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ABSTRACT
Many researchers have shown that server-driven consistency
protocols can potentially reduce read latency. Server-driven
consistency protocols are particularly attractive for large-
scale dynamic web workloads because dynamically gener-
ated data can change rapidly and unpredictably. However,
there have been no reports on engineering server-driven con-
sistency for such a workload. This paper reports our experi-
ence in engineering server-driven consistency for a Sporting
and Event web site hosted by IBM, one of the most popu-
lar web sites on the Internet for the duration of the event.
Our study focuses on scalability and cachability of dynamic
content. To assess scalability, we measure both the amount
of state that a server needs to maintain to ensure consis-
tency and the bursts of load that a server sustains to send
out invalidation messages when a popular object is modi�ed.
We �nd that it is possible to limit the size of the server's
state without signi�cant performance costs and that bursts
of load can be smoothed out with minimal impact on the
consistency guarantees. To improve performance, we sys-
tematically investigate several design issues for which prior
research has suggested widely di�erent solutions, including
how long servers should send invalidations to idle clients.
Finally, we quantify the performance impact of caching dy-
namic data with server-driven consistency protocols and �nd
that it can reduce read latency by more than 10%. We have
implemented a prototype of a server-driven consistency pro-
tocol based on our �ndings on top of the popular Squid
cache.

Keywords Web cache consistency, performance, scala-
bility, volume lease, dynamic content

1. INTRODUCTION
Although web caching and prefetching have the potential

to reduce read latency signi�cantly, the ineÆciency of cache
consistency protocols in the current version of HTTP pre-
vents this potential from being fully realized. HTTP uses
client polling in which clients query servers to determine if
cached objects are up to date. Unfortunately, clients may
need to poll servers before returning cached objects to users
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even when these objects are valid. For example, in the work-
load that we examine, more than 20% of requests to the
server are client polls to revalidate unmodi�ed cached ob-
jects. Thus polling not only increases server and network
load but also signi�cantly increases read latency.
Many of the drawbacks of traditional client polling can

be addressed with server-driven consistency protocols. In
server-driven protocols, servers inform clients of updates.
Thus, clients can return cached objects without contacting
the server if these objects have not been invalidated. A range
of server-driven consistency protocols have been proposed
and evaluated in both unicast and multicast environments
using client web traces [23], synthetic workloads [24], single
web pages [26], and proxy workloads [14].
Server-driven consistency appears particularly attractive

for large-scale workloads containing signi�cant quantities of
dynamically generated and frequently changing data. There
are two reasons for this. First, in these workloads, data
changes often occur at unpredictable times. Therefore, client
polling is likely to result in obsolete data unless polling is
done quite frequently|in which case the overhead becomes
prohibitive. Second, the ability to cache dynamically gener-
ated data is critical for improving server performance. Re-
quests for dynamic data can require orders of magnitude
more time than requests for static data [11] and can con-
sume most of the CPU cycles at a web site, even if they
only make up a small percentage of the total requests.
However, to deploy server-driven consistency protocols for

large-scale dynamic web services, several design issues that
are critical to scalability and performance must be exam-
ined. This paper provides the �rst study of server-driven
consistency for web sites serving large amounts of dynami-
cally generated data. Our study is based on the workload
generated by a major Sporting and Event web site hosted by
IBM1, which in 1998 served 56.8 million requests on the peak
day, 12% of which were to dynamically generated data [12].
The �rst issue we address is scalability. In server-driven

consistency, scalability can be limited by a number of fac-
tors:

� As the number of clients increases, the amount of mem-
ory needed to keep track of the content of clients'
caches may become large.

� Servers may experience bursts of load whenever they
need to send invalidation messages to a large number
of clients as a result of a write.

1The 1998 Olympic Games web site
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Previous e�orts to improve the scalability of server-driven
consistency have primarily focused on using multicast and
hierarchies to ood invalidation messages [14, 24, 26]. While
these approaches are e�ective, relying on them would pose a
barrier to deployment. Our primary focus is on engineering
techniques to improve scalability that are independent of
network layers. These techniques make it feasible to deploy
server-driven consistency for services as large as the IBM
Sporting and Event web site on today's infrastructure and
also will improve scalability in the future as multicast and
hierarchies become widespread.
We show that the maximum amount of state kept by the

server to enforce consistency can be limited without incur-
ring a signi�cant performance cost. Furthermore, we show
that although server-driven consistency can increase peak
server load signi�cantly, it is possible to smooth out this
burstiness without signi�cantly increasing the time during
which clients may access stale data from their caches.
The second issue we address is assessing the performance

implications of the di�erent design decisions made by previ-
ous studies in server-driven consistency.
Di�erent studies have made widely di�erent decisions in

terms of the length of time during which clients and servers
should stay synchronized, i.e., the length of time during
which servers are required to notify clients whenever the
data in the clients' cache becomes stale. Some studies ar-
gue that servers should stop notifying idle clients to reduce
network, client, and server load [23], while others suggest
that clients should stay synchronized with servers for days
at a time to reduce latency and amortize the cost of join-
ing a multicast channel when multicast-based systems are
used [14, 26].
Using a framework that is applicable in both unicast and

multicast environments, we quantify the trade-o� between
the low network, server, and client overhead of short syn-
chronization on one hand, and the low read latency of long
synchronization on the other hand. We �nd that for the
IBM workload, there is little performance cost in guarantee-
ing that clients will be noti�ed of any stale data within a few
hundred seconds. We also �nd that there is little bene�t to
hit rate in keeping servers and clients synchronized for more
that a few thousand seconds.
Previous studies have also proposed signi�cantly di�erent

re-synchronization protocols to resynchronize servers' and
clients' consistency state after recovering from disconnec-
tions, which may be caused by choice, by a machine crash
or by a temporary network partition. Proposals include in-
validating all objects in clients' caches [15, 26], replaying
\delayed invalidations" upon re-synchronization [23], bulk
revalidation of cache contents [1], and combinations of these
techniques. This study systematically compares these alter-
natives in the context of large-scale services. We �nd that
for de-synchronizations that last less than one thousand sec-
onds, delayed invalidations result in signi�cant performance
advantages.
The �nal issue that we address is quantifying the perfor-

