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ABSTRACT
We identify crucial design issues in building a distributed
inverted index for a large collection of Web pages. We in-
troduce a novel pipelining technique for structuring the core
index-building system that substantially reduces the index
construction time. We also propose a storage scheme for
creating and managing inverted �les using an embedded
database system. We suggest and compare di�erent strate-
gies for collecting global statistics from distributed inverted
indexes. Finally, we present performance results from ex-
periments on a testbed distributed indexing system that we
have implemented.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Content Analysis and In-
dexing|Indexing ; H.3.4 [Information Systems]: Systems
and Software|Distributed systems

Keywords
Distributed indexing, Text retrieval, Inverted �les, Pipelin-
ing, Embedded databases

1. INTRODUCTION
Various access methods have been developed to support

eÆcient search and retrieval over text document collections.
Examples include suÆx arrays [11], inverted �les or inverted
indexes [20, 25], and signature �les [4]. Inverted �les have
traditionally been the index structure of choice on the Web.
Commercial search engines use custom network architec-
tures and high-performance hardware to achieve sub-second
query response times using such inverted indexes.1

1Even though the Web link structure is being utilized to
produce high-quality results, text-based retrieval continues
to be the primary method for identifying the relevant pages.
In most commercial search engines, a combination text and
link-based methods are employed.
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An inverted index over a collection of Web pages consists
of a set of inverted lists, one for each occurring word (or index
term). The inverted list for a term is a sorted list of locations
where the term appears in the collection. A location consists
of a page identi�er and the position of the term within the
page. When it is not necessary to track each term occurrence
within a page, a location will include just a page identi�er
(and optionally the number of occurrences within the page).
Given an index term w, and a corresponding location l, we
refer to the pair (w; l) as a posting for w.
Conceptually, building an inverted index involves process-

ing each page to extract postings, sorting the postings �rst
on index terms and then on locations, and �nally writing
out the sorted postings as a collection of inverted lists on
disk. When the collection is small and indexing is a rare
activity, optimizing index-building is not as critical as op-
timizing run-time query processing and retrieval. However,
with a Web-scale index, index build time also becomes a
critical factor for two reasons:
Scale and growth rate. The Web is so large and grow-

ing so rapidly [10, 24] that traditional build schemes be-
come unmanageable, requiring huge resources and taking
days to complete (and becoming more vulnerable to system
failures). As a measure of comparison, the 40 million page
(220 GB) WebBase repository [8] represents only about 4%
of the estimated size of the publicly indexable Web as of
January 2000 [24], but is already larger than the 100 GB
very large TREC-7 collection [7], the benchmark for large
IR systems.
Rate of change. Since the content on the Web changes

extremely rapidly [3], there is a need to periodically crawl
the Web and update the inverted index. Indexes can either
be updated incrementally or periodically rebuilt, after every
crawl. With both approaches, the key challenge is to handle
the large whole-scale changes commonly observed between
successive crawls of the Web. For eÆciency and simplicity,
most commercial Web search systems employ the rebuilding
approach [14]. In this case, it is critical to build the index
rapidly to quickly provide access to the new data.
To study and evaluate index building in the context of

the special challenges imposed by the Web, we have imple-
mented a testbed system that operates on a cluster of nodes
(workstations). As we built the testbed, we encountered
several challenging problems that are typically not encoun-
tered when working with smaller collections. In this paper
we report on some of these issues and the experiments we
conducted to optimize build times for massive collections.
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In particular:

� We propose the technique of constructing a software
pipeline on each indexing node to enhance performance
through intra-node parallelism (Section 3).

� We argue that the use of an embedded database system
(such as The Berkeley Database [17]) for storing in-
verted �les has a number of important advantages. We
propose an appropriate format for inverted �les that
makes optimal use of the features of such a database
system (Section 4).

� Any distributed system for building inverted indexes
needs to address the issue of collecting global statistics
(e.g., inverse document frequency - IDF ). We examine
di�erent strategies for collecting such statistics from a
distributed collection (Section 5).

� For each of the above issues, wherever appropriate, we
present experiments and performance studies to com-
pare the alternatives.

We emphasize that the focus of this paper is on the ac-
tual process of building an inverted index and not on using
this index to process search queries. As a result, we do not
address issues such as ranking functions, relevance feedback
[20, 25], and distributed query processing [9, 21].
We also wish to clarify that the focus of this paper is not

on presenting a comprehensive performance or feature-list
comparison of our testbed indexing system with existing sys-
tems for indexing Web and non-Web collections. Rather, we
use our experience with the testbed to identify some key per-
formance issues in building a Web-scale index and propose
generic techniques that are applicable to any distributed in-
verted index system.

