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ABSTRACT
Recently, there have been a number of algorithms proposed
for analyzing hypertext link structure so as to determine the
best “authorities” for a given topic or query. While such
analysis is usually combined with content analysis, there is
a sense in which some algorithms are deemed to be “more
balanced” and others “more focused”. We undertake a com-
parative study of hypertext link analysis algorithms. Guided
by some experimental queries, we propose some formal crite-
ria for evaluating and comparing link analysis algorithms.
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1. INTRODUCTION
In recent years, a number of papers [3, 8, 11, 9, 4] have

considered the use of hypertext links to determine the value
of different web pages. In particular, these papers consider
the extent to which hypertext links between World Wide
Web documents can be used to determine the relative au-
thority values of these documents for various search queries.
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We consider some of the previously published algorithms
as well as introducing some new alternatives. One of our
new algorithms is based on a Bayesian statistical approach
as opposed to the more common algebraic/graph theoretic
approach. While link analysis by itself cannot be expected
to always provide reliable rankings, it is interesting to study
various link analysis strategies in an attempt to understand
inherent limitations, basic properties and “similarities” be-
tween the various methods. To this end, we offer definitions
for several intuitive concepts relating to (link analysis) rank-
ing algorithms and begin a study of these concepts.

We also provide some new (comparative) experimental
studies of the performance of the various ranking algorithms.
It can be seen that no method is completely safe from “topic
drift”, but some methods do seem to be more resistant than
others. We shall see that certain methods have surprisingly
similar rankings as observed in our experimental studies,
however they cannot be said to be similar with regard to
our formalization.

2. PREVIOUS ALGORITHMS

2.1 The PageRank Algorithm
One of the earliest and most commercially successful of

the efforts to use hypertext link structures in web searching
is the PageRank algorithm used by Brin and Page [3] in the
Google search engine [7].

The page rank of a given web page i, denoted PR(i), is
defined recursively according to the equation

PR(i) = dD(i) + (1 − d)
∑
j→i

[PR(j) /N(j)] ,

where the sum is taken over all pages j which have a link
to page i, N(j) is the total number of links originating from
page j, d is a number between 0 and 1, and D is a probability
distribution (e.g. uniform) over all web pages.

Brin and Page [3] note that the value of PR(i) is equiv-
alent to the limiting fraction of time spent on page i by a
random walk which proceeds at each step as follows: With
probability d it jumps to a sample from the distribution
D(·), and with probability 1 − d it jumps uniformly at ran-
dom to one of the pages linked from the current page. This
idea is also used by Rafiei and Mendelzon [11] for computing
the “reputation” of a page. Intuitively, the value of PR(i) is
a measure of the importance or authority of the web page i.
This ranking is used as one component of the Google search
engine, to help determine how to order the pages returned
by a web search query.
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2.2 Kleinberg’s Algorithm
Independent of Brin and Page, Kleinberg [8] proposed

a more refined notion for the importance of web pages.
He suggested that web page importance should depend on
the search query being performed. Furthermore, each page
should have a separate “authority” rating (based on the links
going to the page) and “hub” rating (based on the links going
from the page). Kleinberg proposed first using a text-based
web search engine (such as AltaVista [1]) to get a “Root
Set” consisting of a short list of web pages relevant to a
given query. Second, the Root Set is augmented by pages
which link to pages in the Root Set, and also pages which
are linked to pages in the Root Set, to obtain a larger ‘Base
Set” of web pages. If N is the number of pages in the final
Base Set, then the data for Kleinberg’s algorithm consists
of an N ×N adjacency matrix A, where Aij = 1 if there are
one or more hypertext links from page i to page j, otherwise
Aij = 0.

Kleinberg’s algorithm assigns to each page i an authority
weight ai and a hub weight hi. Let a = (a1, a2, . . . , aN ) de-
note the vector of all authority weights, and h = (h1, h2, . . . , hN )
the vector of all hub weights. Initially both authority and
hub vectors are set to u= (1, 1, . . . , 1). At each iteration
the operations I (“in”) and O (“out”) are performed. The
operation I sets the authority vector to a = AT h. The
operation O sets the hub vector to h = A a. A normal-
ization step is then applied, so that the vectors a and h
become unit vectors in some norm. Kleinberg proves that
after a sufficient number of iterations the vectors a and h
converge to the principal eigenvectors of the matrices ATA
and AAT , respectively. The above normalization step may
be performed in various ways. Indeed, ratios such as ai/aj

will converge to the same value no matter how (or if) nor-
malization is performed.

Kleinberg’s Algorithm (and some of the other algorithms
we are considering) converge naturally to their principal
eigenvector, i.e. to the eigenvector of their transition matrix
which corresponds to the largest eigenvalue. Kleinberg [8]
makes an interesting (though non-precise) claim that the
subsequent non-principal eigenvectors (or their positive and
negative components) are sometimes representative of “sub-
communities” of web pages. It is easy to construct simple ex-
amples which show that subsequent eigenvectors sometimes
are, but sometimes are not, indicative of sub-communities;
we present a few indicative such examples in the full version
of this paper. The significance of non-principal eigenvectors
is an important topic that we intend to pursue further.

2.3 The SALSA Algorithm
An alternative algorithm, SALSA, was proposed by Lem-

pel and Moran [9]. Like Kleinberg’s algorithm, SALSA
starts with a similarly constructed Base Set. It then per-
forms a random walk by alternately (a) going uniformly to
one of the pages which links to the current page, and (b)
going uniformly to one of the pages linked to by the current
page. The authority weights are defined to be the station-
ary distribution of the two-step chain doing first step (a)
and then (b), while the hub weights are defined to be the
stationary distribution of the two-step chain doing first step
(b) and then (a).

Formally, let B(i) = {k : k → i} denote the set of all
nodes that point to i, that is, the nodes we can reach from
i by following a link backwards, and let F (i) = {k : i → k}

denote the set of all nodes that we can reach from i by fol-
lowing a forward link. The Markov Chain for the authorities
has transition probabilities

Pa(i, j) =
∑

k : k∈B(i)∩B(j)

1

|B(i)|
1

|F (k)| .

Assume for a moment that the Markov Chain is irre-
ducible, that is, the underlying graph consists of a single
connected component. The authors prove that the station-
ary distribution a = (a1, a2, ..., aN ) of the Markov Chain
satisfies ai = |B(i)| / |B|, where B =

⋃
i B(i) is the set of

all (backward) links. Similarly, the Markov Chain for the
hubs has transition probabilities

Ph(i, j) =
∑

k : k∈F (i)∩F (j)

1

|F (i)|
1

|B(k)| ,

and the stationary distribution h = (h1, h2, ..., hN ) satis-
fies hi = |F (i)| / |F |, where F =

⋃
i F (i) is the set of all

(forward) links.
SALSA does not really have the same “mutually rein-

forcing structure” that Kleinberg’s algorithm does. Indeed,
since ai = |B(i)|/|B|, the relative authority of site i within
a connected component is determined from local links, not
from the structure of the component. (See also the discus-
sion of locality in Section 7.) We also note that in the special
case of a single component, SALSA can be viewed as a one-
step truncated version of Kleinberg’s algorithm. That is, in
the first iteration of Kleinberg’s algorithm, if we perform the
I operation first, the authority weights are set to a = AT u,
where u is the vector of all ones. If we normalize in the L1

norm, then ai = |B(i)|
|B| , which is the stationary distribution

of the SALSA algorithm. A similar observation can be made
for the hub weights.

If the underlying graph of the Base Set consists of more
than one component, then the SALSA algorithm selects a
starting point uniformly at random, and performs a random
walk within the connected component that contains that
node. Formally, let j be a component that contains node i,
let Nj denote the number of nodes in the component, and
Bj the set of (backward) links in component j. Then, the
authority weight of node i is

ai =
Nj

N

|B(i)|
|Bj | .

Led astray by the simplifying assumption of a single com-
ponent, we considered a simplified version of the SALSA
algorithm where the authority weight of a node is the ratio
|B(i)|/|B|. This corresponds to the case that the starting
point for the random walk is chosen with probability propor-
tional to the “popularity” of the node, that is, the number of
links that point to this node. We will refer to this variation
of the SALSA algorithm as pSALSA (popularity SALSA)1.
We will consider the original SALSA algorithm as defined
in [9] in the full version of our paper.

An interesting generalization of the SALSA algorithm is
considered by Rafiei and Mendelzon [11]. They propose an
algorithm for computing reputations that is a hybrid of the
SALSA algorithm, and the PageRank algorithm. At each
step, with probability d, the Rafiei and Mendelzon algo-
rithm jumps to a page of the collection chosen uniformly at

1We thank Ronny Lempel and Shlomo Moran for pointing
out the difference between SALSA and pSALSA.
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random, and with probability 1 − d it performs a SALSA
step.

