
Enabling Knowledge Representation on the Web by
Extending RDF Schema

Jeen Broekstra,y Michel Klein,z
Stefan Decker,? Dieter Fensel,z Frank van Harmelen,z

and Ian Horrocks+

yAidministrator Nederland bv, Holland
jeen.broekstra@aidministrator.nl

zVrije Universiteit Amsterdam, Holland
fmichel.kleinjdieterjfrankhg@cs.vu.nl

?Department of Computer Science, Stanford University, Stanford, USA
stefan@db.stanford.edu

+Department of Computer Science, University of Manchester, UK
horrocks@cs.man.ac.uk

ABSTRACT
Recently, there has been a wide interest in using ontologies on the
Web. As a basis for this, RDF Schema (RDFS) provides means
to define vocabulary, structure and constraints for expressing meta-
data about Web resources. However, formal semantics are not pro-
vided, and the expressivity of it is not enough for full-fledged on-
tological modeling and reasoning. In this paper, we will show how
RDFS can be extended in such a way that a full knowledge rep-
resentation (KR) language can be expressed in it, thus enriching it
with the required additional expressivity and the semantics of this
language. We do this by describing the ontology language OIL as
an extension of RDFS. An important benefit of our approach is that
it ensures maximal sharing of meta-data on the Web: even partial
interpretation of an OIL ontology by less semantically aware pro-
cessors will yield a correct partial interpretation of the meta-data.
We conclude that our method of extending is equally applicable to
other KR formalisms.

1. INTRODUCTION
Currently, computers are changing from single isolated devices

into entry points into a worldwide network of information exchange
and business transactions (cf. [4]). Support in data, information,
and knowledge exchange is becoming the key issue in current com-
puter technology. Ontologies will play a major role in supporting
information exchange processes in various areas.

Many definitions of ontologies have been given in the last
decade, but one that, in our opinion, best characterizes the essence
of an ontology is based on the related definitions by [8]: An on-

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

tology is a formal, explicit specification of a shared conceptualisa-
tion. A conceptualisation refers to an abstract model of some phe-
nomenon in the world which identifies the relevant concepts of that
phenomenon. Explicit means that the type of concepts used and the
constraints on their use are explicitly defined. Formal refers to the
fact that the ontology should be machine understandable, i.e. the
machine should be able to interpret the semantics of the informa-
tion provided. Shared reflects the notion that an ontology captures
consensual knowledge, that is, it is not restricted to some individ-
ual, but accepted by a group.

Ontologies will allow structural and semantic definitions of doc-
uments, providing completely new possibilities: intelligent search
instead of keyword matching, query answering instead of informa-
tion retrieval, document exchange via ontology mappings, and def-
inition of views on documents.

RDF Schema [3] provides means to define vocabulary, struc-
ture and constraints for expressing metadata about Web resources.
However, formal semantics for the primitives defined in RDF
Schema are not provided, and the expressivity of these primitives
is not enough for full-fledged ontological modeling and reasoning.
To perform these tasks, an additional layer on top of RDF Schema
is needed. Tim Berners-Lee calls this layered architecture the Se-
mantic Web [2].

At the lowest level of the Semantic Web a generic mechanism
for expressing machine readable semantics of data is required. The
Resource Description Framework (RDF) [12] is this foundation for
processing metadata, providing a simple data model and a stan-
dardized syntax for metadata. Basically, it provides the language
for writing down factual statements. The next layer is the schema
layer (provided by the RDF Schema specification [3]). We will
show how a formal knowledge representation language can be used
as the third, logical, layer. We will illustrate this by defining the on-
tology language OIL [6, 10] as an extension of RDF Schema.

OIL (Ontology Inference Layer), a major spin-off from the IST
project On-To-Knowledge1 [7], is a Web-based representation and

1On-To-Knowledge: Content-driven Knowledge-Management
Tools through Evolving Ontologies (IST-1999-10132).
http://www.ontoknowledge.org/

467

inference layer for ontologies, which unifies three important as-
pects provided by different communities: formal semantics and ef-
ficient reasoning support as provided by Description Logics, epis-
temological rich modeling primitives as provided by the Frame
community, and a standard proposal for syntactical exchange no-
tations as provided by the Web community.

The content of the paper is organized as follows. In section 2 we
provide a short introduction to RDF and RDF Schema. Section 3
provides a very brief introduction into OIL. Section 4 illustrates in
detail how RDF Schema can be extended, using OIL as an example
knowledge representation language. The result is an RDF Schema
definition of OIL primitives, which allows one to express any OIL
ontology in RDF syntax. In section 5 we discuss how our approach
enables the added benefits of OIL, such as reasoning support and
formal semantics, to be used on the Web, while retaining maximal
compatibility with ‘pure’ RDF(S). Finally, we provide our conclu-
sions in section 6.

2. RDF AND RDF SCHEMA
In this section we will discuss the main features of RDF and RDF

Schema (or RDFS for short) and we will critically review some of
their design decisions.

2.1 Introduction to RDF
A prerequisite for the Semantic Web is machine-processable se-

mantics of the information. The Resource Description Frame-
work (RDF) [12] is a foundation for processing metadata; it pro-
vides interoperability between applications that exchange machine-
understandable information on the Web. Basically, RDF defines a
data model for describing machine processable semantics of data.
The basic data model consists of three object types:

� Resources: A resource may be an entire Web page; a part of
a Web page; a whole collection of pages; or an object that
is not directly accessible via the Web; e.g. a printed book.
Resources are always named by URIs.

� Properties: A property is a specific aspect, characteristic,
attribute, or relation used to describe a resource.

� Statements: A specific resource together with a named prop-
erty plus the value of that property for that resource is an
RDF statement.

These three individual parts of a statement are called, respectively,
the subject, the predicate, and the object. In a nutshell, RDF de-
fines object-property-value-triples as basic modeling primitives and
introduces a standard syntax for them. An RDF document will de-
fine properties in terms of the resources to which they apply. For
example:

<rdf:RDF>
<rdf:Description about="http://www.w3.org">

<Publisher>World Wide Web Consortium</Publisher>
</rdf:Description>

</rdf:RDF>

states that http://www.w3.org (the subject) has as publisher (the
predicate) the W3C (the object). Since both the subject and the ob-
ject of a statement can be resources, these statements can be linked
in a chain:

<rdf:RDF>
<rdf:Description about="http://www.w3.org/Home/Lassila">

<Creator rdf:resource="http://www.w3.org/staffId/85740"/>
</rdf:Description>

<rdf:Description about="http://www.w3.org/staffId/85740">
<Email>lassila@w3.org</v:Email>

</rdf:Description>
</rdf:RDF>

States that http://www.w3.org/Home/Lassila (the subject) is created
by staff member no. 85740 (the object). In the next statement, this
same resource (staff member 85740) plays the role of subject to
state that his email address is lassila@w3.org. Finally, RDF state-
ments are also resources, so that statements can be applied recur-
sively to statements, allowing their nesting.

All this leads to the underlying datamodel being a labelled hyper-
graph, with each statement being a predicate-labelled link between
object and subject. The graph is a hyper-graph since each node can
itself again contain an entire graph.

2.2 Introduction to RDF Schema
The modeling primitives offered by RDF are very basic2. There-

fore, the RDF Schema specification [3] defines further modeling
primitives in RDF. That is, RDF Schema extends (or: enriches)
RDF by giving an externally specified semantics to specific re-
sources. e.g., to rdfs:subclassOf, to rdfs:Class etc. It is only be-
cause of this external semantics that RDF Schema is useful. More-
over, this semantics cannot be captured in RDF - if it could then
there would be no need for RDFS. OIL stands in a similar relation-
ship to RDFS - by defining a semantics for specific resources we
further extend (or: enrich) RDF Schema. This allows OIL to cap-
ture meaning that cannot be captured in RDFS, and this is where
the added value is. Furthermore, we will be careful to create this
extension to RDF Schema in such a way that a partial interpreta-
tion without the additional OIL semantics will still yield a valid
RDF Schema interpretation.