2. TESTBED ARCHITECTURE
Our testbed system for building inverted indexes operates

on a distributed shared-nothing architecture consisting of a
collection of nodes connected by a local area network. We
identify three types of nodes in the system (Figure 1):
Distributors. These nodes store the collection of Web

pages to be indexed. Pages are gathered by a Web crawler
and stored in a repository distributed across the disks of
these nodes [8].
Indexers. These nodes execute the core of the index

building engine.
Query servers. Each of these nodes stores a portion of

the �nal inverted index and an associated lexicon. The lex-
icon lists all the terms in the corresponding portion of the
index and their associated statistics. Depending on the or-
ganization of the index �les, some or all of the query servers
may be involved in answering a search query.
Note that many traditional information retrieval (IR) sys-

tems do not employ such a 3-tier architecture for building
inverted indexes. In those systems, the pages or documents
to be indexed are placed on disks directly attached to the
machines that build the index. However, a 3-tier architec-
ture provides signi�cant bene�ts in the context of a Web
search service. Note that a Web search service must per-
form three resource intensive tasks | crawling, indexing,
and querying | simultaneously. Even as existing indexes
are used to answer search queries, newer indexes (based on

Figure 1: Testbed architecture

a more recent crawl) must be constructed, and in parallel,
the crawler must begin a fresh crawl. A 3-tier architecture
clearly separates these three activities by executing them on
separate banks of machines, thus improving performance.
This ensures that pages are indexed and made available for
querying as quickly as possible, thereby maximizing index
freshness.
Overview of indexing process. The inverted index is

built in two stages. In the �rst stage, each distributor node
runs a distributor process that disseminates the collection of
Web pages to the indexers. Each indexer receives a mutually
disjoint subset of pages and their associated identi�ers. The
indexers parse and extract postings from the pages, sort the
postings in memory, and ush them to intermediate struc-
tures on disk.
In the second stage, these intermediate structures are

merged together to create one or more inverted �les and
their associated lexicons. An (inverted �le, lexicon) pair is
generated by merging a subset of the sorted runs. Each (in-
verted �le, lexicon) pair is transferred to one or more query
servers. In this paper, for simplicity, we assume that each
indexer builds only one such pair.
Distributed inverted index organization. In a dis-

tributed environment, there are two basic strategies for dis-
tributing the inverted index over a collection of query servers
[12, 18, 21]. One strategy is to partition the document col-
lection so that each query server is responsible for a disjoint
subset of documents in the collection (called local inverted
�les in [18]). The other option is to partition based on the in-
dex terms so that each query server stores inverted lists only
for a subset of the index terms in the collection (called global
inverted �les in [18]). Performance studies described in [21]
indicate that the local inverted �le organization uses system
resources e�ectively and provides good query throughput in
most cases. Hence, our testbed employs the local inverted
�le organization.
Testbed environment. Our indexing testbed uses a

large repository of Web pages provided by the WebBase
project [8] as the test corpus for the performance experi-
ments. The storage manager of theWebBase system receives
pages from the Web crawler [3] and populates the distributor
nodes. The indexers and the query servers are single proces-
sor PCs with 350{500 MHz processors, 300{500 MB of main
memory, and equipped with multiple IDE disks. The dis-
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tributor nodes are dual-processor machines with SCSI disks
housing the repository. All the machines are interconnected
by a 100 Mbps Ethernet LAN.

3. PIPELINED INDEXER DESIGN
The core of the indexing system is the index-builder pro-

cess that executes on each indexer. The input to the index-
builder process is a sequence of Web pages and their asso-
ciated identi�ers.2 The output of the index-builder is a set
of sorted runs. Each sorted run contains postings extracted
from a subset of the pages received by the index-builder.
The process of generating these sorted runs can logically

be split into three phases, as illustrated in Figure 2. We
refer to these phases as loading, processing, and ushing.
During the loading phase, some number of pages are read
from the input stream. The processing phase involves two
steps. First, the pages are parsed to remove HTML tagging,
tokenized into individual terms, and stored as a set of post-
ings in a memory bu�er. In the second step, the postings are
sorted in-place, �rst by term, and then by location. During
the ushing phase, the sorted postings in the memory bu�er
are saved on disk as a sorted run. These three phases are
executed repeatedly until the entire input stream of pages
has been consumed.
Loading, processing and ushing tend to use disjoint sets

of system resources. Processing is obviously CPU-intensive,
whereas ushing primarily exerts secondary storage, and
loading can be done directly from the network, tape, or a
separate disk. Therefore, indexing performance can be im-
proved by executing these three phases concurrently. Since
the execution order of loading, processing and ushing is
�xed, these three phases together form a software pipeline.
Figure 3 illustrates the bene�ts of pipelined parallelism

2The URLs are normally replaced by numeric identi�ers for
compactness.

during index construction. The �gure shows a portion of
an indexing process that uses three concurrent threads, op-
erates on three reusable memory bu�ers, and generates six
sorted runs on disk.
The key issue in pipelining is to design an execution sched-

ule for the di�erent indexing phases that will result in mini-
mal overall running time (also called makespan in the sche-
duling literature). Our problem di�ers from a typical job
scheduling problem [2] in that we can vary the sizes of the
incoming jobs, i.e., in every loading phase we can choose the
number of pages to load. In the rest of this section, we de-
scribe how we make e�ective use of this exibility. First, we
derive, under certain simplifying assumptions, the charac-
teristics of an optimal indexing pipeline schedule and deter-
mine the theoretical speedup achievable through pipelining.
Next, we describe experiments that illustrate how observed
performance gains di�er from the theoretical predictions.