mance implications of caching dynamically generated data.
Although the high frequency and unpredictability of up-
dates make this data virtually uncachable with traditional
client-polling consistency, server-driven consistency may al-
low clients to cache dynamically generated data e�ectively.
Through a simulation study that uses both server side ac-
cess traces and update logs, we demonstrate that server-

driven consistency allows clients to cache dynamic content
with nearly the same e�ectiveness as static content for the
Sporting and Event web site workload.
We have implemented the lessons learned from the simu-

lations in a prototype that runs on top of the popular Squid
cache architecture [18]. Our implementation addresses the
consistency requirements of large scale dynamic sites by ex-
tending basic server-driven consistency to provide consistent
updates of multiple related objects and to guarantee fast
re-synchronization and atomic updates. Preliminary evalu-
ation of the prototype shows that it introduces only a modest
overhead.
The rest of the paper is organized as follows. Section 2

reviews previous work on WAN consistency on which this
study is built. Section 3 evaluates various scalability and
performance issues of server-driven consistency for large scale
dynamic services. Section 4 presents an implementation
of server-driven consistency based on the lessons that we
learned from our simulation study. Section 5 and Section 6
discuss related work and summarize the contributions of this
study.

2. BACKGROUND
The guarantees provided by a consistency protocol can

be characterized using two parameters: worst-case staleness
and average staleness. We use �(t) consistency to bound
worst-case staleness. �(t) consistency ensures that data re-
turned by a read is never stale by more than t units of time.
Speci�cally, suppose the most recent update to an object O
happened at time T . To satisfy �(t) consistency, any read
after T + t must return the new version of object O. Av-
erage staleness is instead expressed in terms of two factors:
the fraction of reads that return stale data and the average
number of seconds for which the returned data has been ob-
solete. For example, a live news site may want to guarantee
that it will not supply its clients with any content that has
been obsolete for more than �ve minutes and also to deliver
most of updates within a few seconds.
Consistency algorithms use two mechanisms to meet these

guarantees. Worst-case guarantees are provided using some
variation of leases [8], which place an upper bound on how
long a client can operate on cached data without commu-
nicating with the server. Some systems decouple average
staleness from the leases' worst-case guarantees by also pro-
viding callbacks [10, 17] which allow servers to send invali-
dation messages to clients when data are modi�ed.
For example, HTTP's traditional client polling associates

a time to live (TTL) or an expiration time with each cached
object [16]. This TTL corresponds to a per-object lease to
read the object and places an upper bound on the time that
each object may be cached before the client revalidates the
cached version. To revalidate an object whose expiration
time has passed, a client sends a Get-if-modified-since

request to the server, and the server replies with \304 not
modi�ed" if the cached version is still valid or with \200
OK" and the new version if the object has changed.
The HTTP polling protocol has several limitations. First,

because it has only one parameter, TTL, that determines
both worst-case staleness and average staleness, there is no
way to decouple them. Second, each object is associated
with an individual TTL. After a set of TTLs expire, each
object has to be revalidated individually with the server to

46



renew its TTL, thereby increasing server load and read la-
tency.
As a result, several researchers [14, 15, 23, 24, 26] have

proposed server-driven consistency protocols. All these pro-
tocols can be understood within the general framework of
volume leases. Volume leases decouple average staleness
from worst-case staleness by maintaining leases on objects
as well as volumes, which are collections of related objects.
Whenever a client caches an object, the client requests an
object lease on the object, which is usually long so that
they are valid as long as the underlying objects are inter-
ested in by clients and haven't been invalidated by servers.
The server registers callbacks on objects leases and revokes
these object leases when the underlying objects are updated.
Thus, object leases allow servers to inform clients of up-
dates as soon as possible. Worst case staleness is enforced
through volume leases, which abstract synchronization be-
tween clients and servers. A server grants a client a volume
lease only if all previous invalidation messages have been re-
ceived by the client, and a client is allowed to read an object
only if it holds both the object lease and the correspond-
ing volume lease. Thus, a volume lease protocol enforces a
staleness bound which is equal to the volume lease length.
In addition to decoupling average staleness from worst-case
staleness, volume lease protocols reduce server load and read
latency by amortizing volume lease renewal overheads over
many objects in a volume.
Volume leases are either explicitly renewed [14, 23, 24] or

implicitly renewed via heartbeats [26]. Moreover, the imple-
mentation details of these protocols di�er considerably. Yin
et al. [23] assume a unicast network infrastructure with an
optional hierarchy of consistency servers [25] and speci�es
explicit volume lease renewal messages by clients. Li and
Cheriton [14] assume a per-server reliable multicast chan-
nel for both invalidation and heartbeat messages. Yu et
al. [26] assumes an unreliable multicast channel but bundles
invalidation messages with heartbeat messages and thus ties
average staleness to the system's worst case guarantees. The
implications of these design choices are evaluated in the next
section.
A key problem in caching dynamically generated data is

determining how changes to underlying data a�ect cached
objects. For example, dynamic web pages are often con-
structed from databases, and the correspondence between
the databases and web pages is not straightforward. Data
update propagation (DUP) [4] uses object dependency graphs
to maintain precise correspondences between cached objects
and underlying data. DUP thereby allows servers to identify
the exact set of dynamically generated objects to be invali-
dated in response to an update of underlying data. Use of
data update propagation at IBM Sporting and Event web
sites has resulted in server side hit rates of close to 100%
compared to about 80% for an earlier version that didn't
use data update propagation.

3. EVALUATION
This section describes the results of our trace-based sim-

ulation.

3.1 Methodology
We use simulation to examine various scalability and per-

formance issues of server-driven consistency for large-scale
dynamic web services.

