
An Admission Control Scheme for Predictable Server
Response Time for Web Accesses�

Xiangping Chen
Network Storage Division

EMC Corp.
Hopkinton, MA 01545, USA

xchen@emc.com

Prasant Mohapatra
3115 Engineering Building
Department of Computer
Science and Engineering
Michigan State University

East Lansing, MI 48824, USA

prasant@cse.msu.edu

Huamin Chen
3115 Engineering Building
Department of Computer
Science and Engineering
Michigan State University

East Lansing, MI 48824, USA

chenhuam@cse.msu.edu

ABSTRACT
The diversity in web object types and their resource re-
quirements contributes to the unpredictability of web ser-
vice provisioning. In this paper, an eÆcient admission con-
trol algorithm, PACERS, is proposed to provide di�erent
levels of services based on the server workload characteris-
tics. Service quality is ensured by periodical allocation of
system resources based on the estimation of request rate
and service requirements of prioritized tasks. Admission of
lower priority tasks is restricted during high load periods to
prevent denial-of-services to high priority tasks. A double-
queue structure is implemented to reduce the e�ects of es-
timation inaccuracy and to utilize the spare capacity of the
server, thus increasing the system throughput. Response de-
lays of the high priority tasks are bounded by the length of
the prediction period. Theoretical analysis and experimen-
tal study show that the PACERS algorithm provides desir-
able throughput and bounded response delay to the priori-
tized tasks, without any signi�cant impact on the aggregate
throughput of the system under various workload.

Keywords
Admission Control, Bounded Response Time, Internet, PAC-
ERS, QoS, Service Di�erentiating Internet Servers

1. INTRODUCTION
The Internet and its services, especially the use of World

Wide Web (WWW) in commercial activities, are increasing
explosively. A widely existing problem in contemporary web
servers, however, is the unpredictability of response time,
which is caused by the �rst-come-�rst-serve (FCFS) service
model and the \bursty" workload behaviors. Usually, one

�This research was supported in part by the National Sci-
ence Foundation through the grant CCR-09988179.

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

second response time is desired from web sites, which is ap-
propriate to the human response speed [4]. Long response
delay frustrates user interest in interaction with servers, thus
devalues the web service quality. Although current web
servers are able to serve thousands of requests per second,
the average response delay of a popular server can be sev-
eral orders of magnitudes higher than that expected during
high load periods, causing the de facto \denial-of-service"
e�ects. It was estimated that in 1998 about 10 { 25% of e-
commerce transactions were aborted owing to long response
delay, which translated to about 1.9 billion dollars loss of
revenue [27].
The response delay of Internet service is determined by

two factors: the quality (delay, delay jitter, and loss rate,
etc.) of network transmission, and the processing capacity
of the server. Study of quality of service (QoS) in network
transmission is active in recent years, including e�orts of
building Integrated Services (IntServ) architecture [3] with
end-to-end QoS guarantee, and Di�erentiated Service (Di�-
Serv) [2] architecture with alternative levels of services pro-
visioning. However, network layer QoS is not suÆcient in
providing user perceivable performance if the server does not
support any service di�erentiation. A premium class of
ow
with end-to-end QoS guarantee may still experience service
rejection when the server is overloaded. With the increase
of resource requirements of web based applications, value
added services will emerge with competitive di�erentiation
of service o�erings based on pro�ts instead of the best-e�ort
service discipline.
Recent studies on QoS support in web servers have ad-

dressed the issues of prioritized processing in web servers
[9, 6, 12, 15]. We call these kinds of servers as service dif-
ferentiating Internet servers (SDIS), which complements the
network-level QoS e�orts. The basic attributes of SDIS in-
clude classi�cation of client requests into groups with di�er-
ent service requirements, resource allocations based on the
task groups, and prioritized scheduling and task assignments
schemes. A detailed study on the concept and performance
evaluation of SDIS is reported in [13].
Prioritized scheduling in web servers has been proven ef-

fective in providing signi�cantly better delay performance
to high priority tasks at relatively low cost to lower priority
tasks. However, it is still possible that a signi�cant amount
of high priority tasks are dropped under extremely high
load situations and user acceptable response delay cannot