2.4 The PHITS Algorithm
Cohn and Chang [4] propose a statistical hubs and au-

thorities algorithm, which they call the PHITS Algorithm.
They propose a probabilistic model in which a citation c of
a document d is caused by a latent “factor” or “topic”, z. It
is postulated that there are conditional distributions P (c|z)
of a citation c given a factor z, and also conditional distri-
butions P (z|d) of a factor z given a document d. In terms
of these conditional distributions, they produce a likelihood
function.

Cohn and Chang then propose using the EM Algorithm
of Dempster et al. [5] to assign the unknown conditional
probabilities so as to maximize this likelihood function L,
and thus best “explain” the proposed data. Their algorithm
requires specifying in advance the number of factors z to
be considered. Furthermore, it is possible that their EM
Algorithm could get “stuck” in a local maximum, without
converging to the true global maximum.

3. RANDOM WALKS AND THE
KLEINBERG ALGORITHM

The fact that the output of the first (half) step of the
Kleinberg algorithm can be seen as the stationary distribu-
tion of a certain random walk on the underlying graph, poses
the natural question of whether other intermediary results
of Kleinberg’s algorithm (and ultimately the output of the
algorithm itself) can also be seen as the stationary distri-
bution of a random walk. We show that this is indeed the
case.

Theorem 1. There exist sequences Ma
1 ,M

a
2 , . . . ,M

a
n , . . .,

and Mh
1 ,M

h
2 , . . . ,M

h
n , . . . of Markov Chains, such that, for

each n ≥ 1, the stationary distribution of Ma
n is equal to the

authority vector after the nth iteration of Kleinberg’s algo-
rithm, and the stationary distribution of Mh

n is equal to the
hub vector after the nth iteration of Kleinberg’s algorithm.

Proof. We first introduce the following notation. We
say that we follow a B path if we follow a link backwards,
and we say we follow an F path if we follow a link forward.
We can combine these to obtain longer paths. For example
a BF path is a path that first follows a link backwards,
and then a link forward. Now, let (BF )n(i, j) denote the
set of (BF )n paths that go from i to j, (BF )n(i) the set
of (BF )n paths that leave node i, and (BF )n the set of all
possible (BF )n paths. We can define similar sets for the
(FB)n paths.

By definition of the (ATA)n, and (AAT )n matrices, we
have that |(BF )n(i, j)| = (ATA)n(i, j), and |(FB)n(i, j)| =
(AAT )n(i, j). Also, |(BF )n(i)| =

∑
j(A

TA)n(i, j), and

|(FB)n(i)| =
∑

j(AAT )n(i, j). After the nth operation of
the Kleinberg algorithm the authority vector a, and hub
vector h are the unit vectors in the direction of (ATA)nu
and (AAT )nu, respectively. (This actually assumes that in
order to compute the authority weights we switch the order
of the operations I and O, but asymptotically this does not
make any difference). If we take the unit vectors under the
L1 norm, then we have

ai =
|(BF )n(i)|
|(BF )n| , and hi =

|(FB)n(i)|
|(FB)n| . (1)

Now, we define the undirected weighted graph G(BF )n as
follows. The vertex set of the graph is the set of nodes in the
base set. We place an edge between two nodes i and j if there
is a (BF )n path between these nodes. The weight of the
edge is |(BF )n(i, j)|, the number of (BF )n paths between i
and j. We perform a random walk on graph G(BF )n . When
at node i, we move to node j with probability proportional
to the number of paths between i and j. The corresponding
Markov Chain M(BF )n has transition probabilities

Pa(i, j) =
|(BF )n(i, j)|
|(BF )n(i)| .

From a standard theorem on random walks on weighted
graphs (see, e.g., p. 132 of [10] for the corresponding re-
sult on unweighted graphs), the stationary distribution of
M(BF )n is the same as the vector a in equation (1). Simi-
larly, we can define the graph G(FB)n , and the correspond-
ing Markov Chain M(FB)n , for the hubs case. Setting Ma

n

to M(BF )n , and Mh
n to M(FB)n concludes the proof.

4. SOME MODIFICATIONS TO THE KLEIN-
BERG AND SALSA ALGORITHMS

While Kleinberg’s algorithm has some very desirable prop-
erties, it also has its limitations. One potential problem is
the possibility of severe “topic drift”. Roughly, Kleinberg’s
algorithm converges to the most “tightly-knit” community
within the Base Set. It is possible that this tightly-knit com-
munity will have little or nothing to do with the proposed
query topic.

A striking example of this phenomenon is provided by
Cohn and Chang ([4], p. 6). They use Kleinberg’s Algorithm
with the search term “jaguar” (an example query suggested
by Kleinberg [8]), and converge to a collection of sites about
the city of Cincinnati! They determine that the cause of
this is a large number of on-line newspaper articles in the
Cincinnati Enquirer which discuss the Jacksonville Jaguars
football team, and all link to the same standard Cincin-
nati Enquirer service pages. Interestingly, in a preliminary
experiment with the query term “abortion” (another exam-
ple query suggested by Kleinberg [8]), we also found the
Kleinberg Algorithm converging to a collection of web pages
about the city of Cincinnati!

Now, in both these cases, we believe it is possible to elim-
inate such errant behavior through more careful selection of
the Base Set, and more careful elimination of intra-domain
hypertext links. Nevertheless, we do feel that these examples
point to a certain “instability” of Kleinberg’s Algorithm.

4.1 The Hub-Averaging-Kleinberg Algorithm
We propose here a small modification of Kleinberg’s algo-

rithm to help remedy the above-mentioned instability. For
motivation, consider the following. Suppose there are M +1
authority pages, and M + 1 hub pages, with M large. The
first M hubs link only to the first authority, while the fi-
nal hub links to all M + 1 authorities. In such a set-up, we
would expect the first authority to be considered much more
authoritative than all the others, and Kleinberg’s algorithm
does indeed do this. On the other hand, it seems that the
final hub should be worse than the others, since in addition
to linking to a good authority (the first authority), it also
links to many bad authorities. However, according to Klein-
berg’s algorithm, it is the best hub, because linking to more
things can only improve your hub rating.
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Inspired by such considerations, we propose an algorithm
which is a “hybrid” of the Kleinberg and SALSA algorithms.
Namely, it does the authority rating updates I just like
Kleinberg (i.e., giving each authority a rating equal to the
sum of the hub ratings of all the pages that link to it), but
does the hub rating updates O by instead giving each hub a
rating equal to the average of the authority ratings of all the
pages that it links to. With this modified “Hub-Averaging”
algorithm, a hub is better if it links to only good authorities,
rather than linking to both good and bad authorities.

4.2 The Threshold-Kleinberg Algorithms
We propose two different “threshold” modifications to Klein-

berg’s Algorithm. The first modification, Hub-Threshold, is
applied to the in-step I. When computing the authority
weight of the ith page, this algorithm does not take into ac-
count all hubs that point to page i. It only counts those
hubs whose hub weight is at least the average hub weight
over all the hubs that point to page i, computed using the
current hub weights for the nodes. This corresponds to say-
ing that a site should not be considered a good authority
simply because a lot of very poor hubs point to it.

The second modification, Authority-Threshold, is applied
to the out-step O. When computing the hub weight of the
ith page, this algorithm does not take into account all au-
thorities pointed to by page i. It only counts those author-
ities which are among the top K authorities, judging by
current authority values. The value of K is passed as a pa-
rameter to the algorithm. This corresponds to saying that
a site should not be considered a good hub simply because
it points to a number of “acceptable” authorities; rather, to
be considered a good hub the site must point to some of
the best authorities. This is inspired partially by the fact
that, in most web searches, a user only visits the top few
authorities.

We also consider a Full-Threshold algorithm, which makes
both the Hub-Threshold and Authority-Threshold modifica-
tions to Kleinberg’s Algorithm.

4.3 The Breadth-First-Search Algorithm: A
Normalized n-step Variant

When the pSALSA algorithm computes the authority weight
of a page, it takes into account only the popularity of this
page within its immediate neighborhood, disregarding the
rest of the graph. On the other hand, the Kleinberg algo-
rithm considers the whole graph, taking into account more
the structure of the graph around the node, than the popu-
larity of that node in the graph. Specifically, after n steps,
the authority weight of the ith authority is |(BF )n(i)|/|(BF )n|,
where |(BF )n(i)| is the number of (BF )n paths that leave
node i. Another way to think of this is that the contribution
of a node j �= i to the weight of i is equal to the number
of (BF )n paths that go from i to j. Therefore, if a small
bipartite component intercepts the path between node j and
i, the contribution of node j will increase exponentially fast.
This may not always be desirable, especially if the bipartite
component is not representative of the query.