Despite the similarity in their names, RDF Schema fulfills a dif-
ferent role than XML Schema does. XML Schema, and also DTDs,
prescribes the order and combination of tags in an XML document.
In contrast, RDF Schema only provides information about the in-
terpretation of the statements given in an RDF data model, but it
does not constrain the syntactical appearance of an RDF descrip-
tion. Therefore, the definition of OIL in RDFS that will be pre-
sented in this document will not provide constraints on the structure
of an actual OIL ontology.

In this section we will briefly discuss the overall structure of
RDFS and its main modeling primitives.

2.2.1 The data model of RDF Schema
Figure 1 pictures the subclass-of hierarchy of RDFS and figure

2 pictures the instance-of relationships of RDFS primitives accord-
ing to [3]. The ‘rdf’ prefix refers to the RDF name space (i.e.,
primitives with this prefix are already defined in RDF) and ‘rdfs’
refers to new primitives defined by RDFS. Note that RDFS uses
a non-standard object-meta model: the properties rdfs:subClassOf,
rdf:type, rdfs:domain and rdfs:range are used both as primitive con-
structs in the definition of the RDF schema specification and as spe-
cific instances of RDF properties. This dual role makes it possible
to view e.g. rdfs:subClassOf as an RDF property just like other pre-
defined or newly introduced RDF properties, but introduces a self
referentiality into the RDF schema definition, which makes it rather
unique when compared to conventional model and meta modeling
approaches, and makes the RDF schema specification very difficult
to read and to formalize, cf. [14].

2.2.2 The modeling primitives of RDF Schema
2Actually they correspond to binary predicates of ground terms,
where, however, the predicates may be used as terms, as well.

468

In this section, we will discuss the main classes, properties, and
constraints in RDFS.

rdfs:Resource

rdfs:Class rdfs:ConstraintResource rdf:Property

rdfs:ConstraintProperty rdfs:ContainerMembershipProperty

Figure 1: The subclass-of hierarchy of modeling primitives in
RDFS.

rdfs:Resource

rdf:Property rdfs:ContainerMembershipProperty

rdfs:ConstraintProperty

rdfs:Literalrdfs:ConstraintResource

rdfs:Class

Figure 2: The instance-of relationships of modeling primitives
in RDFS.

� Core classes are rdfs:Resource, rdf:Property3, and
rdfs:Class. Everything that is described by RDF expressions
is viewed to be an instance of the class rdfs:Resource.
The class rdf:Property is the class of all properties used
to characterize instances of rdfs:Resource, i.e., each slot /
relation is an instance of rdf:Property. Finally, rdfs:Class is
used to define concepts in RDFS, i.e., each concept must be
an instance of rdfs:Class.

� Core properties are rdf:type, rdfs:subClassOf, and
rdfs:subPropertyOf. The rdf:type relation models instance-
of relationships between resources and classes. A re-
source may be an instance of more than one class. The
rdfs:subClassOf4 relation models the subsumption hierarchy
between classes and is supposed to be transitive. Again, a
class may be subclass of several other classes, however, a
class can neither be a subclass of its own nor a subclass of
its own subclasses, i.e., the inheritance graph is cycle-free.
The rdfs:subPropertyOf relation models the subsumption
hierarchy between properties. If some property P2 is a
rdfs:subPropertyOf another property P1 , and if a resource
R has a P2 property with a value V , this implies that the
resource R also has a P1 property with value V . Again, the
inheritance graph is supposed to be cycle-free.

� Core constraints are rdfs:ConstraintResource,
rdfs:ConstraintProperty, rdfs:range, and rdfs:domain.
rdfs:ConstraintResource defines the class of all con-
straints. rdfs:ConstraintProperty is a subset of

3Note, that in this sense a property is an instance of a class.
4It is not really clear from the RDFS specification whether
rdfs:subClassOf can be applied to rdf:Property. This seems pos-
sible because the latter is also an instance of rdfs:Class.

rdfs:ConstraintResource and rdf:Property covering all
properties that are used to define constraints. At the mo-
ment, it has two instances: rdfs:range and rdfs:domain that
are used to restrict range and domain of properties. It is
not permitted to express two or more range constraints on a
property. For domains this is not enforced and is interpreted
as the union of the domains.

3. OIL
In this section we will give a very brief description of the OIL

language; more details can be found in [10]. A small example on-
tology in OIL is provided in figure 3.

This language has been designed so that:

1. it provides most of the modeling primitives commonly used
in frame-based and Description Logic (DL) oriented Ontolo-
gies;

2. it has a simple, clean and well defined first-order semantics;

3. automated reasoning support (e.g. class consistency and sub-
sumption checking) can be provided. The FaCT system [1], a
DL reasoner developed at the University of Manchester, can
be (and has been) used to this end [17].

It is envisaged that this core language will be extended in the fu-
ture with sets of additional primitives, with the proviso that full
reasoning support may not be available for ontologies using such
primitives.

An ontology in OIL is represented via an ontology container and
an ontology definition part. For the container, we adopt the compo-
nents defined by Dublin Core Metadata Element Set, Version 1.15.

The ontology-definition part consists of an optional import state-
ment, an optional rule-base and class, slot and axiom definitions.

A class definition (class-def) associates a class name with a class
description. This class description in turn consists of the type of the
definition (either primitive, which means that the stated conditions
for class membership are necessary but not sufficient, or defined,
which means that these conditions are both necessary and suffi-
cient), a subclass-of statement and zero or more slot-constraints.

The value of a subclass-of statement is a (list of) class-
expression(s). This can be either a class name, a slot-constraint,
or a boolean combination of class expressions using the operators
and, or and not, with the standard DL semantics.

In some situations it is possible to use a concrete-type-expression
instead of a class expression. A concrete-type-expression defines
a range over some data type. Two data types that are currently
supported in OIL are integer and string. Ranges can be defined
using the expressions (min X), (max X), (greater-than X), (less-
than X), (equal X) and (range X Y). For example, (min 21) defines
the data type consisting of all the integers greater than or equal
to 21. As another example, (equal “xyz”) defines the data-type
consisting of the string “xyz”.

A slot-constraint (or property restriction) is a list of one or more
constraints (restrictions) applied to a slot (property). Typical con-
straints are:

� has-value (class-expr) Every instance of the class defined
by the slot constraint must be related, via the slot relation, to
an instance of each class expression in the list.

5See http://purl.org/DC/

469

ontology-container
title “African Animals”
creator “Ian Horrocks”
subject “animal, food, vegetarians”
description “A didactic example ontology

describing African animals and plants”
description.release “2.0”
publisher “I. Horrocks”
type “ontology”
format “pdf”
identifier “http://.../oil-rdfs.pdf”
source “http://www.africa.com/”
language “en-uk”

ontology-definitions
slot-def eats

inverse is-eaten-by
slot-def has-part

inverse is-part-of
properties transitive

slot-def weight
range (min 0)
properties functional

slot-def colour

range string
properties functional

class-def animal
class-def plant
disjoint animal plant
class-def tree

subclass-of plant
class-def branch

slot-constraint is-part-of
has-value tree

class-def leaf
slot-constraint is-part-of

has-value branch
class-def defined carnivore

subclass-of animal
slot-constraint eats

value-type animal
class-def defined herbivore

subclass-of animal
slot-constraint eats

value-type (plant or
(slot-constraint is-part-of

has-value plant))

disjoint carnivore herbivore
class-def mammal

subclass-of animal
class-def elephant

subclass-of herbivore mammmal
slot-constraint eats

value-type plant
slot-constraint colour

has-filler “grey”
class-def defined african-elephant

subclass-of elephant
slot-constraint comes-from

has-filler Africa
class-def defined indian-elephant

subclass-of elephant
slot-constraint comes-from

has-filler India
disjoint-covered elephant by

african-elephant indian-elephant
——– instance information ——–
instance-of Africa continent
instance-of Asia continent
related is-part-of India Asia

Figure 3: An example OIL ontology, modelling the animal kingdom

� value-type (class-expr) If an instance of the class defined by
the slot-constraint is related via the slot relation to some indi-
vidual x, then x must be an instance of each class-expression
in the list.