3.1.1 Workload
The workload for our simulation study is taken from a ma-

jor IBM Sporting and Event web site. This site contained
about 60; 000 objects, and over 60% of the objects were dy-
namically generated. The peak request rates for the Sport-
ing and Event site was above 56.8 million hits per day. Over-
all, 12% of the requests were made to dynamically generated
pages. The Sporting and Event web service was hosted on
four geographically distributed web clusters; each of them
served about one fourth of all requests. The web access trace
used in our study contains all requests served by one of these
clusters on February 19th, 1998. This trace contains about
9 million entries. Each entry contains an IP address, a time
stamp, a URL, a return status, and the size of the HTTP
reply. In addition, our workload includes a modi�cation log
for more than 99% of the dynamic objects generated by fast
CGI scripts. This log contains 20; 549 entries. Although
write records of static data and dynamic data generated by
SSI scripts are not available, we infer writes to these types
of objects by observing changes of object sizes in our trace.
This analysis generates 45; 565 entries.
Our workload has one limitation. Because the trace covers

only one day of activity, we can only project the long-term
behavior of server-driven consistency.

3.1.2 Simulator
To study the impact of di�erent design decisions on the

performance of server-driven consistency, we built a simu-
lator that reads a web access log and a modi�cation log
and outputs local hit rates, server load, and network band-
width consumption. Given our limited resources, to make
our study feasible we make a simplifying assumption: we
simulate one cache for all requests sent from one IP address,
while in reality the IP address could be a proxy masking a
collection of clients or a host running several browsers. Fur-
thermore, we only track the number of messages and total
number of bytes in all messages, and network queuing and
round-trip delays are not simulated.

3.2 Consistency for large-scale dynamic work-
loads

Previous studies have examined the performance charac-
teristics of server-driven consistency for client cache work-
loads [23], synthetic workloads [25], single web pages [26],
and proxy workloads [14]. In this subsection, we examine
the performance characteristics of server-driven consistency
protocols for large-scale dynamic server workloads. Our
goals are (i) to understand the interaction of server driven
consistency with this important class of workloads, and (ii)
to provide a baseline for the more detailed evaluations that
we provide later in this paper.
Our performance evaluation stresses read latency. To put

the read latency results in perspective, we also examine the
network costs of di�erent protocols in terms of messages
transmitted. Read latency is primarily determined by the
fraction of reads that a client can not serve locally. There
are two conditions under which a cache system has to con-
tact the server to satisfy a read. First, the requested object
is not cached. We call this a cache miss. Cache misses hap-
pen either when the object has not been requested before,
or when the cached copy of the object is obsolete. Second,
even if the requested object is cached locally, the consis-
tency protocol may need to contact the server to determine
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Figure 1: Local hit rates vs. worst case staleness
bound for volume lease and TTL. Note that in the
common case, volume lease caches are invalidated
within a few seconds of an update independent of
worst case staleness bounds. Note that in the com-
mon case, volume lease caches are invalidated within
a few seconds of an update independent of worst case
staleness bounds.

whether the cached copy is valid. We call this a consistency
miss. Read latency for consistency misses may be orders of
magnitude higher than that for local hits, especially when
the network is congested or the server is busy.
As described in Section 2, the volume lease algorithm has

two advantages over traditional client-polling algorithms.
First, it reduces the cost of providing a given worst case
staleness by amortizing lease renewals across multiple ob-
jects in a volume. In particular, under a standard TTL
algorithm, if a client references a set of objects whose leases
have expired, each reference must go to the server to validate
an object. In contrast, under a volume leases algorithm, the
�rst object reference will trigger a volume lease renewal mes-
sage to the server, which will suÆce to re-validate all of the
cached objects. Second, volume leases provide the freedom
to separate average case staleness from worst case staleness
by allowing servers to notify clients when objects change.
Figures 1 through 4 illustrate the impact of di�erent con-

sistency parameters for the IBM Sporting and Event work-
load. In these �gures, the x axis represents the worst-case
staleness bounds for the volume lease algorithm; this bound
corresponds to the volume lease length for volume lease al-
gorithms, and the TTL for TTL algorithms. The y axes in
these �gures show the fraction of local hits, network traÆc,
stale rate, and average staleness. Considering the impact
of amortizing lease renewal overheads across volumes, we
see that volume leases provide larger advantages for sys-
tems that provide stronger consistency guarantees. In par-
ticular, for short worst-case staleness bounds, volume lease
algorithms achieve signi�cantly higher hit rates, and incur
lower server overheads compared to TTL algorithms. As in-
dicated in Figures 1 and 2, volume leases can provide worst-
case staleness bounds of 100 seconds for about the same
hit-rate and network message cost that traditional polling
has for 10,000-second worst-case staleness bounds. And,
as Figures 3 and 4 indicate, this comparison actually un-
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for Volume Lease and TTL.
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Figure 3: Stale rate vs. staleness bound for TTL.

derstates the advantages of volume leases because for tradi-
tional polling algorithms the number of stale reads and their
average staleness increase rapidly as the worst case bound
increases. In contrast, as we detail in Section 2, in the com-
mon case of no network failures, volume lease schemes can
notify clients of updates within a few seconds of the update
regardless of the worst-case staleness guarantees.
In Figures 6 through 8, we examine two key subsets of the

requests in the workloads. We examine the response time
and average staleness for the dynamically generated pages
and the non-image objects fetched in the workload. Figure 5
shows that the non-image objects account for 67.6% of all
objects and requests to non-image objects account for 29.3%
of all requests, while the dynamic objects account for 60.8%
of all objects and requests to dynamic objects account for
12% of all requests. The fraction of requests to dynamic data
raises to 40.9% when we exclude requests to image objects.
The dynamic and other non-image data are of interest

for two reasons. First, few current systems allow dynami-
cally generated content to be cached. Our system provides
a framework for doing so, and no studies to date have exam-
ined the impact of server-driven consistency on the cacha-
bility of dynamic data. Several studies have suggested that
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Object REQUEST
Number Percent Number Percent

image 9027 32.4 6165803 70.7
non-image 18857 67.6 2553543 29.3
dynamic 16960 60.8 1044712 12.0
other non-image 1897 6.8 1508831 17.3
total 27884 100 8719346 100

Figure 5: Classifying objects and requests according
to URL types.
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Figure 6: Local hit rates vs. staleness bound for
TTL. Note that in the common case, volume lease
caches are invalidated within a few seconds of an
update independent of worst case staleness bounds.