We propose the Breadth-First-Search (BFS) algorithm, as
a generalization of the pSALSA algorithm, and a restriction
of the Kleinberg algorithm. The BFS algorithm extends the
idea of popularity that appears in pSALSA from a one link
neighborhood to an n-link neighborhood. However, instead
of considering the number of (BF )n paths that leave i, it

considers the number of (BF )n neighbors of node i. We let
(BF )n(i) denote the set of nodes that can be reached from
i by following a (BF )n path. The contribution of node j
to the weight of node i depends on the distance of the node
j from i. We adopt an exponentially decreasing weighting
scheme. Therefore, the weight of node i is determined as
follows:

ai = 2n−1|B(i)|+2n−2|BF (i)|+2n−3|BFB(i)|+. . .+|(BF )n(i)|.

The algorithm starts from node i, and visits its neighbors
in BFS order. At each iteration it takes a Backward or a
Forward step (depending on whether it is an odd, or an even
iteration), and it includes the new nodes it encounters. The
weight factors are updated accordingly. Note that each node
is considered only once, when it is first encountered by the
algorithm.

5. A BAYESIAN ALGORITHM
A different type of algorithm is given by a fully Bayesian

statistical approach to authorities and hubs. Suppose there
are M hubs and N authorities (which could be the same set).
We suppose that each hub i has an (unknown) real parame-
ter ei, corresponding to its “general tendency to have hyper-
text links”, and also an (unknown) non-negative parameter
hi, corresponding to its “tendency to have intelligent hyper-
text links to authoritative sites”. We further suppose that
each authority j has an (unknown) non-negative parameter
aj , corresponding to its level of authority.

Our statistical model is as follows. The a priori probabil-
ity of a link from hub i to authority j is given by

P(i → j) =
exp(ajhi + ei)

1 + exp(ajhi + ei)
, (2)

with the probability of no link from i to j given by

P(i �→ j) =
1

1 + exp(ajhi + ei)
. (3)

This reflects the idea that a link is more likely if ei is large
(in which case hub i has large tendency to link to any site),
or if both hi and aj are large (in which case i is an intelligent
hub, and j is a high-quality authority).

To complete the specification of the statistical model from
a Bayesian point of view (see, e.g., Bernardo and Smith [2]),
we must assign prior distributions to the 2M +N unknown
parameters ei, hi, and aj . (These priors should be general
and uninformative, and should not depend on the observed
data. For large graphs, the choice of priors should have only
a small impact on the results.) To do this, we let µ = −5.0
and σ = 0.1 be fixed parameters, and let each ei have prior
distribution N(µ, σ2), a normal distribution with mean µ
and variance σ2. We further let each hi and aj have prior
distribution Exp(1) (since they have to be non-negative),
meaning that for x ≥ 0, P(hi ≥ x) = P(aj ≥ x) = exp(−x).

The (standard) Bayesian inference method then proceeds
from this fully-specified statistical model, by conditioning
on the observed data, which in this case is the matrix A
of actual observed hypertext links in the Base Set. Specif-
ically, when we condition on the data A we obtain a pos-
terior density π : R2M+N → [0,∞) for the parameters
(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN ). This density is defined
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so that

P
(
(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN ) ∈ S

∣∣∣ {Aij}
)

=
∫

S
π(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

de1 . . . deMdh1 . . . dhMda1 . . . daN (4)

for any (measurable) subset S ⊆ R2M+N , and also

E
(
g(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

∣∣∣ {Aij}
)

=
∫
R2M+N g(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

π(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

de1 . . . deMdh1 . . . dhMda1 . . . daN

for any (measurable) function g : R2M+N → R. An easy
computation gives the following.

Lemma 1. For our model, the posterior density is given,
up to a multiplicative constant, by

π(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

∝
M−1∏
i=0

exp(−hi) exp[−(ei − µ)2/(2σ2)] ×
N−1∏
j=0

exp(−aj)

× ∏
(i,j):Aij=1

exp(ajhi + ei)
/ ∏

all i,j

(1 + exp(ajhi + ei)) .

Our Bayesian algorithm then reports the conditional means
of the 2M + N parameters, according to the posterior den-

sity π. That is, it reports final values âj , ĥi, and êi, where,
for example

âj =

∫
R2M+N

ajπ(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

de1 . . . deMdh1 . . . dhMda1 . . . daN .

To actually compute these conditional means is non-trivial.
To accomplish this, we used a Metropolis Algorithm. (The
Metropolis algorithm is an example of a Markov chain Monte
Carlo Algorithm; for background see, e.g., Smith and Roberts
[13]; Tierney [14]; Gilks et al. [6]; Roberts and Rosenthal [12]).

There is, of course, some arbitrariness in the specification
of this Bayesian algorithm, e.g., in the form of the prior
distributions and in the precise formula for the probability
of a link from i to j. However, the model appears to work
well in practice, as our experiments show. We note that
it is possible that the priors for a new search query could
instead depend on the performance of hub i on different
previous searches, though we do not pursue that here.

This Bayesian algorithm is similar in spirit to the PHITS
algorithm of Cohn and Chang [4] described earlier, in that
both use statistical modeling, and both use an iterative al-
gorithm to converge to an answer. However, the algorithms
differ substantially in their details. Firstly, they use substan-
tially different statistical models. Secondly, the PHITS algo-
rithm uses a non-Bayesian (i.e. “classical” or “frequentist”)
statistical framework, as opposed to the Bayesian framework
adopted here.

5.1 A Simplified Bayesian Algorithm
It is possible to simplify the above Bayesian model, by

replacing equation (2) with P(i → j) = (ajhi)/(1 + ajhi)
and correspondingly replace equation (3) with P(i �→ j) =
1/(1 + ajhi). This eliminates the parameters ei entirely, so
that we no longer need the prior values µ and σ.

This leads to a slightly modified posterior density π(·),
now given by π : RM+N → R≥0 where

π(h1, . . . , hM , a1, . . . , aN )

∝ ∏M−1
i=0 exp(−hi) × ∏N−1

j=0 exp(−aj) × ∏
(i,j):Aij=1 ajhi/ ∏

all i,j(1 + ajhi) .

This Simplified Bayesian algorithm was designed to be to
similar to the original Bayesian algorithm. Surprisingly, we
will see that experimentally it often performs very similarly
to the pSALSA algorithm.

6. EXPERIMENTAL RESULTS
We have implemented the algorithms presented here on

various queries. Because of space limitations we only report
here (see Appendix A) a representative subset of results; all
of our results (including the queries “death penalty”, “com-
putational complexity” and “gun control” which are not re-
ported here) can be obtained at
http://www.cs.toronto.edu/∼tsap/experiments. The rea-
der may find it easier to follow the discussion in the next
section by accessing the full set of results. For the genera-
tion of the Base Set of pages, we follow the specifications of
Kleinberg [8] described earlier. For each of the queries, we
begin by generating a Root Set that consists of the first 200
pages returned by AltaVista on the same query. The Root
Set is then expanded to the Base Set by including nodes
that point to, or are pointed to, by the pages in the Root
Set. In order to keep the size of the Base Set manageable,
for every page in the Root Set, we only include the first
50 pages returned from AltaVista that point to this page.
We then construct the graph induced by nodes in the Base
Set, by discovering all links among the pages in the Base
Set, eliminating those that are between pages of the same
domain2.

For each query, we tested nine different algorithms on the
same Base Set. We present the top ten authority sites re-
turned by each of the algorithms. For evaluation purposes,
we also include a list of the URL and title (possibly ab-
breviated) of each site which appears in the top five of one
or more of the algorithms. For each page we also note the
popularity of the page (denoted pop in the tables), that is,
the number of different algorithms that rank it in the top
ten sites. The pages that seem (to us) to be generally un-
related with the topic in hand appear bold-faced. We also
present an “intersection table” which provides, for each pair
of algorithms, the number of sites which were in the top ten
according to both algorithms (maximum 10, minimum 0).

In the tables, SBayesian denotes the Simplified Bayesian
algorithm, HubAvg denotes the Hub-Averaging Kleinberg
algorithm, AThresh denotes the Authority-Threshold algo-
rithm, HThresh denotes the Hub-Threshold algorithm, and
FThresh denotes the Full-Threshold algorithm. For the
Authority-Threshold and Full-Threshold algorithms, we (ar-
bitrarily) set the threshold K = 10.

2If one modifies the way the Base Set or the graph is con-
structed, the results of the algorithms can vary dramatically.
In the above-mentioned site we report the output of the al-
gorithms for the same query, over different graphs.
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6.1 Discussion of Experimental Results
We observe from the experiments that different algorithms

emerge as the “best” for different queries, while there are
queries for which no algorithm seems to perform well. One
prominent such case is the query on “net censorship” (also
on “computational complexity”) where only a few of the top
ten pages returned by any of the algorithms can possibly be
considered as authoritative on the subject. One possible
explanation is that in these cases the topic is not well rep-
resented on the web, or there is no strong interconnected
community. This reinforces a common belief that any com-
mercial search engine cannot rely solely on link information,
but rather must also examine the text content of sites to pre-
vent such difficulties as “topic drift”. On the other hand,
in cases such as “death penalty” (not shown here), all al-
gorithms converge to almost the same top ten pages, which
are both relevant and authoritative. In these cases the com-
munity is well represented, and strongly interconnected.