� max-cardinality n (class-expr) An instance of the class de-
fined by the slot-constraint can be related to at most n distinct
instances of the class-expression via the slot relation (also
min-cardinality and, as a shortcut for both min and max, car-
dinality).

A slot definition (slot-def) associates a slot name with a slot def-
inition. A slot definition specifies global constraints that apply to
the slot relation. A slot-def can consist of a subslot-of statement,
domain and range restrictions, and additional qualities of the slot,
such as inverse slot, transitive, and symmetric.

An axiom asserts some additional facts about the classes in the
ontology, for example, that the classes carnivore and herbivore
are disjoint (that is, have no instances in common). Valid axioms
are:

� disjoint (class-expr)+ All of the class expressions in the list
are pairwise disjoint.

� covered (class-expr) by (class-expr)+ Every instance of the
first class expression is also an instance of at least one of the
class expressions in the list.

� disjoint-covered (class-expr) by (class-expr)+ Every in-
stance of the first class expression is also an instance of ex-
actly one of the class expressions in the list.

� equivalent (class-expr)+ All of the class expressions in the
list are equivalent (i.e. they have the same instances).

The syntax of OIL is oriented towards XML and RDF. [10] de-
fines a DTD and a XML schema definition for OIL. [11] derives an
XML Schema for writing down instances of an OIL ontology. In
this paper, we will derive the RDFS syntax of OIL.

4. OIL AS AN EXTENSION OF
RDF SCHEMA

RDF provides basic modeling primitives: ordered triples of
objects and links. RDFS enriches this basic model by provid-
ing a vocabulary for RDF, which is assumed to have a cer-
tain semantics. In this section we will provide a careful anal-
ysis of the relation between RDFS and OIL by defining OIL
in RDFS, using existing vocabulary where possible and extend-
ing RDFS with OIL primitives where necessary. The complete
schema can also be found at http://www.ontoknowledge.
org/oil/rdf-schema/. The RDFS serialization of the ex-
ample from the previous section is available at http://www.
ontoknowledge.org/oil/a-animals.rdfs.

4.1 The ontology container and import
mechanism

The outer box of the OIL specification in RDFS is defined by
the XML prologue and the namespace definitions xmlns:rdf and
xmlns:rdfs, which refer to RDF and RDFS, respectively. Name-
space definitions make externally defined RDF constructs avail-
able for local use. Therefore, the OIL specification uses RDF and
RDFS, and an actual ontology in OIL has namespace definitions
which make both the RDF and RDFS definitions as well as the OIL
specification itself available.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:oil="http://www.ontoknowledge.org/

oil/rdf-schema/2000/11/10-oil-standard"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcq="http://purl.org/dc/qualifiers/1.1/"
<!-- The ontology defined in OIL with RDFS syntax-->

</rdf:RDF>

It is important to notice that namespace definitions are not import
statements, and are therefore not transitive. An actual ontology also
has to define the namespaces for RDF and RDFS via xmlns:rdf and

470

xmlns:rdfs, otherwise, all elements of OIL that directly correspond
to RDF and RDFS elements would not be available.

The ontology-container of OIL provides metadata describing an
OIL ontology. Because the structure and RDF-format of the Dublin
Core element set is used, it is enough to import the namespace of
the Dublin Core element set. Note that the fact that an OIL ontol-
ogy should provide a container definition is an informal guideline
in its RDFS syntax, because it is not possible to enforce this in the
schema definition.

Apart from the container, an OIL ontology consists of a set of
definitions. The import definition is a simple list of references to
other OIL modules that are to be included in this ontology. We
make use of the XML namespace mechanism to incorporate this
mechanism in our RDFS specification. Notice again that, in con-
trast to the import statement in OIL, inclusion via the namespace
definition is not transitive.

4.2 Class and attribute definitions
In OIL, a class definition links a class with a name, a documen-

tation, a type, its superclasses, and the attributes defined for it. In
RDFS, classes are simply declared by giving them a name (with the
ID attribute). We will show how OIL class definitions can be writ-
ten down in RDF, while trying to make use of existing RDFS con-
structs as much as possible, but where necessary extending RDFS
with additional constructs (see table 4.2.6 and figure 4).We con-
form to the informal RDF guideline to start property names with a
lower-case letter, and class names with a capital.

To illustrate the use of these extensions, we will walk through
them by means of some example OIL class definitions that need to
be represented in RDFS syntax:

class-def defined herbivore
subclass-of animal

slot-constraint eats
value-type (plant or
(slot-constraint is-part-of has-value plant))

class-def elephant
subclass-of herbivore mammal
slot-constraint eats

value-type plant
slot-constraint colour

has-filler “grey”

The first defines a class “herbivore”, a subclass of animal, whose
instances eat plants or parts of plants. The second defines a class
“elephant”, which is a subclass of both herbivore and mammal.

4.2.1 Defined classes and Primitive classes
We start by translating the first class definition. The header can

be done in a straightforward manner, using the rdfs:Class construct
and the rdf:ID property to assign a name:

<rdfs:Class rdf:ID="herbivore"> </rdfs:Class>

From this definition it is not yet clear that this class is a de-
fined class. We chose to introduce two extra classes in the OIL
namespace, named PrimitiveClass and DefinedClass. In a partic-
ular class definition, we can use one of these two ways to express
that a class is a defined class:

<rdfs:Class rdf:ID="herbivore">
<rdf:type rdf:resource="http://www.ontoknowledge.org/oil/

rdf-schema/2000/11/10-oil-standard#DefinedClass"/>
</rdfs:Class>

or:

<oil:DefinedClass rdf:ID="herbivore"> </oil:DefinedClass>

We will use the first method of serialization throughout this arti-
cle, but it is important to realize that both model exactly the same.

This way of making an actual class an instance of either De-
finedClass or PrimitiveClass introduces a nice object-meta distinc-
tion between the OIL RDFS schema and the actual ontology: using
rdf:type you can consider the class “herbivore” to be an instance of
DefinedClass. In OIL in general, if it is not explicitly stated that a
class is defined, the class is assumed to be primitive.

4.2.2 Class Subsumption
Next, we have to translate the subclass-of statement to RDFS.

This also can be done in a straightforward manner, simply re-using
existing RDFS expressiveness:

<rdfs:Class rdf:ID="herbivore">
<rdf:type rdf:resource="http://www.ontoknowledge.org/oil/

rdf-schema/2000/11/10-oil-standard#DefinedClass"/>
<rdfs:subClassOf rdf:resource="#animal"/>

</rdfs:Class>

However, if one wants to define a class as a subclass of a class
expression, one should use the oil:subClassOf property.

4.2.3 Slot Constraints
We still need to serialize the slot constraint on the class “herbi-

vore”. In RDFS, there is no mechanism for restricting the attributes
of a class on a local level. This is due to the property-centric nature
of the RDF data model: properties are defined globally, with their
domain description coupling them to the relevant classes.