3.1 Theoretical Analysis
Let us consider an indexer node that has one resource of

each type: a single CPU, a single disk, and a single network
connection over which to receive the pages. How should
we design the pipeline shown in Figure 2 to minimize index
construction time?
First, notice that executing concurrent phases of the same

kind, such as two disk ushes, is futile, since we have only
one resource of each type. Consider an index-builder that
uses N executions of the pipeline to process the entire collec-
tion of pages and generate N sorted runs. By an execution
of the pipeline, we refer to the sequence of three phases |
loading, processing, and ushing | that transform some
set of pages into a sorted run. Let Bi, i = 1 : : : N , be
the bu�er sizes used during these N executions. The sumPN

i=1Bi = Btotal is �xed for a given amount of text input
and represents the total size of all the postings extracted
from the pages. Our aim is to come up with a way of choos-
ing the Bi values so as to minimize the overall running time.
Now, loading and ushing take time linear in the size of

the bu�er. Processing time has a linear component (rep-
resenting time for removing HTML and tokenizing) and a
linear-logarithmic component (representing sorting time).
Let li = �Bi, fi = 'Bi, and pi = ÆBi + �Bi logBi rep-
resent the durations of the loading, ushing, and processing
phases for the ith execution of the pipeline.3 For large N ,
the overall indexing time is determined by the scarcest re-
source (the CPU, in Figure 3) and can be approximated by

Tp = maxf
PN

i=1 li;
PN

i=1 pi;
PN

i=1 fig.
It can be shown (see [13]) that Tp is minimized when all

N pipeline executions use the same bu�er size B, where
B = B1 : : : = BN = Btotal

N
. Let l = �B, f = 'B, and p =

ÆB + �B logB be the durations of the loading, processing,
and ushing phases, respectively. We must choose a value
of B that maximizes the speedup gained through pipelining.
We calculate speedup as follows. Pipelined execution takes

time Tp = N max(l; p; f) (6p in Figure 3) and uses 3 bu�ers,
each of size B. In comparison, sequential execution using a
single bu�er of size 3B will take time Ts = N

3
(l0 + p0 +

f 0), where l0 = �(3B), f 0 = '(3B), and p0 = Æ(3B) +
�(3B) log (3B). Thus, in a node with a single resource of

3� = �1�2, where �1 is the rate at which pages can be loaded
into memory from the network and �2 is the average ratio
between the size of a page and the total size of the postings
generated from that page.
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Constant Value

� 1:26� 10�3

' 4:62� 10�4

Æ 6:74� 10�4

� 2:44� 10�5

Table 1: Measured constants

each type, the maximal theoretical speedup that we can
achieve through pipelining is (after simpli�cation):

� =
Ts

Tp
=

(l+ p+ f)

max(l; p; f)
+

� log 3

max(�; '; Æ + � logB)

= �1 + �2

Now, �1 � 1 whereas �2 �
� log 3

max(�;')
<< 1 for typical val-

ues of �, ', and � (refer to Table 1). Therefore, we ignore �2
and concentrate on choosing the value of B that maximizes
�1. The maximum value of �1 is 3, which is reached when
l = p = f , i.e., when all three phases are of equal duration.
We cannot guarantee l = f since that requires � = '. How-
ever, we can maximize �1 by choosing p = max(l; f) so that

�1 = 2 + min(l;f)
max(l;f)

.

For example, in Figure 3, the ratio between the phases is
l : p : f = 3 : 4 : 2. Thus, �1 for this setting is

3+4+2
4

= 2:25.
We could improve �1 by changing the ratio to 3:3:2, so that
�1 = 2 + 2

3
� 2:67. In general, setting ÆB + �B logB =

maxf�B; 'Bg, we obtain

B = 2
maxf�;'g�Æ

� (1)

This expression represents the size of the postings bu�er
that must be used to maximize the pipeline speedup, on an
indexer with a single resource of each type. In [13] we gener-
alize equation 1 to handle indexers with multiple CPUs and
disks. If we use a bu�er of size less than the one speci�ed by
equation 1, loading or ushing (depending on the relative
magnitudes of � and ') will be the bottleneck and the pro-
cessing phase will be forced to periodically wait for the other
phases to complete. An analogous e�ect will take place for
bu�er sizes greater than the one prescribed by equation 1.

3.2 Experimental Results
To study the impact of the pipelining technique on index-

ing performance, we conducted a number of experiments on
our testbed, using a single indexer supplied with a stream
of Web pages from a distributor.
We �rst ran the index-builder process in measurement

mode, where we recorded the execution times of the var-
ious phases and determined the values of �, ', �, and Æ