The experiments also indicate the difference between the
behavior of the Kleinberg algorithm and pSALSA, first ob-
served for the SALSA algorithm in the original paper of
Lempel and Moran [9]. Specifically, when computing the top
authorities, the Kleinberg algorithm tends to concentrate
on a “tightly knit community” of nodes (the TKC effect),
while pSALSA, like SALSA, tends to mix the authorities
of different communities in the top authorities. The TKC
effect becomes clear in the “genetic” query, where the Klein-
berg algorithm only reports pages on biology in the top ten
while pSALSA mixes these pages with pages on genetic al-
gorithms. It also becomes poignantly clear in the “movies”
query (and also in the “gun control” and the “abortion”
query), where the top ten pages reported by the Kleinberg
algorithm are dominated by an irrelevant cluster of nodes
from the about.com community. A more elaborate algo-
rithm for detecting intra-domain links could help alleviate
this problem. However, these examples seem indicative of
the topic drift potential of the principal eigenvector in the
Kleinberg algorithm.

On the other hand, the limitations of the pSALSA al-
gorithm become obvious in the “computational geometry”
query, where three out of the top ten pages belong to the
unrelated w3.com community. They appear in the top po-
sitions because they are pointed to by a large collection of
pages by ACM, which point to nothing else. A similar phe-
nomenon explains the appearance of the “Yahoo!” page in
the “genetic” query. We thus see that the simple heuris-
tic of counting the in-degree as the authority weight is also
imperfect.

We identify two types of characteristic behavior: the Klein-
berg behavior, and the pSALSA behavior. The former ranks
the authorities based on the structure of the entire graph,
and tends to favor the authorities of tightly knit communi-
ties. The latter ranks the authorities based on their popu-
larity in their immediate neighborhood, and favors various
authorities from different communities. To see how the rest
of the algorithms fit within these two types of behaviors,
we compare the behavior of algorithms on a pairwise basis,
using the number of intersections in their respective top ten
authorities as an indication of agreement.

The first striking observation is that the Simplified Bayesian
algorithm is almost identical to the pSALSA algorithm. The
pSALSA algorithm and the Simplified Bayesian have at least
80% overlap on all queries. One possible explanation for

this is that both algorithms place great importance on the
in-degree of a node when determining the authority weight
of a node. For the pSALSA algorithm we know that it is
“local” in nature, that is, the authority weight assigned to
a node depends only on the links that point to this node,
and not on the structure of the whole graph. The Simplified
Bayesian seems to possess a similar, yet weaker property;
we explore the locality issue further in the next section. On
the other hand, the Bayesian algorithm appears to resemble
both the Kleinberg and the pSALSA behavior, leaning more
towards the first. Indeed, although the Bayesian algorithm
avoids the severe topic drift in the “movies” and the ”gun
control” queries (but not in the “abortion” case), it usually
has higher intersection numbers with Kleinberg than with
pSALSA. One possible explanation for this observation is
the presence of the ei parameters in the Bayesian algorithm
(but not the Simplified Bayesian algorithm), which “absorb”
some of the effect of many links pointing to a node, thus
causing the authority weight of a node to be less dependent
on its in-degree.

Another algorithm that seems to combine characteristics
of both the pSALSA and the Kleinberg behavior is the
Hub-Averaging algorithm. The Hub-Averaging algorithm
is by construction a hybrid of the two since it alternates
between one step of each algorithm. It shares certain be-
havior characteristics with the Kleinberg algorithm: if we
consider a full bipartite graph, then the weights of the au-
thorities increase exponentially fast for Hub-Averaging (the
rate of increase, however, is the square root of that of the
Kleinberg algorithm). However, if the component becomes
infiltrated, by making one of the hubs point to a node out-
side the component, then the weights of the authorities in
the component drop. This prevents the Hub-Averaging algo-
rithm from completely following the drifting behavior of the
Kleinberg algorithm in the “movies” query. Nevertheless,
in the “genetic” query, Hub-Averaging agrees strongly with
Kleinberg, focusing on sites of a single community, instead of
mixing communities as does pSALSA3. On the other hand,
Hub-Averaging and pSALSA share a common characteris-
tic, since the Hub-Averaging algorithm tends to favor nodes
with high in-degree: if we consider an isolated component
of one authority with high in-degree, the authority weight
of this node will increase exponentially fast. This explains
the fact that the top three authorities for “computational
geometry” are the w3.com pages that are also ranked highly
by pSALSA (with Hub-Averaging giving a very high weight
to all three authorities).

For the threshold algorithms, since they are modifications
of the Kleinberg Algorithm, they are usually closer to the
Kleinberg behavior. This is especially true for the Hub-
Threshold algorithm. However, the benefit of eliminating
unimportant hubs when computing authorities becomes ob-
vious in the “abortion” query. If one looks further than the
first ten pages returned by Kleinberg, one observes that after
the first nine pages, which belong to the amazon.com commu-
nity, the rest of the pages are on topic. The Hub-Threshold
algorithm escapes this cluster, and moves directly to the rel-
evant pages. The intersection between the top ten pages of
Hub-Threshold, and the set of pages in the positions 10 to
20 in the Kleinberg algorithm is 80%.

3In a version of the “abortion” query (denoted “refined” in
the site), the Hub-Averaging algorithm did some mixing of
communities, but to a smaller degree than pSALSA.
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The Authority-Threshold often appears to be most sim-
ilar with the Hub-Averaging algorithm. This makes sense
since these two algorithms have a similar underlying mo-
tivation. The best moment for Authority-Threshold is the
“movies” query, where it reports the most relevant top ten
pages among all algorithms. The Full-Threshold algorithm
combines elements of both the Threshold algorithms; how-
ever, usually it reports in the top ten a mixture of the results
of the two algorithms, rather than the best of the two.

Finally, the BFS algorithm is designed to be a generaliza-
tion of the pSALSA algorithm, that combines some elements
of the Kleinberg algorithm. Its behavior resembles both
pSALSA and Kleinberg, with a tendency to favor pSALSA.
In the “genetic” and “abortion” queries it demonstrates
some mixing, but to a lesser extent than that of pSALSA.
The most successful moments for BFS are the “abortion”
and the “gun control” queries where it reports a set of top
ten pages that are all on topic. An interesting question to
investigate is how the behavior of the BFS algorithm is al-
tered if we change the weighting scheme of the neighbors.

7. THEORETICAL ANALYSIS
The experimental results of the previous section suggest

that certain algorithms seem to share similar properties and
ranking behavior. In this section, we initiate a (preliminary)
formal study of fundamental properties and comparisons be-
tween ranking algorithms. For the purpose of following anal-
ysis we need some basic definitions and notation. Let GN be
a collection of graphs of size N . One special case is to let GN

be the set of all graphs of size N , hereafter denoted GN . We
define a link analysis algorithm A as a function that maps
a graph G ∈ GN to an N -dimensional vector. We call the
vector A(G) the weight vector of algorithm A on graph G.
The value of the entry A(G)(i) of vector A(G) denotes the
authority weight assigned by the algorithm A to the page i.

We can normalize the weight vector A(G) under some cho-
sen norm. The choice of normalization affects the definition
of some of the properties of the algorithms, so we discrimi-
nate between algorithms that use different norms. For any
norm L, we define the L-algorithm A to be the algorithm A,
where the weight vector of A is normalized under L. We also
examine unnormalized algorithms, where no normalization
is performed at any stage of the algorithm. For example, the
unnormalized pSALSA algorithm assigns a weight to page i
equal to the in-degree of page i. For the following discussion,
when not stated explicitly, we will assume that the weight
vectors of the algorithms are normalized under the L∞ norm
(i.e. each weight is divided by the maximum weight); this
gives weight 1 to the top authority, with other weights given
as a fraction of the top weight. Due to space constraints,
many proofs have been omitted in the following sections.

7.1 Monotonicity

Definition 1. An algorithm A is monotone if it has the
following property: If j and k are two different nodes in a
graph G, such that every hub which links to j also links to
k, then A(G)(k) ≥ A(G)(j).

Monotonicity appears to be a “reasonable” property that
any sensible link-analysis algorithm should satisfy.

Theorem 2. The algorithms we consider in this paper
(including the SALSA algorithm) are all monotone.

7.2 Similarity
Let A1 and A2 be two algorithms on GN . We shall consider

the distance d(A1(G), A2(G)) between the weight vectors of
A1(G) and A2(G), for G ∈ GN , where d : Rn × Rn →
R is some function that maps the weight vectors A1(G)
and A2(G) to a real number d(A1(G), A2(G)). We shall
consider the Manhattan distance d1, that is, the L1 norm of
the difference of the weight vectors, given by d1(w1, w2) =∑N

i=1 |w1(i) − w2(i)|.
For this distance function, we now define the similarity

between two L∞-algorithms as follows4.