To overcome this problem, we introduce the
oil:hasPropertyRestriction property, which is an rdf:type of
rdfs:ConstraintProperty (analogous to rdfs:domain and rdfs:range).
Here we take full advantage of the intended extensibility of
RDFS. We also introduce oil:PropertyRestriction as a placeholder
class6 for specific classes of slot constraints, such as has-value,
value-type, cardinality and so on. These are all modeled in the OIL
namespace as subclasses of oil:PropertyRestriction:

<rdfs:Class rdf:ID="ValueType">
<rdfs:subClassOf rdf:resource="#PropertyRestriction"/>

</rdfs:Class>

and similar for the other slot constraints. For the three cardinal-
ity constraints, an extra property “number” is introduced, which is
used to assign a concrete value to the cardinality constraints.

To connect a ValueType slot constraint with its actual values,
such as the property it refers to and the class it restricts that property
to, we introduce a pair of helper properties. These helper proper-
ties have no direct counterpart in terms of OIL primitives, but they
serve to connect two classes. We define a property oil:onProperty
to connect a property restriction with the subject property, and a
property oil:toClass to connect the property restriction to the its
class restriction.

In our example ontology, the first part of the slot constraint would
be serialized using the primitives introduced above as follows:

<rdfs:Class rdf:ID="herbivore">
<rdf:type rdf:resource="http://www.ontoknowledge.org/oil/

rdf-schema/2000/11/10-oil-standard#DefinedClass"/>
<rdfs:subClassOf rdf:resource="#animal"/>
<oil:hasPropertyRestriction>

<oil:ValueType>
<oil:onProperty rdf:resource="#eats"/>
<oil:toClass> </oil:toClass>

</oil:ValueType>
</oil:hasPropertyRestriction>

</rdfs:Class>

6A placeholder class in the OIL RDFS specification is only used to
apply domain- and range restrictions to a group of classes, and will
not be used in the actual OIL ontology.

471

oil:ClassExpression

oil:And oil:Or oil:Not

oil:PropertyRestriction

oil:CardinalityRestriction

oil:DefinedClassoil:PrimitiveClass

oil:HasValueoil:ValueType

oil:MinCardinality oil:MaxCardinalityoil:Cardinality

oil:TransitiveProperty

oil:SymmetricProperty

oil:FunctionalProperty

oil:Expression

oil:Axiom

oil:ConcreteTypeExpression

oil:Covering

oil:Cover oil:DisjointCover

oil:Equivalentoil:Disjoint

oil:BooleanExpression

oil:HasFiller
oil:Min

oil:Max oil:Range

oil:LessThan oil:GreaterThan

oil:Equal

oil:OneOf

rdfs:Resource

rdfs:ConstraintResource rdf:Property

rdfs:Class

Figure 4: The OIL extensions to RDFS in the subsumption hierarchy.

If we would want to restrict the value type of a property to a
string or an integer, we could use the toConcreteType property:

...
<oil:ValueType>

<oil:onProperty rdf:resource="#age"/>
<oil:toConcreteType

rdf:resource="http://www.ontoknowledge.org/oil/
rdf-schema/2000/11/10-oil-standard#Integer"/>

</oil:ValueType>
...

4.2.4 Boolean Expressions
The slot constraint has not been completely translated yet: the

toClass element is not yet filled. Here we come across a feature
of OIL that is not available in RDFS: the boolean expression. A
boolean expression is an expression that evaluates to either a class
definition or a concrete type. In the case of a class definition, such
an expression is a boolean combination of classes and/or slot con-
straints. In the case of a concrete type definition, the expression
can be a simple string or integer value, or a more complex expres-
sion (see section 4.2.6). In the example, we have a boolean ‘or’
expression that evaluates to the class of all things that are plants or
that are parts of plant.

We introduce oil:Expression as a common placeholder, with
oil:ConcreteTypeExpression and oil:ClassExpression as specializa-
tion placeholders. oil:BooleanExpression is introduced as a sibling
of these two, since we want to be able to construct boolean expres-
sions with either kind of expression. The specific boolean opera-
tors, ‘and’, ‘or’ and ‘not’, are introduced as subclasses. Also, notice
that since a single class is essentially a simple kind of class expres-
sion, rdfs:Class itself should be a subclass of oil:ClassExpression
(see figure 4).

The ‘and’, ‘or’ and ‘not’ operators are connected to operands
using the oil:hasOperand property. This property again has no di-
rect equivalent in OIL primitive terms, but is a helper to connect
two class expressions, because in the RDF data model one can only
relate two classes by means of a Property.

In our example, we need to serialize a boolean ‘or’. The RDF
Schema definition of the operator looks like this:

<rdfs:Class rdf:ID="Or">
<rdfs:subClassOf rdf:resource="#BooleanExpression"/>

</rdfs:Class>

and the helper property is defined as follows:

<rdf:Property rdf:ID="hasOperand">
<rdfs:domain rdf:resource="#BooleanExpression"/>
<rdfs:range rdf:resource="#ClassExpression"/>

</rdf:Property>

The fact that hasOperand is only to be used on boolean class
expressions is expressed using the rdfs:domain construction. This
type of modeling stems directly from the RDF property-centric ap-
proach.

Now we apply what we defined above to the example:

<rdfs:Class rdf:ID="herbivore">
<rdf:type rdf:resource="http://www.ontoknowledge.org/oil/

rdf-schema/2000/11/10-oil-standard#DefinedClass"/>
<rdfs:subClassOf rdf:resource="#animal"/>
<oil:hasPropertyRestriction>

<oil:ValueType>
<oil:onProperty rdf:resource="#eats"/>
<oil:toClass>

<oil:Or>
<oil:hasOperand rdf:resource="#plant"/>
<oil:hasOperand>

<HasValue>
<oil:onProperty

rdf:resource="#is-part-of"/>
<oil:toClass rdf:resource="#plant"/>

</HasValue>
</oil:hasOperand>

</oil:Or>
</oil:toClass>

</oil:ValueType>
</oil:hasPropertyRestriction>

</rdfs:Class>

Observe that the HasValue property restriction is not related to
the class by a hasPropertyRestriction property, but by a hasOperand
property. This stems from the fact that the property restriction plays
the role of a boolean operand here.

4.2.5 Lists of statements
Now, we illustrate some more features by translating the second

class definition, “elephant”.
The first bit is trivial:

<rdfs:Class rdf:ID="elephant"> </rdfs:Class>

472

Next, we need to translate the OIL subsumption statement to
RDFS. In this statement, a list of superclasses is given. In the RDFS
syntax, we model these as seperate subClassOf statements:

<rdfs:Class rdf:ID="elephant">
<rdfs:subClassOf rdf:resource="#mammal"/>
<rdfs:subClassOf rdf:resource="#herbivore"/>

</rdfs:Class>

Next, we have two slot constraints. The first of these is a value-
type restriction, and it is serialized in the same manner as we
showed in the “herbivore” example:

<rdfs:Class rdf:ID="elephant">
<rdfs:subClassOf rdf:resource="#mammal"/>
<rdfs:subClassOf rdf:resource="#herbivore"/>
<oil:hasPropertyRestriction>

<oil:ValueType>
<oil:onProperty rdf:resource="#eats"/>
<oil:toClass rdf:resource="#plant"/>

</oil:ValueType>
</oil:hasPropertyRestriction>

</rdfs:Class>

4.2.6 Slot constraints to concrete types
The second slot constraint is a restriction to a particular con-

crete type. In OIL, a shortcut syntax for such restrictions has
been introduced in the form of a “has-filler” primitive. We se-
rialize this like we do with the other slot constraints: we intro-
duce a class oil:HasFiller and helper properties, oil:stringFiller and
oil:integerFiller, to connect to the value:

<oil:HasFiller>
<oil:onProperty rdf:resource="#colour"/>
<oil:stringFiller>grey</oil:stringFiller>

</oil:HasFiller>

In RDF(S), there is unfortunately no direct way to constrain
the value of a property to a particular datatype. Therefore, the
range value of oil:stringFiller can not be constrained to contain only
strings. Only for clarity we created two subclasses of rdfs:Literal,
named oil:String and oil:Integer.