(Table 1). Using the values of these constants in equation 1,
we evaluate B to be 16 MB. Therefore, the optimal total
size of the postings bu�ers, as predicted by our theoretical
analysis, is 3B = 48 MB.
Impact of bu�er size on performance. Figure 4 il-

lustrates how the performance of the index-builder process
varies with the size of the bu�er. It highlights the impor-
tance of the analytical result as an aid in choosing the right
bu�er size. The optimal total bu�er size based on actual ex-
periments turned out be 40 MB. Even though the predicted
optimum size di�ers slightly from the observed optimum, the
di�erence in running times between the two sizes is less than
15 minutes for a 5 million page collection. For bu�er sizes
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less than 40, loading proved to be the bottleneck, and both
the processing and ushing phases had to wait periodically
for the loading phase to complete. However, as the bu�er
size increased beyond 40, the processing phase dominated
the execution time as larger and larger bu�ers of postings
had to be sorted.
Performance gain through pipelining. Figure 5

shows how pipelining impacts the time taken to process and
generate sorted runs for a variety of input sizes. Note that
for small collections of pages, the performance gain through
pipelining, though noticeable, is not substantial. This is be-
cause small collections require very few pipeline executions
and the overall time is dominated by the time required at
startup (to load up the bu�ers) and shutdown (to ush the
bu�ers). This is one of the reasons that pipelined index
building has not received prior attention as most systems
dealt with smaller collections. However, as collection sizes
increase, the gain becomes more signi�cant and for a col-
lection of 5 million pages, pipelining completes almost 1:5
hours earlier than a purely sequential implementation. Our
experiments showed that, in general, for large collections,
a sequential index-builder is about 30{40% slower than a
pipelined index-builder. Note that the observed speedup is
lower than the speedup predicted by the theoretical anal-
ysis described in the previous section. That analysis was
based on an \ideal pipeline," in which loading, processing
and ushing do not interfere with each other in any way.
In practice, however, network and disk operations do use
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processor cycles and access main memory. Hence, any two
concurrently running phases, even of di�erent types, do slow
down each other.
Note that for a given total bu�er size, pipelined execution

generates sorted runs that are approximately 3 times smaller
than those generated by a sequential indexer. Consequently,
3 times as many sorted runs will need to be merged in the
second stage of indexing. However, other experiments de-
scribed in [13] show that even for very large collection sizes,
the potential increase in merging time is more than o�set
by the time gained in the �rst stage through pipelining.

4. MANAGING INVERTED FILES IN AN
EMBEDDED DATABASE SYSTEM

When building inverted indexes over massive Web-scale
collections, the choice of an eÆcient storage format is par-
ticularly important. There have traditionally been two ap-
proaches to storing and managing inverted �les; either using
a custom implementation or by leveraging existing relational
or object data management systems [1, 6].
The advantage of a custom implementation is that it en-

ables very e�ective optimizations tuned to the speci�c opera-
tions on inverted �les (e.g., caching frequently used inverted
lists, compressing rarely used inverted lists using expensive
methods that may take longer to decompress). Leverag-
ing existing data management systems does not allow such
�ne-grained control over the implementation but reduces de-
velopment time and complexity. However, the challenge lies
in designing a scheme for storing inverted �les that makes
optimal use of the storage structures provided by the data
management system. The storage scheme must be space ef-
�cient and must ensure that the basic lookup operation on
an inverted �le (i.e., retrieving some or all of the inverted
list for a given index term) can be eÆciently implemented
using the access methods of the data management system.
In this section we present and compare di�erent storage

schemes for managing large inverted �les in an embedded
database system. To test our schemes, we used a freely avail-
able embedded database system called Berkeley DB [17],
that is widely deployed in many commercial applications.
An embedded database is a library or toolkit that provides

database support for applications through a well-de�ned
programming API. Unlike traditional database systems that
are designed to be accessed by applications, embedded data-
bases are linked (at compile-time or run-time) into an appli-
cation and act as its persistent storage manager. They pro-
vide device-sensitive �le allocation, database access methods
(such as B-trees and hash indexes), and optimized caching,
with optional support for transactions, locking, and recov-
ery. They also have the advantage of much smaller footprints
compared to full-edged client-server database systems.
In the following, we briey the sketch the capabilities of

Berkeley DB and propose a B-tree based inverted �le storage
scheme called the mixed-list scheme. We qualitatively and
quantitatively compare the mixed-list scheme with two other
schemes for storing inverted lists in Berkeley DB databases.

4.1 Rationale and Implementation
Berkeley DB provides a programming library for man-

aging (key,value) pairs, both of which can be arbitrary
binary data of any length. It o�ers four access methods,
including B-trees and linear hashing, and supports transac-
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tions, locking, and recovery.4 We chose to use the B-tree ac-
cess method since it eÆciently supports pre�x searches (e.g.,
retrieve inverted lists for all terms beginning with \pre")
and has higher reference locality than hash-based indexes.
The standard organization of a B-tree based inverted �le

involves storing the index terms in the B-tree along with
pointers to inverted lists that are stored separately. Such an
organization, though easy to implement using Berkeley DB,
does not fully utilize the capabilities of the database system.
Since Berkeley DB eÆciently handles arbitrary sized keys
and values, it is more eÆcient to store both the index terms
and their inverted lists within the database. This enables
us to leverage Berkeley DB's sophisticated caching schemes
while retrieving large inverted lists with a minimum number
of disk operations.
Storage schemes. The challenge is to design an eÆcient

scheme for organizing the inverted lists within the B-tree
structure. We considered three schemes:

1. Full list: The key is an index term, and the value is
the complete inverted list for that term.

2. Single payload: Each posting (an index term, location

pair) is a separate key.5 The value can either be empty
or may contain additional information about the post-
ing.