uncachable data signi�cantly limits achievable cache perfor-
mance [21, 22], so reducing uncachable data is a key prob-
lem. Second, the cache behavior of these subsets of data
may disproportionately a�ect end-user response time. This
is because dynamically generated pages and non-image ob-
jects may form the bottleneck in response time since they
must often be fetched before the images and static elements
may be rendered. In other words, the overall hit rate data
shown in Figure 1 may not directly bear on end-user re-
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Figure 7: Stale rate vs. staleness bound for TTL.
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Figure 8: Average staleness vs. staleness bound for
TTL.

sponse time if a high hit rate to static images masks a poor
hit rate to the HTML pages.
In current systems, three factors limit the cachability of

dynamically generated data: (1) the need to determine which
objects must be invalidated or updated when underlying
data (e.g., databases) change [4], (2) the need for an eÆ-
cient cache consistency protocol, and (3) the inherent limits
to caching that arise when data change rapidly. As detailed
in Section 2, our system provides an eÆcient method for
identifying web pages that must be invalidated when under-
lying data change. And, as Figure 6 through Figure 8 in-
dicate, volume lease strategies can signi�cantly increase the
hit rate for both dynamic pages and for the \bottleneck"
non-image pages.
Finally, the �gures quantify the third limitation. Although

one might worry that dynamic objects change so quickly
that caching them would be ine�ective, the hit rate di�er-
ence is relatively small. For long leases, hit rates for dy-
namic objects are slightly lower than for all objects. As
many as 25% of reads to dynamically-generated data can be
returned locally, which increases the local hit rate for non-
image data by 10%. Since the local hit rate of non-image
data may determine the actual response time experienced by
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users, caching dynamic data with server-driven consistency
can improve cache performance by as much as 10%. Further
performance improvements can be made by prefetching up-
to-date versions of dynamically-generated objects after the
cached versions have been updated.
Notice that Figure 6 shows that dynamic pages and non-

image pages are signi�cantly more sensitive to short volume
lease lengths than average pages. This sensitivity supports
the hypothesis that these pages represent \bottlenecks" to
displaying other images; dynamic pages and non-image pages
are particularly likely to cause a miss due to volume lease re-
newal because they are often the �rst elements fetched when
a burst of associated objects are fetched in a group. In the
next subsection, we examine techniques for reducing the hit
rate impact of short worst-case guarantees.

3.3 Prefetching lease renewals
The above experiments assume that when a volume lease

expires, the next request must go to the server to renew it.
A potential optimization is to prefetch or push volume lease
renewals to clients before their leases expire. For example,
a client whose volume lease is about to expire might pig-
gyback a volume lease renewal request on its next message
to the server [23], or it might send an additional volume
lease renewal prefetch request even if no requests for the
server are pending. Alternately, servers might periodically
push volume lease renewals to clients via unicast or multi-
cast heartbeat [26].
Regardless of whether renewals are prefetched or pushed

and whether they are unicast or multicast, the same funda-
mental trade-o�s apply. More aggressive prefetching keeps
clients and servers synchronized for longer periods of time,
increases cache hit rates, but increases network costs, server
load, and client load.
Previous studies have assumed extreme positions regard-

ing prefetching volume lease renewals. Yin et al. [25] as-
sumed that volume lease renewals are piggybacked on each
demand request, but that no additional prefetching is done;
soon after a client becomes idle with respect to a server, its
volume lease expires, and the client has to renew the volume
lease in the next request to the server's data. Conversely,
Li and Cheriton [14] suggest that to amortize the cost of
joining multicast hierarchies, clients should stay connected
to the multicast heartbeat and invalidation channel from a
server for hours or days at once.
In Figure 9 and Figure 10, we examine the relationship

between pushing or prefetching renewals, read latency, and
network overhead. In interpreting these graphs, consider
that in order to improve read latency by a given amount,
one could increase the volume lease length by a factor of K.
Alternatively, one could get the same improvement in read
latency by prefetching the lease K times as it expires. We
would expect that most services would choose the worst case
staleness guarantee they desire and then add volume lease
prefetching if the improvement in read latency justi�es the
increase in network overhead.
As illustrated in Figure 9, volume lease pull or push can

achieve higher local hit rates than basic volume leases for the
same freshness bound. In a push-K algorithm, if a client is
idle when a demand-fetched volume lease expires, the client
prefetches or the server pushes to the client up to K�1 suc-
cessive volume lease renewals. Thus, if each volume renewal
is for length V , the volume lease remains valid for K �V units
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of time after a client becomes idle. If a client's accesses to
the server resume during that period, they are not delayed
by the need for an initial volume lease renewal request.
Both push-2 and push-10 shift the basic volume lease curve

upward for short volume leases and larger values of K in-
crease these shifts. Also note that the bene�ts are larger
for the dynamic elements in the workload, suggesting that
prefetching may improve access to the bottleneck elements
of a page.
However, pulling or pushing extra volume lease renewals

does increase client load, server load, and network overhead.
This overhead increases linearly with the number of renewals
prefetched after a client's accesses to a volume cease. For
a given number of renewals, this overhead is lower for long
volume leases than for short ones.
Systems may use multicast or consistency hierarchies to

reduce the overhead of pushing or prefetching renewals. Note
that although these architectures may e�ectively eliminate
the volume renewal load on the server and may signi�cantly
reduce volume lease renewal overhead in server areas of the
network, they do not a�ect the volume renewal overhead
at clients. Although client renewal overhead should not
generally be an issue, widespread aggressive volume lease
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prefetching or pushing could impose signi�cant client over-
heads in some cases. For example, in the traces of the Squid
regional proxies taken during July 2000, these busy caches
access tens of thousands of di�erent servers per day [5].
In general, we conclude that although previous studies

have examined extreme assumptions for prefetching [26, 14],
it appears that for this workload, modest amounts of prefetch-
ing are desirable for minimizing response time when short
volume leases are used, and little prefetching is needed at all
for long volume leases. This is because after a few hundred
seconds of a client not accessing a service, maintaining valid
volume leases at that client has little impact on latency.