<rdfs:Class rdf:ID="String">
<rdfs:comment>
The subset of Literals that are strings.
</rdfs:comment>
<rdfs:subClassOf

rdf:resource="http://www.w3.org/2000/01/rdf-
schema#Literal"/>
</rdfs:Class>

The range of the filler properties can now be set to the appro-
priate class, although it is still possible to use any type of Literal.
The semantics of rdfs:Literal are only that anything of this type is
atomic, i.e. it will not be processed further by an RDF processor.
The fact that in this case it should be a string value can only be
made an informal guideline.

<rdf:Property ID="stringFiller">
<rdfs:domain rdf:resource="#HasFiller"/>
<rdfs:range rdf:resource="#String"/>

</rdf:Property>

Using all this, we get the following complete translation of the
class “elephant”:

<rdfs:Class rdf:ID="elephant">
<rdfs:subClassOf rdf:resource="#mammal"/>
<rdfs:subClassOf rdf:resource="#herbivore"/>
<oil:hasPropertyRestriction>

<oil:ValueType>
<oil:onProperty rdf:resource="#eats"/>
<oil:toClass rdf:resource="#plant"/>

</oil:ValueType>
<oil:HasFiller>
<oil:onProperty rdf:resource="#colour"/>
<oil:stringFiller>grey</oil:stringFiller>

</oil:HasFiller>
</oil:hasPropertyRestriction>

</rdfs:Class>

Observe that it is allowed to have more than one property restric-
tion within the hasPropertyRestriction element.

OIL primitive RDFS syntax type
class-def rdfs:Class class
subclass-of rdfs:subClassOf property
class-expression oil:ClassExpression class

(placeholder only)
and oil:And class

(subclass of BooleanExpression)
or oil:Or class

(subclass of BooleanExpression)
not oil:Not class

(subclass of BooleanExpression)
slot-constraint oil:PropertyRestriction class

(placeholder only)

oil:hasPropertyRestriction property
(rdf:type of rdfs:ConstraintProperty)

oil:CardinalityRestriction class
(placeholder only)
(subclass of oil:PropertyRestriction)

has-value oil:HasValue class
(subclass of oil:PropertyRestriction)

has-filler oil:HasFiller class
(subclass of oil:PropertyRestriction)

value-type oil:ValueType class
(subclass of oil:PropertyRestriction)

max-cardinality oil:MaxCardinality class
(subclass of oil:CardinalityRestriction)

min-cardinality oil:MinCardinality class
(subclass of oil:CardinalityRestriction)

cardinality oil:Cardinality class
(subclass of oil:CardinalityRestriction)

Table 1: Class-definitions in OIL and the corresponding
RDF(S) constructs

4.2.7 Conclusion
The serialization we propose gives us enough expressiveness to

translate any possible OIL class definition to an RDF syntax. Use of
RDF(S) specific constructs is maximized without sacrificing clarity
of the specification, to enable RDF agents that are not OIL-aware to
understand as much of the specification as possible, while retaining
the possibility to translate back to OIL unambiguously.

In the next section, we will examine how to serialize global slot
definitions.

4.3 Slot definitions
Both OIL and RDFS allow slots as first-class citizens of an on-

tology. Therefore, slot definitions in OIL map nicely onto property
definitions in RDFS. Also the “subslot-of”, “domain”, and “range”
properties have almost direct equivalents in RDFS. In table 4.3, an
overview of the OIL constructs and the corresponding RDFS con-
structs is given.

There are a few subtle differences between domain and range
restrictions in OIL and their equivalents in RDFS. First, the speci-
fication of OIL is very clear on multiple domain and range restric-
tion: these are allowed, and the semantic is the intersection of the

473

individual statements (conjunctive semantics). In RDFS, multiple
domain statements are allowed, but their interpretation is the union
of the classes in the statements (disjunctive semantics). This limits
the reasoning capabilities of RDFS drastically7.

Despite these semantics for domain, a Property can have at most
one range restriction in RDFS. However, according to discussions
on the rdf-interest mailinglist the semantics of domain and
range will very likely change in the next release of RDFS. We al-
ready anticipated on such a change, and interpret both multiple do-
main and multiple range restrictions with conjunctive semantics.

Secondly, in contrast to RDFS, OIL not only allows classes as
range and domain of properties, but also class-expressions, and –
for range – concrete-type expressions. It is not possible to reuse
rdfs:range and rdfs:domain for these sophisticated expressions, be-
cause of the conjunctive semantics of multiple range statements:
we cannot extend the range of rdfs:range or rdfs:domain, we can
only restrict it.

Therefore, we introduced two new ConstraintProperties
oil:domain and oil:range. They have the same domain as their
RDFS equivalent (i.e., rdf:Property), but have a broader range. For
domain, class expressions are valid fillers, for range both class
expressions and concrete type expressions may be used:

<rdfs:ConstraintProperty rdf:ID="domain">
<rdfs:domain rdf:resource="http://www.w3.org/1999/02/

22-rdf-syntax-ns#Property"/>
<rdfs:range rdf:resource="#ClassExpression"/>

</rdfs:ConstraintProperty>

<rdfs:ConstraintProperty rdf:ID="range">
<rdfs:domain rdf:resource="http://www.w3.org/1999/02/

22-rdf-syntax-ns#Property"/>
<rdfs:range rdf:resource="#Expression"/>

</rdfs:ConstraintProperty>

When translating a slot definition, rdfs:domain and rdfs:range
should be used for simple (one class) domain and range restrictions.
For example:

slot-def gnaws
subslot-of eats
domain Rodent

will be translated into:

<rdf:Property rdf:ID="gnaws">
<rdfs:subPropertyOf rdf:resource="#eats"/>
<rdfs:domain rdf:resource="#Rodent"/>

</rdf:Property>

For more complicated statements the oil:range or oil:domain prop-
erties should be used:

slot-def age
domain (elephant or lion)
range (range 0 70)

is in the RDFS representation:

<rdf:Property rdf:ID="age">
<oil:domain>

<oil:Or>
<oil:hasOperand rdf:resource="#elephant"/>
<oil:hasOperand rdf:resource="#lion"/>

</oil:Or>
</oil:domain>
<oil:range>

<oil:Range>
<oil:integerValue>0</oil:integerValue>
<oil:integerValue>70</oil:integerValue>

</oil:Range>
</oil:range>

</rdf:Property>

7For example, it is never possible to derive class membership from
a domain statement when union semantics are used.

To specify that the range of a property is string or integer, we
use our definitions of oil:String and oil:Integer as subclasses of
rdfs:Literal. For example, to state that the range of age is integer,
one could say:

<rdf:Property ID="age">
<rdfs:range

rdf:resource="http://www.ontoknowledge.org/oil/
rdf-schema/2000/11/10-oil-standard#Integer">

</rdf:Property>

However, global slot-definitions in OIL allow specification of
more aspects of a slot than property definitions in RDFS do. Be-
sides the domain and range restrictions, OIL slots can also have an
“inverse” attribute and qualities like “transitive” and “symmetric”.