3. Mixed list: The key is again a posting, i.e., an index
term and a location. However, the value contains a
number of successive postings in sorted order, even
those referring to di�erent index terms. The postings
in the value �eld are compressed and in every value
�eld, the number of postings is chosen so that the
length of the �eld is approximately the same. Note
that in this scheme, the inverted list for a given in-
dex term may be spread across multiple (key,value)
pairs.

Figure 6 illustrates the mixed-list storage scheme. For
simplicity, in this example, we assume that no additional
information is maintained along with each posting. How-
ever, in our actual implementation, we allocated a 2-byte

4All these features can be turned o�, if desired, for eÆciency.
5Storing the indexing term in the key and a single location
in the value is not a viable option as the locations for a given
term are not guaranteed to be in sorted order.
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Scheme Index size Zig-zag joins Hot updates
single payload �� + +
full list +� � �
mixed list +� +� +�

Table 2: Comparison of storage schemes

payload �eld, to store extra posting-level information. The
top half of the �gure depicts inverted lists for four successive
index terms and the bottom half shows how they are stored
as (key,value) pairs using the mixed-list scheme. For ex-
ample, the second (key,value) pair in the �gure, stores
the set of postings (cat,311), (cat,328), (catch,103),
(catcher,147), etc., with the �rst posting stored in the
key and the remaining postings stored in the value. As indi-
cated in the �gure, the postings in the value are compressed
by using pre�x compression for the index terms and by rep-
resenting successive location identi�ers in terms of their nu-
merical di�erence. For example, the posting (cat,328) is
represented by the sequence of entries 3 <an empty �eld>
17, where 3 indicates the length of the common pre�x be-
tween the words for postings (cat,311) and (cat,328),
the <empty field> indicates that both postings refer to the
same word, and 17 is the di�erence between the locations
328 and 311.
A qualitative comparison of these storage schemes is sum-

marized in Table 2.
Index size. The crucial factors determining index size

are the number of internal pages (a function of the height of
the B-tree) and the number of overow pages.6 In the sin-
gle payload scheme, every posting corresponds to a new key,
resulting in rapid growth in the number of internal pages
of the database. For large collections, the database size be-
comes prohibitive even though Berkeley DB employs pre�x
compression on keys. At query time, many performance-
impeding disk accesses are needed. The situation is signif-
icantly better with the full list scheme. A database key is
created only for every distinct term, and the value �eld can
be well compressed. However, many terms occur only a few
times in the collection whereas others may occur in almost
every page. Due to large variations in the size of the value
�eld, many overow pages are created in the database. In
comparison, with the mixed list scheme, the length of the
value �eld is approximately constant. This limits the num-
ber of overow pages. Moreover, the total number of keys
(and hence the number of internal pages) can be further re-
duced by choosing a larger size for the value �eld. However,
since the value �eld can contain postings of di�erent index
terms, it is not compressed as well as with full lists.
Zig-zag joins. The ability to selectively retrieve por-

tions of an inverted list can be very useful when processing
conjunctive search queries on an inverted �le. For exam-
ple, consider the query green AND catchflies. The term
green occurs on the Web in millions of documents, whereas
catchflies produces only a couple of dozen hits. A zig-zag
join [5] between the inverted lists for green and catchflies

allows us to answer the query without reading out the com-
plete inverted list for green. The single payload scheme
provides the best support for zig-zag joins as each posting
can be retrieved individually. In the full list scheme, the

6Since values can be of arbitrary length, Berkeley DB uses
overow pages to handle large value �elds.

entire list must be retrieved to compute the join, whereas
with the mixed list scheme, access to speci�c portions of the
inverted list is available. For example, in Figure 6, to re-
trieve locations for cat starting at 311, we do not have to
read the portion of the list for locations 100{280.
The skipped-list and random inverted-list structures of

[15] and [16] also provide selective access to portions of an in-
verted list, by dividing the inverted list into blocks each con-
taining a �xed number of postings. However, those schemes
assume a custom inverted �le implementation and are not
built on top of an existing data management system.
Hot updates. Hot updates refers to the ability to mod-

ify the index at query time. This is useful when very small
changes need to be made to the index between two successive
index rebuilds. For example, Web search services often al-
low users and organizations to register their home pages with
their service. Such additions can be immediately accommo-
dated in the index using the hot update facility, without
having to defer them till the index is next rebuilt.
In all three schemes, the concurrency control mechanisms

of the database can be used to support such hot updates
while maintaining consistency. However, the crucial perfor-
mance factor is the length of the inverted list that must
be read, modi�ed, and written back to achieve the update.
Since we limit the length of the value �eld, hot updates
are faster with mixed lists than with full lists. The single
payload scheme provides the best update performance as
individual postings can be accessed and modi�ed.
Notice that all three schemes signi�cantly bene�t from

the fact that the postings are �rst sorted and then inserted.
Inserting keys into the B-tree in a random order negatively
a�ects the page-�ll factor, and expensive tree reorganization
is needed. Berkeley DB is optimized for sorted insertions so
that high performance and a near-one page-�ll factor can be
achieved in the initial index construction phase.
Table 2 shows that the mixed-list scheme provides the

best balance between small index size and support for ef-
�cient zig-zag joins. In the following section, we present a
quantitative comparison of storage and retrieval eÆciency
for the three storage schemes discussed in this section.