3.4 Scalability
Workloads like the IBM Sporting and Event workload

present several potential challenges to scalability. First,
callback-based systems typically store state that is propor-
tional to the total number of objects cached by clients. In
the worst case, this state could grow to be proportional to
the total number of clients times the number of objects.
Second, when a set of popular objects is modi�ed, servers in
callback based systems send callbacks to the clients caching
those objects. In the worst case, such a burst of load could
enqueue a number of messages equal to the number of clients
using the service times the number of objects simultaneously
modi�ed. For both memory consumption and bursts of load,
if uncontrolled, this worst case behavior could prevent de-
ployment for large web services such as the IBM Sporting
and Event trace.
A wide range of techniques for reducing memory capac-

ity demands or bursts of load are possible. Some have been
evaluated in isolation, while others have not been explored.
There has been no previous direct comparison of these tech-
niques to one another.

� Hierarchy or precise multicast. Using a hierar-
chy of consistency servers to ood invalidation mes-
sages to caches [25] can reduce bursts of load at the
server. Precise multicast, which distributes invalida-
tions to clients via multicast and ensures that clients
receive invalidations only for objects they are caching,
can accomplish the same thing. Precise multicast can
be implemented by having separate multicast channels
per object or by �ltering multicast distribution [26] on
a per-object basis [24]. Note that although a hierarchy
or precise multicast reduces the amount of state at the
central server, the total amount of callback state and
thus the global system cost is not directly reduced by
a hierarchy.

� Imprecise multicast invalidates. Imprecise mul-
ticast invalidation [14] combines two ideas. It uses a
multicast hierarchy to ood invalidation messages and
imprecise invalidations to reduce state. Imprecision of
invalidations stems from the use of a single un�ltered
multicast channel to transmit invalidations for all ob-
jects in a volume. The advantage of imprecise invalida-
tions is reduced state; state at the server and multicast
hierarchy is proportional to the number of clients sub-
scribed to the volume rather than to the number of
objects cached across all clients. The disadvantage of
imprecise invalidations is increased invalidation mes-
sage load at the clients and in the network near the
clients.

� Delayed invalidation messages. Rather than send-
ing invalidation messages immediately, systems may
delay when invalidation messages are sent to reduce
bursts of load. There are two variations. Delayed in-
validations [23] enqueue invalidation messages to clients
whose volume leases have expired and send the en-
queued messages in a group when a client renews its
volume lease. Background invalidation places invali-
dation messages in a separate send queue from replies
to client requests and sends invalidations only when
spare capacity is available. Note that background in-
validations may increase the average staleness of data
observed by clients while delayed invalidations have
no impact on average staleness of data reads. At the
same time, while both techniques reduce bursts of load,
background invalidations also have the ability to im-
pose a hard upper bound on the maximum load from
invalidations.

� Forget idle clients. Two techniques allow clients to
drop callbacks on objects cached by idle clients and
thereby reduce server memory requirements. First, by
issuing short object leases, servers can discard callback
state when a client's lease on an object expires. Tewari
et al. [6] examine techniques for optimizing the lease
lengths of individual objects. Second, servers can mark
clients whose volume leases have expired some amount
of time in the past as \unreachable," and drop all call-
back state for unreachable clients [23]. When a client
renews its volume lease, the client and server must
execute a reconnection protocol to synchronize server
callback state with client cache contents. The next
subsection discusses reconnection protocols. The fun-
damental trade-o�s for both approaches are the same:
shorter leases reduce memory consumption but also
increase consistency misses and synchronization over-
head. Either algorithm can enforce a hard limit on
memory capacity consumed by adaptively shortening
leases as space consumption increases [6].

In evaluating this range of options, two factors must be
considered. First, given the potential worst case memory
and load behavior of callback consistency, a system should
enforce a hard worst-case limit on state consumption and
bursts of load regardless of the workload. Second, systems
should select techniques that minimize damage to hit rates
and overheads for typical loads.

3.4.1 Server callback state
Figure 11 shows the number of object leases stored as a

function of elapsed time in the trace. For the time period
covered in our trace, server memory consumption increases
linearly. Although for a longer trace, higher hit rates might
reduce the rate of growth, for the Zipf workload distributions
common on the web [2, 21, 22], hit rates improve only slowly
with increasing trace length, and a nearly constant fraction
of requests will be compulsory cache misses. Nearly linear
growth in state therefore may be expected even over long
time scales for many systems.
Although the near linear growth in state illustrates the

need to bound worst case consumption, the rate of increase
for this workload is modest. After 24 hours, fewer than 5
million leases exist in one of the four Sporting and Event
server clusters even with in�nite object leases. Our proto-
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Figure 11: Callback state increases with elapsed
time.
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Figure 12: Distribution of invalidation burstiness.
A point of (x, y) means that the server generates at
least y messages per second during x percentage of
time.

type consumes 62 bytes per object lease, so this workload
consumes 310 million bytes per day under the baseline algo-
rithm for the whole system. This corresponds to 0.4% of the
memory capacity of the 143-processor system that actually
served this workload in a production environment. In other
words, this busy server could keep complete callback infor-
mation for 10 days and increase its memory requirements by
less than 4%.
These results suggest that either of the \forget idle clients"

approaches can limit maximum memory state without sig-
ni�cantly hurting hit rates or increasing lease renewal over-
heads, and that performance will be relatively insensitive to
the detailed parameters of these algorithms. Because sys-
tems can keep several days of callback state at little cost,
further evaluation of these detailed parameters will require
longer traces than we have available to us.