We therefore added a property “inverseRelationOf” with
“rdf:Property” as domain and range. We also added the classes
“TransitiveProperty”, “FunctionalProperty” and “SymmetricProp-
erty” to reflect the different qualities of a slot. In the RDFS-
serialization of OIL, the rdf:type property can be used to add a
quality to a property. For example, the OIL definition of:

slot-def has-part
inverse is-part-of
properties transitive

is in RDFS:

<rdf:Property rdf:ID="has-part">
<rdf:type rdf:resource=

"http://www.ontoknowledge.org/oil/rdf-schema/
2000/11/10-oil-standard#TransitiveProperty"/>

<oil:inverseRelationOf rdf:resource="#is-part-of"/>
</rdf:Property>

or, in the abbreviated syntax:

<oil:TransitiveProperty rdf:ID="has-part">
<oil:inverseRelationOf rdf:resource="#is-part-of"/>

</oil:TransitiveProperty>

This way of translating the qualities of properties features the
same nice object-meta distinction between the OIL RDFS schema
and the actual ontology as the translation of the “type” of a class
(see section 4.2). In an actual ontology, the property “has-part” can
be considered as an instance of a TransitiveProperty. Note that it is
allowed to make a property an instance of more than one class, and
thus giving it multiple qualities. Note that this way of represent-
ing qualities of properties in RDFS follows the proposed general
approach of modeling axioms in RDFS, presented in [15]. In this
approach, the same distinction between language-level constructs
and schema-level constructs is made.

One alternative way of serializing the attributes of properties
would be to define the qualities “transitive” and “symmetric” as
subproperties of rdf:Property. Properties in the actual ontology
(e.g. “has-part”) would, in their turn, be defined as subProperties of
these qualities (e.g. transitiveProperty). However, this would mix
up the use of properties at the OIL-specification level and at the
actual ontology level.

A third way would be to model the qualities as subproperties
of rdf:Property again, but to define properties in the actual on-
tology as instances (rdf:type) of such qualities. In this approach,
the object-meta level distinction is preserved. However, we dis-
like the use of rdfs:subPropertyOf at the meta-level, because then
rdfs:subPropertyOf has two meanings, at the meta-level and at the
object-level.

We therefore prefer the first solution because of the clean dis-
tinction between the meta and object level.

474

OIL primitive RDFS syntax type
slot-def rdf:Property class
subslot-of rdfs:subPropertyOf property
domain rdfs:domain property

oil:domain property
range rdfs:range property

oil:range property
inverse oil:inverseRelationOf property
transitive oil:TransitiveProperty class
functional oil:FunctionalProperty class
symmetric oil:SymmetricProperty class

Table 2: Slot-definitions in OIL and the corresponding RDF(S)
constructs.

4.4 Axioms
Axioms in OIL are factual statements about the classes in the

ontology. They correspond to n-ary relations between class expres-
sions, where n is 2 or greater.

RDF only knows binary relations (properties). Therefore, we
cannot simply map OIL axioms to RDF properties. Instead, we
chose to model axioms as classes, with helper properties connect-
ing them to the class expressions involved in the relation. Since
axioms can be considered objects, this is a very natural approach
towards modeling them in RDF (see also [16, 15]). Observe also
that binary relations (properties) are modeled as objects in RDFS
as well (i.e., any property is an instance of the class rdf:Property).
We simply introduce a new primitive alongside rdf:Property for re-
lations with higher arity (see figure 4).

We introduce a placeholder class oil:Axiom, and model specific
types of axioms as subclasses:

<rdfs:Class ID="Disjoint">
<rdfs:subClassOf rdf:resource="#Axiom"/>

</rdfs:Class>

and likewise for Equivalent.
We also introduce a property to connect the axiom object with

the class expressions it relates to each other: oil:hasObject is a
property connecting an axiom with an object class expression. For
example, to serialize the axiom that herbivores, omnivores and car-
nivores are (pairwise) disjoint:

<oil:Disjoint>
<oil:hasObject rdf:resource="#herbivore"/>
<oil:hasObject rdf:resource="#carnivore"/>
<oil:hasObject rdf:resource="#omnivore"/>

</oil:Disjoint>

Since in a disjointness axiom (or an equivalence axiom) the rela-
tion between the class expressions is bidirectional, we can connect
all class expressions to the axiom object using the same type of
property.

However, in a covering axiom (like cover or disjoint-cover), the
relation between class expressions is not bidirectional: one class
expression plays the role of covering, several other class expres-
sions play the role of being part of that covering.

For modeling covering axioms, we introduce a seperate place-
holder class, oil:Covering, which is a subclass of oil:Axiom. The
specific types of coverings available are modeled as subclasses of
oil:Covering again:

<rdfs:Class ID="Cover">
<rdfs:subClassOf rdf:resource="#Covering"/>

</rdfs:Class>

<rdfs:Class ID="DisjointCover">
<rdfs:subClassOf rdf:resource="#Covering"/>

</rdfs:Class>

Furthermore, two additional properties are introduced:
oil:hasSubject, to connect a covering axiom with its subject,
and oil:isCoveredBy, which is a subproperty of oil:hasObject, to
connect a covering axiom with the classes that cover the subject.

For example, we serialize the axiom that the class animal is cov-
ered by carnivore, herbivore, omnivore, and mammal (i.e. every
instance of animal is also an instance of at least one of the other
classes).

<oil:Cover>
<oil:hasSubject rdf:resource="#animal"/>
<oil:isCoveredBy rdf:resource="#carnivore"/>
<oil:isCoveredBy rdf:resource="#herbivore"/>
<oil:isCoveredBy rdf:resource="#omnivore"/>
<oil:isCoveredBy rdf:resource="#mammal"/>

</oil:Cover>

4.5 Restrictions to valid expressions
In the previous sections we have shown how the knowledge rep-

resentation constructs in OIL can be defined as an extension to RDF
Schema. With these constructs, every OIL ontology can be fully
expressed in an RDF Schema representation. However, it was not
possible to define the extension in such a way that all schemas that
follow it are also valid OIL ontologies. In other words, there are
some restrictions to valid ontologies that are not expressible in the
RDF Schema extension.8

First, there is a problem with datatypes. It cannot be enforced
that instances of oil:String are really strings or that instances of
oil:Integer are really integers. Consequently, it is syntactically pos-
sible to state:

<rdf:Property rdf:ID="weight">
<rdf:range>

<oil:Min>
<oil:integerValue>nonsense</oil:integerValue>

</oil:Min>
</rdf:range>

</rdf:Property>

This is due to the fact that the RDF Schema specification has (in-
tentionally) not specified any primitive datatypes. According to the
specification, the work on data typing in XML itself should be the
foundation for such a capability.

Second, the RDF Schema specification of OIL does not prevent
the intertwining of boolean expressions of classes with boolean ex-
pressions of concrete data types. Although a statement like (dog
and (min 0)) is not allowed in OIL, it is syntactically possible to
state:

<oil:And>
<oil:hasOperand rdf:resource="#Dog">
<oil:hasOperand>

<oil:Min>
<oil:integerValue>0</oil:integerValue>

</oil:Min>
</oil:hasOperand>

</oil:And>

To prevent this kind of mixing, we could have introduced separate
boolean operators for class expressions and concrete type expres-
sions, but in our opinion, this would have made the schema too
convoluted.

8With “valid” we mean: not allowed by the BNF grammer of OIL.
From the logical point of view, there’s nothing wrong with a state-
ment like (dog and (min 0)), it just happens to be equivalent to the
empty class.

475

Finally, another kind of problem is that the schema cannot pre-
vent the unnecessary use of the OIL variants of standard RDF
Schema constructs, like oil:subClassOf, oil:range and oil:domain.
Although this unnecessary use does not affect the semantics of the
ontology, it limits the compatibility of ontologies with plain RDF
Schema.

5. COMPATIBILITY WITH RDF SCHEMA
In this section we will discuss the extent of the compatibility

that we have achieved between the semantic extension (OIL), and
the underlying language (RDF Schema).

As for any ontology language, we can distinguish three levels:
First, the ontology language, the language in which to state for ex-
ample class-definitions, subclass-relations, attribute-definitions etc.
In our case, RDF Schema and OIL. Second, the ontological classes,
for example the classes “giraffe” or “herbivore”, their subclass rela-
tionships, and their properties (such as eats). These are, of course,
expressed in the language of the first level. Third, the instances
of the ontology, such as individual giraffes or lions that belong to
classes defined at the second level.