4.2 Experimental Results
The experimental data presented in this section were ob-

tained by building an inverted index over a collection of
2 million Web pages. The collection contains 4.9 million
distinct terms with a total of 312 million postings.7

Figure 7 illustrates how the choice of the storage scheme
a�ects the size of the inverted �le. It shows the variation
of index size with value �eld size, when using the mixed-list
scheme. The dotted line represents the index size when the
same database was stored using the full-list scheme. Note
that since the value �eld size is not applicable to the full-list
scheme, the graph is just a horizontal line. The single pay-
load scheme can be viewed as an extreme case of the mixed
scheme with value �eld being empty. Figure 7 shows that
both very small and very large value �elds have an adverse
impact on index size. In the mixed list scheme, very small
value �elds will require a large number of internal database
pages (and a potentially taller B-tree index) to accommo-
date all the postings. On the other hand, very large value
�elds will cause Berkeley DB to allocate a large number of

7Only one posting was generated for all the occurrences of
a term in a page.
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Figure 7: Varying value �eld size

Number of pages Input size Index size Index size
(million) (GB) (GB) (%age)
0.1 0.81 0.04 6.17
0.5 4.03 0.24 6.19
2.0 16.11 0.99 6.54
5.0 40.28 2.43 6.33

Table 3: Mixed-list scheme index sizes

overow pages which in turn lead to a larger index. As indi-
cated in the �gure, a value �eld size of 512 bytes provided the
best balance between these two e�ects. The full-list scheme
results in a moderate number of both overow pages and in-
ternal database pages. However, it still requires around 30%
more storage space than the optimal mixed-list inverted �le.
For all of the examined storage schemes, the time to write
the inverted �le to disk was roughly proportional to the size
of the �le.
Table 3 shows how the index size (using the mixed-list

scheme) varies with the size of the input collection. The
index sizes listed in Table 3 include the sum of the sizes of
the inverted �les and the associated lexicons. The numbers
for Table 3 were generated by using mixed-lists with the
optimal value �eld size of 512 bytes derived from Figure 7.
Table 3 shows that the mixed-list storage scheme scales very
well to large collections. The size of the index is consistently
below 7% the size of the input HTML text. This compares
favorably with the sizes reported for the VLC2 track (which
also used crawled Web pages) at TREC-7 [7] where the best
reported index size was approximately 7:7% the size of the
input HTML. Our index sizes are also comparable to other
recently reported sizes for non-Web document collections
using compressed inverted �les [16]. Note that exact index
sizes are dependent on the type and amount of informa-
tion maintained along with each posting (e.g., information
to handle proximity queries). However, we believe that the
2-byte payload �eld used in our implementation can accom-
modate most posting-level information normally stored in
inverted indexes.
Figure 8 illustrates the e�ect of value �eld size on in-

verted list retrieval time. Once again, the dotted horizontal
line represents the retrieval time when using the �xed-list
scheme. Figure 8 was produced by generating uniformly
distributed query terms and measuring the time8 required

8A warming-up period was allowed before the measurements
to �ll the database and �le system cache.
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Figure 8: Time to retrieve inverted lists

to retrieve the entire inverted list for each query term. The
optimal retrieval performance in the mixed-list scheme is
achieved when the value �eld size is between 512 and 1024
bytes. Notice that (from Figures 7 and 8) a value �eld size of
512 bytes results in maximum storage as well as maximum
retrieval eÆciency for the mixed-list scheme. Figure 8 also
indicates that both the �xed-list and mixed-list (with opti-
mal value �eld size) schemes provide comparable retrieval
performance.
Note that Figure 8 only measures the raw inverted list

retrieval performance of the di�erent storage schemes. True
query processing performance will be a�ected by other fac-
tors such as caching (of inverted lists), use of query process-
ing techniques such as zig-zag joins, and the distribution of
the query terms.

5. COLLECTING GLOBAL STATISTICS
Most text-based retrieval systems use some kind of collec-

tion-wide information to increase e�ectiveness of retrieval
[23]. One popular example is the inverse document fre-
quency (IDF) statistics used in ranking functions. The IDF
of a term is the inverse of the number of documents in the
collection that contain that term. If query servers have only
IDF values over their local collections, then rankings would
be skewed in favor of pages from query servers that return
few results.
Depending on the particular global statistic, the ranking

function, and the nature of the collection, it may or may not
be necessary for a statistic to be computed accurately. In
some cases, it suÆces to estimate the global statistic from
the local values at the individual query servers. However, in
this section, we analyze the problem of gathering accurate
collection-wide information (with minimum overhead), for
the cases where this is required. We present two techniques
that are capable of gathering di�erent types of collection-
wide information, though here we focus on the problem of
collecting term-level global statistics, such as IDF values.9

5.1 Design
Some authors suggest computing global statistics at query

time. This would require an extra round of communication
among the query servers to exchange local statistics. This
communication adversely impacts query processing perfor-

9Term-level refers to the fact that any gathered statistic
describes only single terms, and not higher level entities such
as pages or documents.
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Phase Statistician
load