3.4.2 Bursts of load
Figure 12 shows the cumulative distribution of server load,

approximated by the number of messages sent and received
by a server with no hierarchy. As we can see from the right
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Figure 13: Delaying invalidation to smooth out
server load burstiness for Volume Lease (900).

edge of this graph, volume leases with callbacks reduce av-
erage server load compared to TTL. However, as can be
seen from the left side of the graph, the peak server load in-
creases by a factor of 100 for volume leases without delayed
invalidations.
This �gure shows that delayed invalidations can reduce

peak load by a factor of 76 for short volume lease periods
and 15 for long volume lease periods; but even with delayed
invalidations, peak load is increased by a factor of 6 for
900 second volume leases. This increase is smaller for short
volume leases and larger for long volume leases since delayed
invalidations' advantage stems from delaying messages to
clients whose volume leases have expired.
Further improvements can be gained by also using back-

ground invalidations. In Figure 13, we limit the server mes-
sage rate to 200 messages per second, which is approximately
the average load of TTL, and send invalidation messages as
soon as possible but only using the spare capacity. Well over
99.9% of invalidation messages are transmitted during the
same second they are created, and no messages are delayed
more than 11 seconds. Thus, background invalidation allows
the server to place a hard bound on load burstiness without
signi�cantly hurting average staleness.
Figure 3 showed the average staleness for the traditional

TTL polling protocol. The data in Figure 13 allow us to un-
derstand the average staleness that can be delivered by inval-
idation with volume leases. Clients may observe stale data
if they read objects between when the objects are updated
at the server and when the updates appear at the client.
There are two primary cases to consider. First, the net-
work connection between the client and server fails. In that
case, the client may not see the invalidation message, and
data staleness will be determined by the worst-case stale-
ness bound from leases. Fortunately, failures are relatively
uncommon, and this case will have little e�ect on average
staleness. Second, server queuing and message propagation
time will leave a window when clients can observe stale data.
The data in Figure 13 suggest that this window will likely
be at most a few seconds plus whatever propagation delays
are introduced by the network.
We conclude that delaying invalidation messages makes

unicast invalidation feasible with respect to server load. This
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Figure 14: Hit rates after recovery for a disconnec-
tion of 1 second.

is encouraging because it simpli�es deployment: systems do
not need to rely on hierarchies or multicast to limit server
load. In the long run, hierarchies or multicast are still at-
tractive strategies for further reducing latency and average
load [26, 25].

3.5 Resynchronization
In server-driven consistency, servers' consistency state must

be synchronized with client cache contents to bound stale-
ness for client reads. This synchronization can be lost be-
cause of failures, which include server crashes, client crashes,
and network partitions. Additionally, to achieve scalability,
servers may drop callbacks of idle clients to limit server state
as discussed in Section 3.4.
These disconnections can be roughly divided into two groups

based on whether the consistency state before a disconnec-
tion survives the disconnection. State-preserving disconnec-
tions caused by network partitions preserve the consistency
state prior to the disconnections. State-losing disconnec-
tions caused by server crashes, client crashes, and deliberate
protocol disconnections result in loss of consistency state.
In this section, we systematically study the design space of
resynchronization to recover from all these disconnections.
There are three potential policies to control how aggres-

sively clients resynchronize with servers. At one extreme,
demand revalidation marks all cached objects as potentially
stale after reconnection and revalidates each object individ-
ually as it is referenced. At the other extreme, immediate
revalidation revalidates all cached objects immediately af-
ter reconnections to reduce the read latency associated with
revalidating each object individually. When the overhead of
revalidating all cached objects is high, immediate revalida-
tion may delay clients' access to servers immediately after
reconnections. To address this problem, background revali-
dation allows bulk revalidation to be processed in the back-
ground. Some previous studies have assumed that demand
revalidation is suÆcient [15], while others have assumed that
immediate revalidation is justi�ed [25]. In this study, we
quantitatively evaluate these two options and the middle-
ground, background revalidation, for this workload.
Figures 14 and 15 show that immediate revalidation achieves

higher average local hit rates than demand revalidation.
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Figure 15: Hit rates after recovery for a disconnec-
tion of 1000 seconds.
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Figure 16: Resynchronization cost for bulk revali-
dation and delay invalidation.

The performance disparity between immediate revalidation
is larger immediately after failures and decreases over time
as more cached objects are accessed and validated in de-
mand revalidation. The local hit rates of background reval-
idation (not shown) would equal those of demand revalida-
tion immediately after reconnection and would increase to
those of immediate revalidation as background revalidation
completes. The bene�t of immediate and background reval-
idation is also a�ected by disconnection duration. When
disconnection duration is short, the number of cached ob-
jects that are invalidated during disconnections is small.
Moreover, because of read locality, the chance of reading
these cached objects after recovery is high. Hence, as shown
by Figures 14 and 15, the bene�t of immediate and back-
ground revalidation is signi�cant for short disconnections.
Conversely, when a disconnection duration is long, demand
revalidation may be suÆcient.
To implement demand revalidation, systems only need to

detect reconnections and mark all cached objects as po-
tentially stale by dropping all object leases. Revalidating
cached objects in demand revalidation is the same as vali-
dating cached objects after the object leases expire. Two ad-
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ditional mechanisms can be added to support immediate or
background revalidation. First, in bulk revalidation, a client
simply sends a revalidation message containing requests to
revalidate a collection of objects. The server processes each
included request as it would have if it had been sent sepa-
rately and on demand, except that the server replies with
a bulk revalidation messages containing object leases for all
unchanged objects and invalidations for objects that have
changed. Second, in delayed invalidation, the server bu�ers
the invalidations that should be sent to a client when a net-
work partition makes a client unreachable from the server or
when server decides to delay sending invalidation messages
to an idle client to reduce server load. When the server re-
ceives a volume lease request message from the client, the
server piggybacks the bu�ered invalidations on the reply
message granting the client a volume lease. The client ap-
plies these bu�ered invalidations to resynchronize with the
server. Note that delayed invalidation may only be used
after state-preserving disconnections.
The overhead of bulk revalidation and delayed invalida-

tion primarily depends on the number of cached objects and
on the number of objects invalidated during the disconnec-
tion. In the case of bulk revalidation, server load and net-
work bandwidth are proportional to the number of cached
objects; in delayed invalidation, they are instead determined
by the number of invalidated objects. As Figure 16 shows,
bulk revalidation must examine an average of more than
100 objects. For some recovered clients, several thousand
objects must be compared during bulk revalidation. De-
layed invalidation can be used to reduce the cost of imme-
diate revalidation for state preserving disconnection, since
the number of cached objects is two orders of magnitude
less than the number of invalidated objects for disconnec-
tions shorter than 1000 seconds. Unfortunately, for state-
losing disconnections, delayed invalidation is not an option.
Because bulk revalidation may have to revalidate hundreds
or thousands of objects, system should support background
revalidation rather than relying solely on immediate revali-
dation.
In conclusion, server-driven consistency protocols must

implement some resynchronization mechanisms for fault tol-
erance and scalability. Demand resynchronization is a good
default choice since it handles all disconnections and is sim-
ple to implement. Background bulk revalidation may be
needed to reduce read latency when recovering from short
disconnections, and delayed invalidation may be desirable to
reduce resynchronization overheads for short state-preserving
disconnections.