Definition 2. Two L∞-algorithms A1 and A2 are similar
on {GN}, if (as N → ∞)

max
G∈GN

d1(A1(G), A2(G)) = o(N) .

We also consider another distance function that attempts
to capture the similarity between the ordinal rankings of two
algorithms. The motivation behind this definition is that the
ordinal ranking is the usual end-product seen by the user.
Let w1 = A1(G) and w2 = A2(G) be the weight vectors of
two algorithms A1 and A2. We define the indicator function
Iw1w2(i, j) as follows

Iw1w2(i, j) =

{
1 if w1(i) < w1(j) AND w2(i) > w2(j)
0 otherwise

We note that Iw1w2(i, j) = 0 if and only if w1(i) < w2(j) ⇒
w2(i) ≤ w2(j). Iw1w2(i, j) becomes one for each pair of
nodes that are ranked differently. We define the “ranking
distance” function dr as follows.

dr(w1, w2) =
1

N

N∑
i=1

N∑
j=1

Iw1w2(i, j) .

Note that, unlike d1, the distance between two weight vec-
tors under dr does not depend upon the choice of normal-
ization.

Definition 3. Two algorithms, A1 and A2, are rank match-
ing on {GN}, if for every N , and every graph G ∈ GN ,

dr(A1(G), A2(G)) = 0 .

Remark: We note that by the above definition, every algo-
rithm is rank matching with the trivial algorithm that gives
the same weight to all authorities. Although this may seem
somewhat bizarre, it does have an intuitive justification. For
an algorithm whose goal is to produce an ordinal ranking,
the weight vector with all weights equal conveys no informa-
tion; therefore, it lends itself to all possible ordinal rankings.
We also note that the dr distance does not satisfy the trian-
gle inequality, since, e.g., all algorithms have dr-distance 0
to the trivial algorithm. Of course, it is straightforward to
modify the definition of dr to avoid this; however, we find
the definition used here to be most natural.

4The definition of similarity can be generalized to any dis-
tance function d, and any normalization norm || · ||, by re-
quiring instead that maxG∈GN d(A1(G), A2(G)) = o(MN ) as
N → ∞, where MN = sup‖w1‖=‖w2‖=1 d(w1, w2) is the max-
imum distance between any two N -vectors with unit norm.
Most of our results can be generalized to any Lp distance
function and any Lq norm.
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Proposition 1. The L∞-Hub-Averaging algorithm, and
the L∞-Kleinberg algorithm are neither similar, nor rank
matching on GN .

Proof. Consider a graph G on N = 3r nodes that con-
sists of two disconnected components. The first component
C1 consists of a complete graph on r nodes. The second
component C2 consists of a complete graph C on r nodes,
and a set of r “external” nodes E, such that each node in C
points to a node in E, and no two nodes in C point to the
same “external” node.

Let wK and wH denote the weight vectors of the Klein-
berg, and the Hub-Averaging algorithm, respectively, on
graph G. It is not hard to see that the Kleinberg algorithm
allocates all the weight to the nodes in C2. After normal-
ization, for all i ∈ C, wK(i) = 1, for all j ∈ E, wK(j) = 1

m
,

and for all k ∈ C1, wK(k) = 0. On the other hand, the Hub-
Averaging algorithm allocates all the weight to the nodes in
C1. After normalization, for all k ∈ C1, wH(k) = 1, and for
all j ∈ C2, wH(j) = 0.

Therefore, it is easy to see that d1(wK , wH) = 2r = 2N
3

which proves that the algorithms are not similar.
The proof for rank dissimilarity follows immediately from

the above. For every pair of nodes (i, j) such that i ∈ C1

and j ∈ C2, wK(i) > wK(j), and wS(i) > wS(j). There are
Θ(N2) such pairs, therefore, dr(wK , wH) = Θ(N). Thus,
the two algorithms are not rank matching.

Proposition 2. The L∞-pSALSA algorithm and the L∞-
Kleinberg algorithm are neither similar, nor rank matching
on GN .

Proof. Consider a graph G on N = 4r nodes that con-
sists of two disconnected components. The first component
C1 consists of a complete graph on r nodes. Thus, each node
points to, and is pointed to by, r − 1 nodes. The second
component C2 consists of a bipartite graph with 2r hubs,
and r authorities. Without loss of generality assume that r
is even, and enumerate all hubs and authorities. Make all
“odd” hubs point to all “odd” authorities, and all “even”
hubs point to all “even” authorities. Thus, each hub points
to r

2
authorities, and each authority is pointed to by r au-

thorities.
Let wK and wS denote the weight vectors of the Kleinberg,

and the pSALSA algorithm, respectively, on graph G. It is
not hard to see that the Kleinberg algorithm allocates all
the weight to the nodes in C1. After normalization, for all
i ∈ C1, wK(i) = 1, while for all j ∈ C2, wS(j) = 0. On the
other hand, the pSALSA algorithm distributes the weight
to both components, allocating more weight to the nodes in
C2. After the normalization step, for all j ∈ C2, w(j) = 1,
while for all i ∈ C1, wS(i) = r−1

r
.

Therefore, it is easy to see that

d1(wK , wS) = r + r · (1 − r − 1

r
) = Θ(N)

which proves that the algorithms are not similar.
The proof for rank dissimilarity follows immediately from

the above. For every pair of nodes (i, j) such that i ∈ C1

and j ∈ C2, wK(i) > wK(j), and wS(i) > wS(j). There are
Θ(N2) such pairs, therefore, dr(wK , wH) = Θ(N). Thus,
the two algorithms are not rank matching.

We note that a modification of this example can be used
to prove the same result for the SALSA and the Kleinberg
algorithms.

Proposition 3. The L∞-pSALSA algorithm and the L∞-
Hub-Averaging algorithm are neither similar, nor rank match-
ing on GN .

Proof. Consider a graph G on N = 3r + 3 nodes which
are connected as follows. The graph consists of two sets of
hubs X and Y of size r and 2, respectively, and two sets of
authorities A and B, each of size r, and a single “central”
authority c. Each hub in set X points to exactly one distinct
authority in A, and both hubs in Y point to all authorities
in B. Furthermore, all hubs in X and Y point to c.

Let wS and wH be the weight vectors of pSALSA and
Hub-Averaging, respectively. The pSALSA algorithm allo-
cates the most weight to the central authority, then to the
authorities in B, and then to the authorities in A. After
normalization, wS(c) = 1, for all i ∈ A, wS(i) = 1

r+2
, and

for all j ∈ B, wS(j) = 2
r+2

.
On the other hand, the Hub-Averaging algorithm con-

siders each hub in X to be much better than each hub in
Y . Hence, it will allocate highest weight to the authority
c, nearly as high weight to the authorities in A, and much
lower weight to the authorities in B. This shows that the
two algorithms are neither similar nor rank matching.

We note that the same example can be used to prove
the dissimilarity between SALSA and the Hub-Averaging
algorithm.

On the other hand, we have the following.

Definition 4. A link graph is “nested” if for every pair of
nodes j and k, the set of in-links to j is either a subset or a
superset of the set of in-links to k.

Let Gnest
N be the set of all size-N nested graphs. (Of

course, Gnest
N is a rather restricted set of size-N graphs.)

Theorem 3. If two algorithms are both monotone, then
they are rank matching on Gnest

N .

Corollary 1. The algorithms we consider in this paper
(including the SALSA algorithm) are all rank matching on
Gnest

N .

7.3 Stability and Locality
In the previous section we examined the similarity of two

different algorithms on the same graph G. In this section
we are interested on how the output of a fixed algorithm
changes, as we alter the graph. We would like small changes
in the graph to have a small effect on the weight vector of
the algorithm. We capture this requirement by the defini-
tion of stability. For the following, let E(G) denote the set
of all edges (i.e. links) in the graph G. We assume that
E(G) = ω(1), otherwise all properties that we discuss below
are trivial. The following definition applies to unnormalized,
and L∞-algorithms5.

5As in the case of similarity, the notion of stability can be
defined for any distance function, and for any normalization
norm.
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Definition 5. An algorithm A is stable on {GN} if for ev-
ery fixed positive integer k, we have (as N → ∞)

max
G∈GN ,�i∈E(G),1≤i≤k

min
γ>0

d1(A(G), γ·A(G\{*1, . . . , *k})) = o(N) ,

where G\{*1, . . . *k} is the graph G with the edges *1, . . . , *k

removed.

Definition 6. An algorithm A is rank stable on {GN} if
for every k, we have (as N → ∞)

max
G∈GN ,�i∈E(G),1≤i≤k

dr(A(G), A(G \ {*1, . . . , *k})) = o(N).

Stability may be a desirable property. Indeed, the algo-
rithms all act on a base set which is generated using some
other search engine (e.g. AltaVista [1]) and the associated
hypertext links. Presumably with a “very good” base set, all
the algorithms would perform well. However, if an algorithm
is not stable, then slight changes in the base set (or its link
structure) may lead to large changes in the rankings given
by the algorithm. Thus, stability may provide “protection”
from poor base sets. We note that the parameter γ used in
the definition of stability allows for an arbitrary scaling of
the second weight vector, thus eliminating instability which
is caused solely by different normalization factors.