Memory
usage

Parallelism

ME merging +� + +�
FL ushing � � ++

Table 4: Comparing strategies

mance, especially for large collections spread over many ser-
vers. Since query response times are critical, we advocate
precomputing and storing statistics at the query servers dur-
ing index creation.
Our approach is based on using a dedicated server, known

as the statistician, for computing statistics. Having a ded-
icated statistician allows most computation to be done in
parallel with other indexing activities. It also minimizes
the number of conversations among servers, since indexers
exchange statistical data with only one statistician. Local
information is sent to the statistician at various stages of
index creation, and the statistician returns global statistics
to the indexers in the merging phase. Indexers then store
the global statistics in the local lexicons. A lexicon consists
of entries of the form (term, term-id, local-statistics, global-
statistics), where the terms stored in a lexicon are only those
terms occurring in the associated inverted �le (Section 2).
In order to avoid extra disk I/O, local information is sent

to the statistician only when it is already in memory. We
have identi�ed two phases in which this occurs: ushing |
when sorted runs are written to disk, and merging | when
sorted runs are merged to form inverted lists and the lexicon.
Sending information in these two phases leads to two di�er-
ent strategies with various tradeo�s which are discussed in
the next section. We note here only that by sending infor-
mation to the statistician in these phases without additional
I/O's, a huge fraction of the statistic collection is eliminated.
Sending information to the statistician is further opti-

mized by summarizing the postings. In both identi�ed
phases, postings occur in at least partially sorted order, i.e.
multiple postings for a term pass through memory in groups.
Groups are condensed into (term, local aggregated informa-
tion) pairs which are sent to the statistician. For example, if
an indexer holds 10,000 pages that contain the term \cat",
instead of sending 10,000 individual postings to the statisti-
cian, the indexer can count the postings as they pass through
memory in a group and send the summary (\cat", 10000)
to the statistician. The statistician receives local counts
from all indexers, and aggregates these values to produce
the global document frequency for \cat". This technique
greatly reduces network overhead in collecting statistics.

5.2 Statistic Gathering Strategies
Here we describe and compare the two strategies men-

tioned above for sending information to the statistician. Ta-
ble 4 summarizes their characteristics. The column titled
\Parallelism," refers to the degree of parallelism possible
within each strategy.
ME Strategy (sending local information during

merging). Summaries for each term are aggregated as in-
verted lists are created in memory, and sent to the statis-
tician. The statistician receives parallel sorted streams of
(term, local-aggregate-information) values from each indexer
and merges these streams by term, aggregating the sub-
aggregates for each term to produce global statistics. The
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statistics are then sent back to the indexers in sorted term
order. This approach is entirely stream based, and does not
require in-memory or on-disk data structures at the statisti-
cian or indexer to store intermediate results. However, using
streams means that the progress of each indexer is synchro-
nized with that of the statistician, which in turn causes in-
dexers to be synchronized with each other. As a result, the
slowest indexer in the group becomes the bottleneck, hold-
ing back the progress of faster indexers. Figure 9 illustrates
the ME strategy for collecting document frequency statis-
tics for each term. Note that the bottom lexicon does not
include statistics for \rat" because the term is not present
in the local collection.
FL Strategy (sending local information during

ushing). As sorted runs are ushed to disk, postings
are summarized and the summaries sent to the statistician.
Since sorted runs are accessed sequentially during process-
ing, the statistician receives streams of summaries in glob-
ally unsorted order. To compute statistics from the unsorted
streams, the statistician keeps an in-memory hash table of
all terms and their statistics, and updates the statistics as
summaries for a term are received. At the end of the pro-
cessing phase, the statistician sorts the statistics in memory
and sends them back to the indexers. Figure 10 illustrates
the FL strategy for collecting document frequency statistics.

5.3 Experiments
To demonstrate the performance and scalability of the col-

lection strategies, we ran the index-builder and merging pro-
cesses on our testbed, using a hardware con�guration con-
sisting of four indexers.10 We experimented with four di�er-
ent collection sizes - 100000, 500000, 1000000, and 2000000
pages, respectively. The results are shown in Figure 11,
where we can see the relative overhead (de�ned as T2�T1

T1
where T2 is the time for full index creation with statistics
collection and T1 is the time for full index creation with no
statistics collection) for both strategies. In general, exper-

10All indexers had the speci�cations listed in Section 2.
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Figure 11: Overhead of statistics collection

iments show the FL strategy outperforming ME, although
they seem to converge as the collection size becomes large.
Furthermore, as the collection size grows, the relative over-
heads of both strategies decrease.
Comparison of strategies. At �rst glance ME might

be expected to outperform FL: since the statistician receives
many summary streams in FL, but only one from each in-
dexer in ME, it performs more comparison and aggregation
in FL than in ME. However, as mentioned earlier, merging
progress in ME is synchronized among the servers. Hence, a
good portion of computation done at the statistician cannot
be done in parallel with merging activities at the indexer.
In FL, on the other hand, the indexer simply writes sum-

maries to the network and continues with its other work.
The statistician can then asynchronously process the infor-
mation from the network bu�er in parallel. However, not all
work can be done in parallel, since the statistician consumes
summaries at a slower rate than the indexer writes them to
network, and the network bu�er generally cannot hold all
the summaries from a sorted run. Hence there is still non-
trivial waiting at the indexer during ushing as summaries
are sent to the statistician.
Enhancing parallelism. In the ME strategy, synchro-