4. PROTOTYPE
We have implemented server-driven consistency based on

volume leases with Squid cache version 2.2.5. The consis-
tency module includes a server part which sends invalidation
messages in response to writes and issues volume and object
leases, and a client part which manages consistency informa-
tion on locally cached objects to satisfy reads. Servers main-
tain a per-object version number as well as a per-volume
and per-object share lists. These lists contain the set of
clients that may hold valid leases on the volumes and ob-
jects, respectively, along with the expiration time of each
lease. Clients maintain a volume expiration time as well
as per-object version numbers and expiration times. Ob-

jects and volumes are identi�ed by URLs, and object version
numbers are implemented by HTTP Etag or modi�cation
times [7].
On a client request for data, a callback-enabled client in-

cludes a VLease-Request �eld in the header of its request.
This �eld indicates a network port at the client that may
be used to deliver callbacks. A callback-enabled server in-
cludes volume lease and object leases as Volume-Lease-For
and Object-Lease-For headers of replies to client requests.
Invalidation and Invalidation-Ack headers are used to
send invalidation messages to clients and to acknowledge re-
ceiving invalidations by clients.
The mechanisms provided by the protocol support either

client-pull or server-push volume lease renewal. At present,
we implement the simple policy of client-pull volume lease
renewal. Volume lease requests and replies can use the same
channels used to transfer data, or can be exchanged along
dedicated channels.

4.1 Hierarchy
We construct the system to support a hierarchy in which

each level grants leases to the level below and requests leases
from the level above [25]. The top level cache is a re-
verse proxy that intercepts all requests to the origin server
and caches all replies, including dynamically generated data.
The top level cache is con�gured to hold in�nite object and
volume leases on all objects and to pass shorter leases to its
children. Invalidations are sent to the top level cache using
the standard invalidation interface used for communication
between parent and child caches. These invalidations can
be generated by systems such as the trigger monitor used
at the major Sporting and Event Web Sites hosted by IBM
[4]. The trigger monitor maintains correspondences between
underlying data (e.g. databases) a�ecting web page content
and the web pages themselves. In response to changes to un-
derlying data, the trigger monitor determines which cached
pages are a�ected and propagates invalidation or update
messages to the appropriate caches.
The hierarchy provides three bene�ts. First, it simpli�es

our prototype by allowing us to use a single implementa-
tion for servers, proxies, and clients. Second, hierarchies
can considerably improve the scalability of lease systems by
forming a distribution tree for invalidations and by serv-
ing renewal requests from lower-level caches [25]. Third,
reverse-proxy caching of dynamically generated data at the
server can achieve nearly 100% hit rates and can dramat-
ically reduce server load [3]. By implementing our system
as a hierarchy, we make it easy to gain these advantages.
Further, if a multi-level hierarchy is used (such as the Squid
regional proxies [18] or a cache mesh [20]), we speculate that
nodes higher in the hierarchy will achieve hit rates between
the per-client cache hit rates and the at-server cache hit
rates illustrated in Section 3.

4.2 Reliable delivery of invalidations
In order to maintain an upper bound on worst-case stale-

ness, volume lease systems must maintain the following in-
variant: a client may not receive a volume lease renewal
unless all of its cached objects that were modi�ed before the
transmission of the volume renewal have been invalidated.
If this invariant is violated, an object may be modi�ed at
time T1, and the client may then receive a volume lease re-
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newal valid until time T2 > T1 + Tv. If a network partition
then occurs, the client could access stale cached data longer
than Tv seconds after it was modi�ed.
The system must thereby reliably deliver invalidations to

clients. It does so in two ways. First, it uses a delayed
invalidation bu�er to maintain reliable invalidation deliv-
ery across di�erent transport-level connections. Second, it
maintains epoch numbers and an unreachable list to allow
servers to re-synchronize after servers discard or lose client
state.
We use TCP as our transport layer for transmitting in-

validations, but, unfortunately, this does not provide the
reliability guarantees we require. In particular, although
TCP provides reliable delivery within a connection, it can
not provide guarantees across connections: if an invalidation
is sent on one connection and a volume renewal on another,
the volume renewal may be received and the invalidation
may be lost if the �rst connection breaks. Unfortunately, a
pair of HTTP nodes will use multiple connections to com-
municate in at least three circumstances. First, HTTP 1.1
allows a client to open as many as two simultaneous persis-
tent connections to a given server [16]. Second, HTTP 1.1
allows a server or client to close a persistent connection after
any message; many modern implementations close connec-
tions after short periods of idleness to save server resources.
Third, a network, client, or server failure may cause a con-
nection to close and a new one to be opened. In addition
to these fundamental limitations of TCP, most implemen-
tations of persistent connection HTTP are designed as per-
formance optimizations, and they do not provide APIs that
make it easy for applications to determine which messages
were sent on which channels.
We therefore implement reliable invalidation delivery that

is independent of transport-layer guarantees. Clients send
explicit acknowledgments to invalidation messages, and servers
maintain lists of unacknowledged invalidation messages to
each client. When a server transmits a volume lease renewal
to a client, it piggy-backs the list of the client's unacknowl-
edged invalidations using a Group-Object-Version header
�eld. Clients receiving such a message must process all in-
validations in it before processing the volume lease renewal.
Three aspects of this protocol are worth noting.
First, the invalidation delivery requirement in volume leases

is weaker than strict reliable in-order delivery, and the sys-
tem can take advantage of that. In particular, a system
need only retransmit invalidations when it transmits a vol-
ume lease renewal. At one extreme, the system can mark
all packets as volume lease renewals to keep the client's vol-
ume lease fresh but at the cost of potentially retransmitting
more invalidations than necessary. At the other extreme,
the system can only send periodic heartbeat messages and
handle all retransmission at the end of each volume lease
interval [26].
Second, the queue of unacknowledged invalidations pro-