Proposition 4. The L∞-Kleinberg and L∞-Hub-
Averaging algorithms are neither stable, nor rank stable.

We now introduce the idea of “locality”. The idea behind
locality is that a change in the in-links of a node should have
only a small effect on the weights of the rest of the nodes.

Definition 7. An algorithm A is local if for graph G, and
every link * ∈ E(G), |A(G)(i) − A(G \ {*})(i)| = 0 for all
i ∈ G \ {p∗}, where p∗ is the page pointed to by the link *.

Definition 8. An algorithm A is pairwise local if for every

graph G, and every link * ∈ E(G), A(G)(i)
A(G)(j)

= A(G\{�})(i)
A(G\{�})(j) for

all i, j ∈ G \ {p∗}, where p∗ is the document linked to by
the link *.

Definition 9. An algorithm A is rank local if for every
graph G, and every link * ∈ E(G), if w = A(G) and w′ =
A(G \ {*}), then Iww′(i, j) = 0 for all i, j ∈ G \ {p∗}, where
p∗ is the document linked to by the link *.

We note that locality depends on the normalization used,
but pairwise locality and rank locality do not. The following
lemmas are direct consequences of the definitions.

Lemma 2. If an unnormalized algorithm is local, then the
corresponding normalized algorithm is pairwise local (under
any normalization).

Lemma 3. If an algorithm A is pairwise local, then it is
rank local.

We have the following.

Theorem 4. If an algorithm is rank local, then it is rank
stable (under any normalization).

Proof. Let w be the weight vector of the algorithm on
a graph G, and let w′ be the weight vector of the algo-
rithm on the modified graph G \ {*1, *2, ..., *k}. Let P =
{p1, p2, ..., pm}, be the set of distinct pages pointed to by
links *1, ..., *k. Since the algorithm is rank local, Iww′(i, j) =
0 for all i, j �∈ P . Therefore,

dr(w,w′) =
1

N

N∑
i=1

m∑
j=1

Iww′(i, pj) .

But Iww′(i, pj) ≤ 1 for all i and pj , so dr(w,w′) = 1
N
·N ·m =

m. Therefore, the algorithm is rank stable. Furthermore,
rank locality is unaffected by normalization.

Theorem 5. If U is an unnormalized algorithm that is
stable on {GN}, and A is the corresponding normalized al-
gorithm under norm ‖ · ‖, and min

G∈GN

‖U(G)‖ = Ω(1), then A

is stable on {GN}.

Proof. Let G ∈ Gn be a graph, and let G′ = G\{*1, ..., *k}
be the modified graph. Let u = U(G), and u′ = U(G′),
and let w = A(G), and w′ = A(G′). Since U is stable,∑

i∈G |u(i) − γ u′(i)| = o(N) for some γ > 0.
We have that w(i) = u(i)/‖U(G)‖, and w′(i) = u′(i)/‖U(G′)‖.

Set γ′ = γ ‖U(G′)‖
‖U(G)‖ . Then

d1(w, γ′ w′) =
∑
i∈G

|w(i) − γ′ w′(i)|

=
1

‖U(G)‖ ·
∑
i∈G

|u(i) − γ u′(i)|

= o

(
N

‖U(G)‖
)

.

Since ‖U(G)‖ = Ω(1), d1(w, γ′ w′) = o(N), therefore A is
stable.

Theorem 6. The unnormalized pSALSA algorithm is lo-
cal.

Corollary 2. The pSALSA algorithm (under any nor-
malization) is both pairwise local and rank local.

Corollary 3. The pSALSA Algorithm (under any nor-
malization) is rank stable.

We originally thought that the Bayesian and Simplified
Bayesian Algorithms were also local. However, it turns out
that they are neither local nor pairwise local. Indeed, it
is true that conditional on the values of hi, ei, and aj ,
the conditional distribution of ak for k �= j is unchanged
upon removing a link from i to j. However, the uncondi-
tional marginal distribution of ak, and hence also its pos-
terior mean âk (or even ratios âk/âq for q �= j), may still
be changed upon removing a link from i to j. (Indeed, we
have computed experimentally that â3/â4 may change upon
removing a link from 1 to 2, even for a simple example with
just four nodes.) Hence, neither the Bayesian nor the Sim-
plified Bayesian Algorithm is local or pairwise local.

Theorem 7. The unnormalized pSALSA algorithm is sta-
ble.

Corollary 4. The pSALSA Algorithm (under any nor-
malization) is stable.
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Finally, we use locality and “label-independence” to prove
a uniqueness property of the pSALSA algorithm.

Definition 10. An algorithm is label-independent if per-
muting the labels of the graph nodes only causes the au-
thority weights to be correspondingly permuted.

All of our algorithms are clearly label-independent, and
we would expect this property of any reasonable algorithm.
We have the following.

Theorem 8. Suppose an algorithm A is local, monotone,
and label-independent. Then A and pSALSA are rank match-
ing on GN .

Proof. Let G be any graph, and let i be a node in G.
Let wA = A(G). Since A is local, the value of wA(G)(i) is
unchanged if we remove all links in G that do not point to
i. Therefore, wA(i) depends solely on the set of in-links to
i. Furthermore, since A is label-independent, it follows that
wA(i) depends only on the number of in-links to i.

In particular, if two nodes i and j have the same number
of in-links, then A assigns equal authority weight to the two
nodes. Assume now that j has fewer in-links than i. Since
A is local, we may modify the graph so that the nodes that
point to j are a subset of those that point to i, without
affecting wA(i) or wA(j). Since A is monotone, this implies
that wA(j) ≤ wA(i).

Therefore, if wS is the weight vector of the pSALSA al-
gorithm on G, then wS(j) < wS(i) ⇒ wA(j) ≤ wA(i).
Hence, IwSwA(i, j) = 0, for all i and j in G. It follows
that dr(wS , wA) = 0, as required.

We note that any normalized, or unnormalized variant of
A is also rank matching with pSALSA.

7.4 Symmetry

Definition 11. An algorithm A is “symmetric” if inverting
all the links in a graph simply interchanges the hub and
authority values produced by the algorithm.

We have by inspection:

Theorem 9. The pSALSA (and SALSA) algorithm, the
Kleinberg Algorithm, the Threshold-Kleinberg Algorithms, the
BFS Algorithm, and the Simplified Bayesian Algorithm are
all symmetric. However, the Hub-Averaging-Kleinberg Algo-
rithm and the Bayesian Algorithm are NOT symmetric.

8. SUMMARY
We have considered a number of known and some new

algorithms which use the hypertext link structure of World
Wide Web pages to extract information about the relative
ranking of these pages. In particular, we have introduced
two algorithms based on Bayesian statistical approach as
well as a number of algorithms which are modifications of
Kleinberg’s seminal hubs and authority algorithm. Based
on 8 different queries (5 presented here), we discuss some
observed properties of each algorithm as well as relation-
ships between the algorithms. We found (experimentally)
that certain algorithms appear to be more “balanced”, while
others more “focused”. The latter tend to be sensitive to the
existence of tightly interconnected clusters, which may cause

them to drift. The intersections between the lists of the top-
ten results of the algorithms suggest that certain algorithms
exhibit similar behavior and properties.

Motivated by the experimental observations, we intro-
duced a theoretical framework for the study and compar-
ison of link-analysis ranking algorithms. We formally de-
fined (and gave some preliminary results for) the concepts
of monotonicity and locality, as well as various concepts of
distance and similarity between ranking algorithms.