nization occurs when an indexer creates a lexicon entry and
summary for a term, sends the summary to the statistician,
and then waits for the global statistic to be returned so that
the lexicon entry can be completed. To reduce the e�ect of
synchronization, the merging process can instead write lex-
icon entries to a lexicon bu�er, and a separate process will
wait for global statistics and include them in the entries. In
this way, the �rst process need not block while waiting, and
both processes can operate in parallel.
Figure 12 shows the e�ect of lexicon bu�er size on merg-

ing performance over a collection of a million pages. Because
lexicon entries are created faster than global statistics are
returned on all indexers but the slowest, the lexicon bu�er
often becomes full. When this occurs, the process creating
lexicon entries must block until the current state changes.
Because larger lexicon bu�ers reduce the possibility of satu-
ration, we expect and see that initial increases in size result
in large performance gains. As lexicon bu�er size becomes
very large, however, performance slowly deteriorates due to
memory contention. Although the entire bu�er need not
be present in memory at any one time, the lexicon bu�er
is accessed cyclically; therefore LRU replacement and the
fast rate at which lexicon entries are created cause bu�er
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Figure 12: Varying lexicon bu�er size

pages to cycle rapidly through memory, swapping out other
non-bu�er pages.
Sub-linear growth of overhead. The constant de-

crease of the ME and FL relative overhead in Figure 11
is due to the fact that the number of distinct terms in a
page collection is a sub-linear function of collection size. The
overhead incurred by gathering statistics grows linearly with
the number of terms in the collection, while the cost of index
creation grows linear-logarithmically with the size of the col-
lection. As a result, overhead of statistic collection displays
sub-linear growth with respect to index creation time. This
prediction is consistent with our experimental results.
However, the decreasing relative overhead for FL is sub-

ject to the constraint that the hashtable can �t in memory.
Considering that a collection of a billion pages would require
a hash table of roughly 5{6 GB in size,11 this constraint
may become a problem for very large collections. While a
memory of 6 GB is not completely unreasonable, a simple
alternative using only commodity hardware would be to run
several statisticians in parallel, and partition the terms al-
phabetically between statisticians. In this way, each statis-
tician can collect a moderately sized set of global statistics.
We have not yet implemented this option in our system.

6. RELATED WORK
Motivated by the Web, there has been recent interest

in designing scalable techniques to speed up inverted in-
dex construction using distributed architectures. In [19],
Ribeiro-Neto, et al. describe three techniques to eÆciently
build an inverted index using a distributed architecture.
However, they focus on building global (partitioning index
by term), rather than local (partitioning by collection), in-
verted �les. Furthermore, they do not address issues such as
global statistics collection and optimization of the indexing
process on each individual node.
Our technique for structuring the index engine as a pipeline

has much in common with pipelined query execution strate-
gies employed in relational database systems [5]. Chakra-
barti, et al. [2] present a variety of algorithms for resource
scheduling with applications to scheduling pipeline stages.
There has been prior work on using relational or object-

oriented data stores to manage and process inverted �les [1,

11A billion pages will contain roughly 310 million distinct
terms [13], and each term using 20 bytes of storage results
in a hashtable of 5.77 GB.
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6]. Brown, et al. [1] describe the architecture and perfor-
mance of an IR system that uses a persistent object store
to manage inverted �les. Their results show that using an
o�-the-shelf data management facility improves the perfor-
mance of an information retrieval system, primarily due to
intelligent caching and device-sensitive �le allocation. We
experienced similar performance improvements for the same
reasons by employing an embedded database system. Our
storage format di�ers greatly from theirs because we utilize
a B-tree storage system and not an object store.
Reference [23] discusses the questions of when and how

to maintain global statistics in a distributed text index, but
their techniques only deal with challenges that arise from
incremental updates. We wished to explore strategies for
gathering statistics during index construction.
A great deal of work has been done on several other issues,

relevant to inverted-index based information retrieval, that
have not been discussed in this paper. Such issues include
index compression [15, 16, 25], incremental updates [9, 22,
25, 26], and distributed query performance [21].

7. CONCLUSIONS
In this paper we addressed the problem of eÆciently con-

structing inverted indexes over large collections of Web pages.
We proposed a new pipelining technique to speed up index
construction and showed how to choose the right bu�er sizes
to maximize performance. We demonstrated that for large
collection sizes, the pipelining technique can speed up in-
dex construction by several hours. We proposed and com-
pared di�erent schemes for storing and managing inverted
�les using an embedded database system. We showed that
an intelligent scheme for packing inverted lists in the stor-
age structures of the database can provide performance and
storage eÆciency comparable to tailored inverted �le imple-
mentations. Finally, we identi�ed the key characteristics of
methods for eÆciently collecting global statistics from dis-
tributed inverted indexes. We proposed two such methods
and compared and analyzed the tradeo�s thereof.
In the future, we intend to extend our testbed to incor-

porate distributed query processing and explore algorithms
and caching strategies for eÆciently executing queries. We
also intend to experiment with indexing and querying over
larger collections and integration of our text-indexing sys-
tem with indexes on the link structure of the Web.
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