vides the basis for an important performance optimization:
delayed invalidation [23]. Servers can signi�cantly reduce
their average and peak load by not transmitting invalidation
messages to idle clients whose volume leases have expired.
Instead, servers place these invalidation messages into the
idle clients' unacknowledged invalidation bu�er (also called
the delayed invalidation bu�er) and do not transmit these
messages across the network. If a client becomes active
again, it �rst asks the server to renew its volume lease,

and the server transmits these invalidations with the vol-
ume lease renewal message. The unacknowledged invalida-
tion list thus provides a simple, fast reconnection protocol.
Third, the mechanism for transmitting multiple invalida-

tions in a single message is also useful for atomically in-
validating a collection of related objects. Our protocol for
caching dynamic data supports documents that are con-
structed of multiple fragments, and atomic invalidation of
multiple objects is a key building block [4].
The system also implements a protocol for re-synchronizing

client or server state when a server discards callback state
about a client. This occurs after a server crash or when a
server deliberately discards state for idle clients. The sys-
tem includes epoch numbers [23] in messages to detect loss
of synchronization due to crashes. The servers maintain un-
reachable lists, lists of clients whose state has been discarded
to detect when such clients reconnect. If a reply to a client
request includes an unexpected epoch number or a header
indicating that the client is on the unreachable list, the client
invalidates all object leases for the volume and renews them
on demand. A subject of future work is to implement a bulk
revalidation protocol.

4.3 Evaluation
We evaluate our implementation with a standard bench-

mark of web caching industry: the �rst semi-annual web
caching bake-o� workload. Our testbed includes four com-
puters. Two of them are running the workload. The consis-
tency server and the consistency client, which are the Squid
proxies augmented with server-driven consistency, are run-
ning on two other machines. The consistency server is placed
in front of the workload server, which delivers data requested
by clients after retrieving it from the workload server. The
consistency server also issues leases, and sends invalidation
messages.
Our initial evaluation shows that our implementation of

server-driven consistency, compared to the standard Squid
cache, increases the load on the consistency server by less
than 3% and increases read latency by less than 5% while
sustaining a throughput of 70 requests per second. In the
future, we plan to implement an architecture that decouples
the consistency module from the other parts of web or proxy
server that deliver data, and to quantify the computing re-
sources (CPU, memory) needed to maintain server-driven
consistency for the major Sporting and Event Web Sites
hosted by IBM.

5. RELATED WORK
There have been several studies on cache consistency in

wide-area networks. Gwertzman and Seltzer [9] simulate
various client-polling and callback-based consistency proto-
cols and conclude that adaptive TTL can provide good per-
formance for applications in which it is acceptable to return
about 4% stale reads. Liu and Cao [15] �nd that, although
it is possible to implement server-driven consistency with
an overhead comparable with that of client-driven consis-
tency, scalability is an issue. In particular, they point to
(i) the bursts of server load caused by invalidations sent in
response to writes to popular objects, and (ii) the growth of
the state that the server maintains to track the status of its
clients' caches.
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To address these concerns, several recent studies have ex-
plored how to improve scalability by using multicast. Yu
et al. [26] propose a scalable cache consistency architecture
that integrates the ideas of invalidation, volume lease and
unreliable imprecise multicast. They use synthetic work-
loads of single pages and focus their evaluation on network
performance of server-driven consistency. Li and Cheri-
ton [14] propose to use reliable precise multicast to deliver
invalidations and updates for frequently modi�ed objects.
The workloads in their study include client traces, proxy
traces, and synthetic traces. What is unique to our study
is to examine server-driven consistency from the perspective
of large scale dynamic web services, and to address the chal-
lenge of scalability through techniques that can be deployed
in both multicast and unicast environments.
Other studies examine speci�c design optimizations for

consistency protocols. Duvvuri et al. [6] examine adapting
object leases to reduce server state and messages. These
techniques can also be employed in our protocol to improve
scalability. Krishnamurthy and Wills [13] examine ways to
improve polling-based consistency by piggybacking optional
invalidation messages on other traÆc between a client and
server. While their study doesn't provide the worst case
staleness bounds required by our workload, several tech-
niques used in their study can also be exploited to improve
performance and scalability of server-driven consistency. For
example, our protocol allows servers to send delayed inval-
idations to clients by piggybacking them on top of other
traÆc between servers and clients. In the same paper, they
also propose to group related objects into volumes and to
send the invalidations on all objects contained in volumes in-
stead of just invalidations on the objects that a client caches.
This imprecise unicast idea obviates the need for the server
to track the callback state related to each client, resulting
in a scheme that may be used in some extreme cases by
server-driven consistency protocols to limit server state.
Finally, we observe that cache consistency protocols have

long been studied for distributed �le systems [19]. Both the
notion of invalidation and that of leases for fault tolerance
have been examined in this context [8], as well as methods
for fast re-synchronization of callback state [1].

6. CONCLUSIONS
Although server-driven consistency can provide signi�cant

performance advantages over traditional client-polling sys-
tems, the feasibility of deploying such a system depends
on the scalability and performance of these server-driven
consistency algorithms over a wide range of applications.
Large-scale services delivering both static and dynamically
generated data are an important class of applications to
be considered because objects served by such applications
change unpredictably and frequently, and because the scale
of such a service presents many challenges. In this study,
we �nd that server-driven consistency can meet the scala-
bility, performance, and consistency requirements of these
services. First, we �nd that we can put a limit on callback
state growth with little performance penalty and that we
can smooth out server burstiness introduced by invalidations
without signi�cantly increasing average staleness. Second,
we �nd that how long servers and clients are kept synchro-
nized can greatly inuence performance and overhead. How-
ever, for this workload there is little performance bene�t of

keeping servers and clients synchronized longer than 1000
seconds after a read. Third, we �nd that delayed invalida-
tion is the most eÆcient fault recovery protocol for the most
common failures in today's Internet. Overall, server-driven
consistency can o�er excellent performance for both static
and dynamically generated data in large scale web services.
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