If we look at the existing W3C RDF/RDF Schema recommenda-
tion, these levels have the following form:

1. the ontology language is, of course, RDF Schema;

2. specific classes, their properties and relations are therefore
written in RDF Schema, eg:

<rdfs:Class rdf:ID="herbivore">
<rdfs:subClassOf rdf:resource="#animal">

</rdfs:Class>
<rdf:Property rdf:ID="eats"/>

3. instances are written in RDF (note: not RDF Schema), eg:

<rdf:Description about="http://www.cs.vu.nl/˜frankh">
<rdf:type rdf:resource="#herbivore"/>

</rdf:Description>

If we consider a semantic extension of RDF Schema such as OIL,
the situation is as follows:

1. The ontology language is OIL, but it is important to realise
that OIL includes significant parts of RDF Schema as a sub-
language

2. As a result, some class expressions (written in OIL) are actu-
ally also legal RDF Schema. For example, besides being le-
gal RDF Schema, the class definition of “herbivore” in item
2 above is also a legal example of an OIL class-definition.
Of course, since OIL is an extension of RDF Schema, not all
OIL definitions are interpretable as RDF Schema definitions.
For example, in

<rdfs:Class rdf:ID="herbivore">
<rdfs:subClassOf rdf:resource="#animal"/>
<oil:hasPropertyRestriction>

<oil:ValueType>
<oil:onProperty rdf:resource="#eats"/>
<oil:toClass>

<oil:Or>
<oil:hasOperand rdf:resource="#plant"/>
<oil:hasOperand>

<oil:HasValue>
<oil:onProperty

rdf:resource="#is-part-of"/>
<oil:toClass rdf:resource="#plant"/>

</oil:HasValue>
</oil:hasOperand>

</oil:Or>

</oil:toClass>
</oil:ValueType>

</oil:hasPropertyRestriction>
</rdfs:Class>

the semantics of the hasPropertyRestriction statement will
not be interpretable by an RDF Schema processor. The en-
tire state is legal RDF syntax, so it can be parsed, but the
intended semantics of the property restriction itself can only
be understood by an OIL-aware application. Notice that the
first subClassOf statement is still fully interpretable even by
an OIL-unaware RDF Schema processor.

3. OIL instances are written as RDF! This is an important con-
sequence of the fact that the second level is organised as an
extension of RDF Schema.

The above shows that we have now achieved two important com-
patibility results: first of all, OIL is backward compatible with RDF
Schema, i.e. every RDF Schema specification is also a valid OIL
ontology declaration. Second, we have achieved partial forward
compatibility, i.e. even if an ontology is written in the richer mod-
elling language (OIL), a processor for the simpler ontology lan-
guage (RDF Schema) can still:

a) fully interpret all the instance information of the ontology, and

b) partially interpret the class-structure of the ontology. This can
be achieved by simply ignoring any statement not from the rdf
or rdfs namespaces (in our example those from the oil name-
space). For example, in the above definition of “herbivore”, an
RDF Schema processor will interpret this statement simply as
stating that herbivores are a subclass of animals, and that they
some other property that it cannot interpret. This is a correct,
albeit partial, interpretation of the definition.

Such partial interpretability of semantically rich meta-data by
semantically poor processing agents is a crucial step towards the
sharing of meta-data on the Semantic Web. We cannot realistically
hope that all of the Semantic Web will be build on a single standard
for semantically rich meta-data. The above shows that multiple
semantic modelling languages do not have to lead to meta-data that
are totally uninterpretable by others. Instead, simpler processors
can still pick up as much of the meta-data from rich processors as
they can “understand”, and safely ignore the rest in the knowledge
that their partial interpretation is still correct with respect to the
original intention of the meta-data.

6. UNCOVERED PROBLEMS WITH
RDF SCHEMA

In the previous section we have shown that it is possible to de-
fine a formal knowledge representation schema as an extension to
RDFS, effectively implementing the “third layer of the Semantic
Web”. However, there are still a few unsolved problems with the
specification of OIL into RDFS.

First, we did not take into account a restriction on the
rdfs:subClassOf statement, i.e. the restriction that no cycles are
allowed in the subsumption hierarchy. We think that this restric-
tion should be dropped: without cycles one cannot even represent
equivalence between two classes — in our view this is an essen-
tial modeling primitive for any knowledge representation language.
Moreover, these kinds of constraints significantly add to the com-
plexity of parsing/validating RDF documents in a way which we
think would be highly undesirable. This is because they are really
semantic constraints rather than syntactic ones (they limit the kinds

476

of models that can be represented), even if the reasoning required
in order to detect constraint violation is of a very basic kind.

Second, in contrast with RDFS, OIL allows more than one range
restriction on a property. Although this can be circumvented by
defining a dummy superclass of all classes in the range restriction,
we see no reason for this restriction in RDFS. From a modeling
point of view, allowing more than one range restriction is a much
cleaner solution.

During the process of extending RDFS, we encountered a couple
of peculiarities in the RDFS definition itself. The most striking of
these is the non-standard object-meta model, as already discussed
in section 2.2.1. The main problem with this non-standard model
is that some properties have a dual role in the RDFS specification,
both at the schema level and instance level (cf. [14]). This makes
it quite a challenge for modelers to understand the RDFS specifi-
cation. We tried to make this distinction clear in our extensions by
using the rdf:type relationship consistently as an object-meta rela-
tionship.

Furthermore, the semantics of several relationships are unclear.
It is not obvious that the meaning of a list of domain (or range)
restrictions is the union of the elements. Also, the meaning of the
subPropertyOf relation with respect to the inheritance of the do-
main and range restrictions is unclear.

7. RELATED WORK
Work on ontology representation languages dates back to the

work on frame-languages in the early days of AI. However, ef-
forts of designing ontology-representation languages that are Web-
enabled only date from recent years. The most prominent (or even:
the only) efforts in this area have been SHOE [13, 9], Ontobroker
[5], OIL and DAML-ONT9, and more recently, as a replacement
for DAML-ONT, DAML+OIL10.

Of these, only the last three have been defined on top of
RDF(S). Since DAML+OIL is essentially a merger between OIL
and DAML-ONT, we will focus on the comparison of our own pro-
posal (OIL) to DAML-ONT.

DAML-ONT shares with our own proposal the principle that an
ontology language should maintain maximum backwards compati-
bility with existing web standard languages, and in particular RDF
Schema. The difference between OIL and DAML-ONT lies in the
degree to which the languages succeed in maximising the ontologi-
cal content that can be understood by an “RDF Schema agent” (i.e.
an application that understands RDF Schema but does not recog-
nise the language specific extensions, OIL or DAML-ONT). Un-
like OIL, DAML-ONT is built on top of RDFS in a way that allows
little if any ontology content to be understood by an RDFS agent.
In OIL, for example, stating simple subclass relationships between
classes is done using the RDFS subClassOf property:

<rdfs:Class ID="Male">
<rdfs:subClassOf rdf:resource="#Animal"/>

</rdfs:Class>

This part of OIL ontologies is therefore accessible to any RDFS
agent. In contrast, DAML-ONT uses its own locally defined “sub-
ClassOf” property, for example:

<daml:Class ID="Male">
<daml:subClassOf resource="#Animal"/>

</daml:Class>

9DAML-ONT Initial Release, http://www.daml.org/
2000/10/daml-ont.html
10DAML+OIL http://www.daml.org/2000/12/daml+
oil-index.html

