provide templates and styles for a default rendition of 
query form controls on the query form page, and of simple and 
complex XML elements on the report page. Web designers have the 
option to customize the layout and the look and feel of the 
presentation either before or after the compilation of XQForms 
using widely available Web-authoring tools. 
In the near future, we plan to extend our model with navigation 
capabilities similar to the ones that Strudel [5] and WebML [3] 
support for linking static and dynamic pages. 
An on-line demonstration of the example presented in this paper can 
be found at: http://www10.enosysmarkets.com 

9. REFERENCES 
[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of 

Databases, Addison Wesley, 1996. 
[2] M. Carey, L. Haas, V. Maganty, J. Williams: PESTO: 

An Integrated Query/Browser for Object Databases, in 
Proceedings of  VLDB 1996, pp. 203-214. 

[3] S. Ceri, P. Fraternali, A. Bongio: Web Modeling 
Language (WebML): a modeling language for designing 
Web sites, in Proceedings of WWW9, Toronto, Canada, 
May 1999. 

[4] D. Chamberlin, J. Robie, and D. Florescu: Quilt: An 
XML Query Language for Heterogeneous Data Sources, 
In Lecture Notes in Computer Science, Springer-Verlag, 
2000. 

[5] M. Fernandez, D. Suciu and I. Tatarinov: Declarative 
Specification of Data-intensive Web sites, Proc. 
Workshop on Domain Specific Languages, 1999. 

[6] D. Florescu, A. Deutsch, A. Levy, D. Suciu, and M. 
Fernandez: A Query Language for {XML}, in 
Proceedings of Eighth International World Wide Web 
Conference, 1999. 

[7] A. Kristensen: Formsheets and the XML Forms 
Language, in Proceedings of WWW9, Toronto, Canada, 
May 1999. 

[8] B. Ludascher, Y. Papakonstantinou, P. Velikhov, 
Navigation-Driven Evaluation of Virtual Mediated 
Views, In Extending Database Technology (EDBT) 
2000. 

[9] K. Munroe, Y. Papakonstantinou, BBQ: A Visual 
Interface for Browsing and Querying XML, In Visual 
Database Systems (VDB) 2000. 

[10] J. Shafer, R. Agrawal: Continuous Querying in 
Database-Centric Web Applications, in Proceedings of 
WWW9, 2000. 

[11] S. Staab, J. Angele et al.: Semantic Community Web 
Portals, in Proceedings of WWW9, 2000. 

[12] M. Dubinko et al.: XForms Requirements, W3C 
Working Draft 21 August 2000.  
http://www.w3.org/TR/xhtml-forms-req 

[13] D. Chamberlin et al.: XML Query Requirements, W3C 
Working Draft 15 August 2000.  
http://www.w3.org/TR/xmlquery-req 

[14] D. Fallside, XML Schema Part 0: Primer, W3C 
Candidate Recommendation 24 October 2000.  
http://www.w3.org/TR/xmlschema-0/ 

[15] S. Adler et al.: Extensible Stylesheet Language (XSL) 
Version 1.0, W3C Working Draft 18 October 2000. 
http://www.w3.org/TR/xsl/ 

[16] Microsoft BizTalk Server.   
http://www.microsoft.com/biztalk/ 

[17] OASIS, the Organization for the Advancement of 
Structured Information Standards.  
http://www.oasis-open.org

 

651