Our work leaves a number of interesting open questions.
The two Bayesian algorithms open the door to the use of
other statistical and machine learning techniques for ranking
of hyper-linked documents. Furthermore, the framework we
defined suggests a number of interesting directions for the
theoretical study of ranking algorithms, which we have just
begun to explore in this work.
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APPENDIX

A. EXPERIMENTS

A.1 Query: abortion (Base Set size = 2293)

Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian
1. P-1165 P-717 P-1165 P-1165 P-717 P-1165 P-717 P-717 P-717
2. P-1184 P-1461 P-1184 P-1184 P-1461 P-1184 P-719 P-1461 P-1192
3. P-1193 P-719 P-1193 P-1193 P-1769 P-1193 P-1769 P-1191 P-1165
4. P-1187 P-1165 P-1187 P-1187 P-719 P-1461 P-1461 P-719 P-1191
5. P-1188 P-1184 P-1188 P-1188 P-1 P-719 P-962 P-1184 P-1193
6. P-1189 P-1193 P-1189 P-1189 P-718 P-717 P-0 P-1165 P-1184
7. P-1190 P-1187 P-1190 P-1190 P-0 P-1 P-2 P-1192 P-1189
8. P-1191 P-1188 P-1191 P-1191 P-115 P-0 P-718 P-1193 P-1188
9. P-1192 P-1189 P-1192 P-1192 P-2515 P-115 P-1325 P-1188 P-1187
10. P-717 P-1190 P-1948 P-1948 P-962 P-607 P-1522 P-1187 P-1190

Index pop URL Title
P-0 3 www.gynpages.com Abortion Clinics OnLine
P-1 2 www.prochoice.org NAF - The Voice of Abortion Providers
P-2 1 www.cais.com/agm/main The Abortion Rights Activist Home Page
P-115 2 www.ms4c.org Medical Students for Choice
P-607 1 www.feministcampus.org Feminist Campus Activism Online: Welcome
P-717 7 www.nrlc.org National Right to Life Organization
P-718 2 www.hli.org Human Life International (HLI)
P-719 5 www.naral.org NARAL: Abortion and Reproductive Rights: ...
P-962 2 www.prolife.org/ultimate Empty title field
P-1165 7 www5.dimeclicks.com DimeClicks.com - Web and Marketing Solutions
P-1184 7 www.amazon.com/...../youdebatecom Amazon.com–Earth’s Biggest Selection
P-1187 6 www.amazon.com/...../top-sellers.html Amazon.com–Earth’s Biggest Selection
P-1188 6 www.amazon.com/.../software/home.html Amazon.com Software
P-1189 5 www.amazon.com/.../hot-100-music.html Amazon.com–Earth’s Biggest Selection
P-1190 5 www.amazon.com/.../gifts.html Amazon.com–Earth’s Biggest Selection
P-1191 5 www.amazon.com/.....top-100-dvd.html Amazon.com–Earth’s Biggest Selection
P-1192 5 www.amazon.com/...top-100-video.html Amazon.com–Earth’s Biggest Selection
P-1193 7 rd1.hitbox.com/....... HitBox.com - hitbox web site .......
P-1325 1 www.serve.com/fem4life Feminists For Life of America
P-1461 5 www.plannedparenthood.org Planned Parenthood Federation of America
P-1522 1 www.naralny.org NARAL/NY
P-1769 2 www.priestsforlife.org Priests for Life Index
P-1948 2 www.politics1.com/issues.htm Politics1: Hot Political Debates & Issues
P-2515 1 www.ohiolife.org Ohio Right To Life

Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian
Kleinberg 10 8 9 9 1 4 1 8 10
pSALSA 8 10 7 7 3 6 3 8 8
HubAvg 9 7 10 10 0 3 0 7 9
AThresh 9 7 10 10 0 3 0 7 9
HThresh 1 3 0 0 10 6 7 3 1
FThresh 4 6 3 3 6 10 4 6 4
BFS 1 3 0 0 7 4 10 3 1
SBayesian 8 8 7 7 3 6 3 10 8
Bayesian 10 8 9 9 1 4 1 8 10
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A.2 Query: +net +censorship (Base Set size = 2947)

Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian
1. P-375 P-371 P-371 P-371 P-375 P-375 P-371 P-371 P-375
2. P-3163 P-1440 P-2874 P-375 P-1344 P-371 P-375 P-1440 P-371
3. P-3180 P-375 P-2871 P-2871 P-3132 P-1344 P-1299 P-375 P-3180
4. P-3177 P-2874 P-2873 P-2874 P-3163 P-3130 P-1440 P-2874 P-3177
5. P-3173 P-2871 P-2659 P-3536 P-3166 P-3131 P-2871 P-1299 P-3163
6. P-3172 P-1299 P-375 P-2873 P-3167 P-3132 P-2874 P-2871 P-3173
7. P-3132 P-3536 P-3536 P-2659 P-3168 P-3133 P-3536 P-3536 P-3166
8. P-3193 P-1712 P-2639 P-2639 P-3170 P-3135 P-1802 P-1712 P-3193
9. P-3170 P-268 P-1440 P-1440 P-3171 P-3161 P-2639 P-268 P-3168
10. P-3166 P-1445 P-2867 P-3180 P-3172 P-3162 P-452 P-1445 P-3132

Index pop URL Title
P-268 2 www.epic.org Electronic Privacy Information Center
P-371 7 www.yahoo.com Yahoo!
P-375 9 www.cnn.com CNN.com
P-452 1 www.mediachannel.org MediaChannel.org – A Global Network ........
P-1299 3 www.eff.org/blueribbon.html EFF Blue Ribbon Campaign
P-1344 2 www.igc.apc.org/peacenet PeaceNet Home
P-1440 5 www.eff.org EFF ... - the Electronic Frontier Foundation
P-1445 2 www.cdt.org The Center for Democracy and Technology
P-1712 2 www.aclu.org ACLU: American Civil Liberties Union
P-1802 1 ukonlineshop.about.com Online Shopping: UK
P-2639 3 www.imdb.com The Internet Movie Database (IMDb).
P-2659 2 www.altavista.com AltaVista - Welcome
P-2867 1 home.netscape.com Empty title field
P-2871 5 www.excite.com My Excite Start Page
P-2873 2 www.mckinley.com Welcome to Magellan!
P-2874 5 www.lycos.com Lycos
P-3130 1 www.city.net/countries/kyrgyzstan Excite Travel
P-3131 1 www.bishkek.su/krg/Contry.html ElCat. 404: Not Found.
P-3132 4 www.pitt.edu/˜cjp/rees.html REESWeb: Programs:
P-3133 1 www.ripn.net RIPN
P-3135 1 www.yahoo.com/.../Kyrgyzstan Yahoo! Regional Countries Kyrgyzstan
P-3161 1 151.121.3.140/fas/fas-publications/... Error 404 Redirector
P-3162 1 www.rferl.org/BD/KY RFE/RL Kyrgyz Service : News
P-3163 3 www.usa.ft.com Empty title field
P-3166 3 www.pathfinder.com/time/daily TIME.COM
P-3167 1 travel.state.gov US State Department - Services - Consular Affairs
P-3168 2 www.yahoo.com/News Yahoo! News and Media
P-3170 2 www.financenet.gov ...FinanceNet is the government’s official home...
P-3171 1 www.securities.com ISI Emerging Markets
P-3172 2 www.oecd.org OECD Online
P-3173 2 www.worldbank.org The World Bank Group
P-3177 2 www.envirolink.org EnviroLink Network
P-3180 3 www.lib.utexas.edu/.../Map collection PCL Map Collection
P-3193 2 www.wiesenthal.com Simon Wiesenthal Center
P-3536 5 www.shareware.com CNET.com - Shareware.com

Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian
Kleinberg 10 1 1 2 6 2 1 1 8
pSALSA 1 10 6 6 1 2 7 10 2
HubAvg 1 6 10 9 1 2 7 6 2
AThresh 2 6 9 10 1 2 7 6 3
HThresh 6 1 1 1 10 3 1 1 5
FThresh 2 2 2 2 3 10 2 2 3
BFS 1 7 7 7 1 2 10 7 2
SBayesian 1 10 6 6 1 2 7 10 2
Bayesian 8 2 2 3 5 3 2 2 10

426



A.3 Query: Movies (Base Set size = 5757)

Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian
1. P-678 P-999 P-999 P-999 P-678 P-999 P-999 P-999 P-999
2. P-2268 P-2832 P-2832 P-2832 P-2266 P-2832 P-2832 P-2832 P-2832
3. P-2304 P-6359 P-803 P-6359 P-2268 P-1989 P-2827 P-6359 P-2827
4. P-2305 P-2827 P-1539 P-2827 P-999 P-1911 P-2803 P-2827 P-6359
5. P-2306 P-2120 P-2101 P-2838 P-2832 P-1980 P-5470 P-1374 P-678
6. P-2308 P-1374 P-1178 P-6446 P-2263 P-1983 P-2120 P-2120 P-2838
7. P-2310 P-803 P-6359 P-5 P-2264 P-1984 P-4577 P-803 P-2266
8. P-2266 P-1539 P-1082 P-2803 P-2265 P-1986 P-5 P-6446 P-2268
9. P-2325 P-6446 P-2827 P-2839 P-2280 P-1987 P-2838 P-1539 P-2308
10. P-2299 P-2838 P-6446 P-2840 P-2304 P-1993 P-4534 P-2838 P-2330