The DAML-ONT subClassOf property is then defined to
be “equivalentTo” rdfs:subClassOf, but the definition of
“daml:equivalentTo” itself relies cyclicly on the definition of
daml:sub-PropertyOf. Therefore even simple subclass relation-
ships in a DAML ontology are inaccessible to an RDFS agent.
The situation is even worse when it comes to more complex class
definitions. For example, the definition of the class “TallMan” is
the intersection of the classes “Man” and “TallThing” is expressed
in DAML-ONT as:

<daml:Class ID="TallMan">
<daml:intersectionOf parseType="daml:collection">

<daml:Class about="#TallThing"/>
<daml:Class about="#Man"/>

</daml:intersectionOf>
</daml:Class>

This is completely opaque to an RDFS agent as it will not under-
stand the semantics of “daml:intersectionOf” In OIL, the definition
of TallMan would rely on the fact that intersection is implicit in the
semantics of rdfs:subClassOf:

<rdfs:Class ID="TallMan">
<rdf:type rdf:resource="http://www.ontoknowledge.org/oil/

rdf-schema/2000/11/10-oil-standard#DefinedClass"/>
<rdfs:subClassOf rdf:resource="#TallThing"/>
<rdfs:subClassOf rdf:resource="#Man"/>

</rdfs:Class>

making the sub-class relationships accessible to any RDF Schema
agent. In conclusion, we argue that:

� OIL and DAML-ONT are currently the only two web-based
ontology languages that are built on top of RDF;

� of these, OIL achieves a much larger degree of compatibility
with RDF processors.

As mentioned earlier, DAML+OIL is a proposal for an ontology
language that merges the ideas incorporated in DAML-ONT with
those in OIL. Specifically, many of the ideas, presented in this arti-
cle, on how to represent a KR language in RDFS have been adopted
by DAML+OIL. In effect, DAML+OIL is “backward compatible”
with RDF to a much larger degree than the initial DAML-ONT lan-
guage is.

8. CONCLUSION
In this article, we have shown why a machine-accessible repre-

sentation of the information available on the Web is both useful and
necessary. We have also shown that RDFS is only a small step to-
wards the required expressiveness for the Semantic Web. Finally,
we have illustrated how RDFS still can be used to this end, by ex-
tending it with additional modeling primitives as defined by a more
formal knowledge representation scheme, such as OIL.

An important advantage of our approach is the maximization of
the compatibility with RDFS: not only is every RDF Schema docu-
ment a valid OIL ontology declaration, but every OIL ontology can
be partially interpreted by a semantically poorer processing agent.
This partial interpretation will of course be incomplete, but correct
under the intented semantics of the ontology. We firmly believe
that our way of extending is generally applicable across knowledge
representation formalisms.

Acknowledgements
We would like to thank Sean Bechhofer, Monica Crubezy, Michael
Erdmann, and Arjohn Kampman for their helpful comments and
for reviewing early drafts of this paper.

477

9. REFERENCES
[1] S. Bechhofer, I. Horrocks, P. F. Patel-Schneider, and

S. Tessaris. A proposal for a description logic interface. In
Proc. of DL’99, pages 33–36, 1999.

[2] T. Berners-Lee. Semantic web road map. Internal note,
World Wide Web Consortium, Sept. 1998. See
http://www.w3.org/DesignIssues/Semantic.html.

[3] D. Brickley and R. Guha. Resource Description Framework
(RDF) Schema Specification 1.0. Candidate
recommendation, World Wide Web Consortium, Mar. 2000.
See http://www.w3.org/TR/2000/CR-rdf-schema-20000327.

[4] D. Fensel. Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce. Springer-Verlag,
Berlin, 2000.

[5] D. Fensel, S. Decker, M. Erdmann, and R. Studer.
Ontobroker: The very high idea. In Proceedings of the 11th
International Flairs Conference (FLAIRS-98), Sanibal
Island, Florida, May 1998.

[6] D. Fensel, I. Horrocks, F. van Harmelen, S. Decker,
M. Erdmann, and M. Klein. OIL in a nutshell. In R. Dieng
and O. Corby, editors, Knowledge Engineering and
Knowledge Management; Methods, Models and Tools,
Proceedings of the 12th International Conference EKAW
2000, number LNCS 1937 in Lecture Notes in Artificial
Intelligence, pages 1–16, Juan-les-Pins, France, Oct. 2–6
2000. Springer-Verlag.

[7] D. Fensel, F. van Harmelen, M. Klein, H. Akkermans,
J. Broekstra, C. Fluit, J. van der Meer, H.-P. Schnurr,
R. Studer, J. Hughes, U. Krohn, J. Davies, R. Engels,
B. Bremdal, F. Ygge, T. Lau, B. Novotny, U. Reimer, and
I. Horrocks. On-to-knowledge: Ontology-based tools for
knowledge management. In Proceedings of the eBusiness
and eWork 2000 (EMMSEC 2000) Conference, Madrid,
Spain, Oct. 18–20, 2000.

[8] T. R. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2), 1993.

[9] J. Heflin and J. Hendler. Dynamic ontologies on the web. In
Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI-2000), pages 443–449.
AAAI/MIT Press, Menlo Park, CA, 2000.

[10] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann,
C. Goble, F. van Harmelen, M. Klein, S. Staab, R. Studer,
and E. Motta. OIL: The Ontology Inference Layer. Technical
Report IR-479, Vrije Universiteit Amsterdam, Faculty of
Sciences, Sept. 2000. See
http://www.ontoknowledge.org/oil/.

[11] M. Klein, D. Fensel, F. van Harmelen, and I. Horrocks. The
relation between ontologies and schema-languages:
Translating OIL-specifications in XML-schema. In V. R.
Benjamins, A. Gomez-Perez, and N. Guarino, editors,
Proceedings of the Workshop on Applications of Ontologies
and Problem-solving Methods, 14th European Conference
on Artificial Intelligence (ECAI 2000), Berlin, Germany,
Aug. 21 – 22, 2000.

[12] O. Lassila and R. R. Swick. Resource Description
Framework (RDF): Model and Syntax Specification.
Recommendation, World Wide Web Consortium, Feb. 1999.
See http://www.w3.org/TR/REC-rdf-syntax/.

[13] S. Luke, L. Spector, and D. Rager. Ontology-based
knowledge discovery on the world-wide web. In A. Franz
and H. Kitano, editors, Working Notes of the Workshop on
Internet-Based Information Systems at the 13th National
Conference on Artificial Intelligence (AAAI96), pages
96–102. AAAI Press, 1996.

[14] W. Nejdl, M. Wolpers, and C. Capella. The RDF Schema
Revisited. In Modelle und Modellierungssprachen in
Informatik und Wirtschaftsinformatik, Modellierung 2000,
St. Goar. Foelbach Verlag, Koblenz, Apr. 2000.

[15] S. Staab, M. Erdmann, A. Mädche, and S. Decker. An
extensible approach for modeling ontologies in RDF(S). In
First Workshop on the Semantic Web at the Fourth European
Conference on Digital Libraries, Lisbon, Portugal, Sept.
18–20, 2000.

[16] S. Staab and A. Mädche. Axioms are objects, too - ontology
engineering beyond the modeling of concepts and relations.
In V. Benjamins, A. Gomez-Perez, and N. Guarino, editors,
Proceedings of the Workshop on Applications of Ontologies
and Problem-solving Methods, 14th European Conference
on Artificial Intelligence ECAI 2000, Berlin, Germany, Aug.
21 – 22, 2000.

[17] H. Stuckenschmidt. Using OIL for Intelligent Information
Integration. In V. Benjamins, A. Gomez-Perez, and
N. Guarino, editors, Proceedings of the Workshop on
Applications of Ontologies and Problem-solving Methods,
14th European Conference on Artificial Intelligence ECAI
2000, Berlin, Germany, Aug. 21 – 22, 2000.

478