Index pop Title URL
P-5 2 www.movies.com Movies.com
P-678 3 chatting.about.com Empty title field
P-803 3 www.google.com Google
P-999 8 www.moviedatabase.com The Internet Movie Database (IMDb).
P-1082 1 www.amazon.com/ Amazon.com–Earth’s Biggest Selection
P-1178 1 www.booksfordummies.com Empty title field
P-1374 2 www.onwisconsin.com On Wisconsin
P-1539 3 206.132.25.51 Washingtonpost.com - News Front
P-1911 1 people2people.com/...nytoday People2People.com - Search
P-1980 1 newyork.urbanbaby.com/nytoday Kids & Family
P-1983 1 tunerc1.va.everstream.com/nytoday/ Empty title field
P-1984 1 nytoday.opentable.com/ OpenTable
P-1986 1 www.nytimes.com/.../jobmarket The New York Times: Job Market
P-1987 1 www.cars.com/nytimes New York Today cars.com - new and used car ...
P-1989 1 www.nytodayshopping.com New York Today Shopping - Shop for computers, ...
P-1993 1 www.nytimes.com/.../nytodaymediakit New York Today - Online Media Kit
P-2101 1 www2.ebay.com/aw/announce.shtml eBay Announcement Board
P-2120 3 www.mylifesaver.com welcome to mylifesaver.com
P-2263 1 clicks.about.com/...nationalinterbank Banking Center
P-2264 1 clicks.about.com/ Credit Report, Free Trial Offer
P-2265 1 membership.about.com/... Member Center
P-2266 3 home.about.com/movies About - Movies
P-2268 3 a-zlist.about.com About.com A-Z
P-2280 1 sprinks.about.com Sprinks : About Sprinks
P-2299 1 home.about.com/aboutaus About Australia
P-2304 2 home.about.com/arts About - Arts/Humanities
P-2305 1 home.about.com/autos About - Autos
P-2306 1 home.about.com/citiestowns About - Cities/Towns
P-2308 2 home.about.com/compute About - Computing/Technology
P-2310 1 home.about.com/education About - Education
P-2325 1 home.about.com/musicperform About - Music/Performance
P-2330 1 home.about.com/recreation About - Recreation/Outdoors
P-2803 2 www.allmovie.com All Movie Guide
P-2827 6 www.film.com Film.com Movie Reviews, News, Trailers...
P-2832 8 www.hollywood.com Hollywood.com - Your entertainment source...
P-2838 5 www.mca.com Universal Studios
P-2839 1 www.mgmua.com MGM - Home Page
P-2840 1 www.miramax.com Welcome to the Miramax Cafe
P-4534 1 www.aint-it-cool-news.com Ain’t It Cool News
P-4577 1 go.com GO.com
P-5470 1 www.doubleaction.net Double Action - Stand. Point. Laugh.
P-6359 5 www.paramount.com Paramount Pictures - Home Page
P-6446 4 www.disney.com Disney.com – Where the Magic Lives Online!
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Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian
Kleinberg 10 0 0 0 4 0 0 0 4
pSALSA 0 10 7 6 2 2 5 10 5
HubAvg 0 7 10 5 2 2 3 7 4
AThresh 0 6 5 10 2 2 6 6 5
HThresh 4 2 2 2 10 2 2 2 5
FThresh 0 2 2 2 2 10 2 2 2
BFS 0 5 3 6 2 2 10 5 4
SBayesian 0 10 7 6 2 2 5 10 5
Bayesian 4 5 4 5 5 2 4 5 10

A.4 Query: genetic (Base Set size = 3468)

Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian
1. P-2187 P-2187 P-2187 P-2187 P-2187 P-2187 P-2187 P-2187 P-2187
2. P-1057 P-258 P-1057 P-1057 P-1057 P-1057 P-3932 P-258 P-1057
3. P-2168 P-1057 P-3932 P-2168 P-2168 P-2168 P-1538 P-1057 P-2168
4. P-2200 P-3932 P-2095 P-2200 P-2200 P-2200 P-1057 P-3932 P-2095
5. P-2219 P-2095 P-2168 P-2219 P-2219 P-2219 P-2095 P-2095 P-2200
6. P-2199 P-1538 P-2186 P-2095 P-2199 P-2095 P-258 P-1538 P-2219
7. P-2095 P-2 P-941 P-3932 P-2186 P-3932 P-2168 P-2 P-3932
8. P-2186 P-2168 P-0 P-2199 P-2095 P-2199 P-2200 P-2168 P-2199
9. P-2193 P-941 P-2200 P-2186 P-2193 P-2186 P-2 P-941 P-2186
10. P-3932 P-23 P-2199 P-2193 P-3932 P-2193 P-2199 P-2200 P-2193

Index pop URL Title
P-0 1 www.geneticalliance.org Genetic Alliance, Washington, DC
P-2 3 www.genetic-programming.org genetic-programming.org-Home-Page
P-23 1 www.geneticprogramming.com The Genetic Programming Notebook
P-258 3 www.aic.nrl.navy.mil/galist The Genetic Algorithms Archive
P-941 3 www3.ncbi.nlm.nih.gov/Omim OMIM Home Page – Online Mendelian Inheritance in Man
P-1057 9 gdbwww.gdb.org The Genome Database
P-1538 3 www.yahoo.com Yahoo!
P-2095 9 www.nhgri.nih.gov National Human Genome Research Institute (NHGRI)
P-2168 9 www-genome.wi.mit.edu Welcome To the ..... Center for Genome Research
P-2186 6 www.ebi.ac.uk EBI, the European Bioinformatics Institute ........
P-2187 9 www.ncbi.nlm.nih.gov NCBI HomePage
P-2193 5 www.genome.ad.jp GenomeNet WWW server
P-2199 7 www.hgmp.mrc.ac.uk UK MRC HGMP-RC
P-2200 8 www.tigr.org The Institute for Genomic Research
P-2219 5 www.sanger.ac.uk The Sanger Centre Web Server
P-3932 9 www.nih.gov National Institutes of Health (NIH)

Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian
Kleinberg 10 5 8 10 10 10 7 6 10
pSALSA 5 10 6 5 5 5 8 9 5
HubAvg 8 6 10 8 8 8 7 7 8
AThresh 10 5 8 10 10 10 7 6 10
HThresh 10 5 8 10 10 10 7 6 10
FThresh 10 5 8 10 10 10 7 6 10
BFS 7 8 7 7 7 7 10 9 7
SBayesian 6 9 7 6 6 6 9 10 6
Bayesian 10 5 8 10 10 10 7 6 10
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A.5 Query: +computational +geometry (Base Set size = 1226)

Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian
1. P-161 P-161 P-634 P-161 P-0 P-161 P-0 P-161 P-161
2. P-0 P-1 P-632 P-0 P-161 P-0 P-161 P-1 P-0
3. P-1 P-0 P-633 P-1 P-1 P-1 P-1 P-0 P-1
4. P-162 P-3 P-161 P-162 P-162 P-162 P-300 P-3 P-162
5. P-3 P-280 P-1 P-3 P-280 P-280 P-299 P-280 P-3
6. P-280 P-634 P-1406 P-280 P-3 P-3 P-162 P-634 P-280
7. P-275 P-162 P-0 P-275 P-275 P-275 P-3 P-162 P-275
8. P-299 P-2 P-3 P-299 P-299 P-299 P-280 P-2 P-299
9. P-300 P-632 P-162 P-300 P-300 P-848 P-375 P-633 P-300
10. P-848 P-633 P-280 P-848 P-848 P-300 P-551 P-632 P-848

Index pop URL Title
P-0 9 www.geom.umn.edu/software/cglist Directory of Computational Geometry Software
P-1 9 www.cs.uu.nl/CGAL The former CGAL home page
P-2 2 link.springer.de/link/service/journals/00454 LINK: Peak-time overload
P-3 9 www.scs.carleton.ca/˜csgs/resources/cg.html Computational Geometry Resources
P-161 9 www.ics.uci.edu/˜eppstein/geom.html Geometry in Action
P-162 9 www.ics.uci.edu/˜eppstein/junkyard The Geometry Junkyard
P-275 5 www.ics.uci.edu/˜eppstein David Eppstein
P-280 9 www.geom.umn.edu The Geometry Center Welcome Page
P-299 6 www.mpi-sb.mpg.de/LEDA/leda.html LEDA - Main Page of LEDA Research
P-300 6 www.cs.sunysb.edu/˜algorith The Stony Brook Algorithm Repository
P-375 1 graphics.lcs.mit.edu/˜seth Seth Teller
P-551 1 www.cs.sunysb.edu/˜skiena Steven Skiena
P-632 3 www.w3.org/Style/CSS/Buttons CSS button
P-633 3 jigsaw.w3.org/css-validator W3C CSS Validation Service
P-634 3 validator.w3.org W3C HTML Validation Service
P-848 5 www.inria.fr/prisme/....../cgt CG Tribune
P-1406 1 www.informatik.rwth-aachen.de/..... Department of Computer Science, Aachen

Kleinberg pSALSA HubAvg AThresh HThresh FThresh BFS SBayesian Bayesian
Kleinberg 10 6 6 10 10 10 8 6 10
pSALSA 6 10 9 6 6 6 6 10 6
HubAvg 6 9 10 6 6 6 6 9 6
AThresh 10 6 6 10 10 10 8 6 10
HThresh 10 6 6 10 10 10 8 6 10
FThresh 10 6 6 10 10 10 8 6 10
BFS 8 6 6 8 8 8 10 6 8
SBayesian 6 10 9 6 6 6 6 10 6
Bayesian 10 6 6 10 10 10 8 6 10
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