545

be ensured. E�ective admission control (AC) mechanisms
are needed to assure the drop rate and the delay bounds of
tasks.
Most contemporary web servers use a rather naive AC

scheme, namely, tail-dropping AC, in which incoming re-
quests are dropped when the number of tasks awaiting ex-
ceeds a prede�ned threshold. The tail-dropping AC scheme
requires careful system capacity planning and works well
only in steady workload situations. In a highly variable
workload environment, more
exible AC schemes are needed
to adapt to the dynamics of traÆc. For example, secure
transactions on the Web, which is popular in E-commerce,
consume much more CPU resources than regular transac-
tions due to encryption/decryption and multiple handshak-
ing overheads. The AC algorithm should be designed to
consider the characteristics of a wide variety of requests.
In this study we propose a simple and e�ective AC al-

gorithm, PACERS (Periodical Admission Control based on
Estimation of Request rate and Service time), which pro-
vide bounds on response delay for incoming requests under
highly variant workload environments. The PACERS algo-
rithm dynamically allocates system resources for each prior-
ity group by estimating the request rate of tasks. Admission
of a request is decided by comparing the available compu-
tation power for a duration equivalent to the predetermined
delay bound with the estimated service time of the request.
The service time estimation is done on the basis of the re-
quest types. A double-queueing organization is used to han-
dle the inaccuracy in estimation while exploiting the spare
capacity of the system. Theoretical analysis and experi-
mental study show that the PACERS algorithm bounds the
response delay for tasks in di�erent priority groups, assures
the service availability to high priority tasks even under high
load, and preserves system throughput under various work-
load.
The rest of the paper is organized as follows. Section

2 answers how to estimate request rate and service times.
Section 3 discusses the PACERS algorithm in detail and
its implementation issues. Section 4 provides a theoretical
proof of the bounded delay provided by the PACERS algo-
rithm. Simulation results and performance evaluation of the
algorithm are reported in Sections 5 and 6, respectively. Re-
lated works are discussed in Section 7. Section 8 concludes
the study.

2. WORKLOAD CHARACTERIZATION
Admission control policies are used extensively to provide

congestion control and to enforce desirable performance in
computer and communication systems. The workload on
web servers is di�erent from that of the network traÆc; thus
existing network-level AC algorithms might not suit well in
web server environments. Apparent self-similarity and long-
term dependency are prevalent in the WWW traÆc pattern
[14, 21, 7]. Processing of web requests is much more com-
plicated than the handling of network packets. To explore
a simple and e�ective admission control algorithm which
�ts to the web server environments, we analyze the traces
of a busy web server to track trends and characteristics of
resource requirements of the requests. The trace data is col-
lected for a week from the web server of the Department of
Computer Science and Engineering at Michigan State Uni-
versity, which encountered about a million requests during
the period.

0 20 40 60 80 100 120 140 160
10

3

10
4

10
5

A
cc

es
s

in
te

ns
ity

time series (hr)

Figure 1: Access trends in a week.

0 20 40 60 80 100 120 140 160
10

3

10
4

10
5

tr
af

fic
 v

ol
um

e

time series (hr)

Figure 2: TraÆc trends in a week.

2.1 Access Distribution
Figures 1 and 2 show the request intensity and traÆc vol-

ume per hour in a week. Distinct seasonal/periodic behav-
iors according to the time series can be observed from the
�gures. For example, the access intensity continues to in-
crease from early morning at 10AM, reaches the high inten-
sity area, and stays high till late afternoon, then decreases
slowly to the lowest point in a day, which is about 3AM in
the next day. Similar traÆc patterns repeat around the same
time each day, which suggests that both short and long term
history should be used as predictors of future workloads.
The
uctuation in traÆc intensity can be several orders of

magnitudes, which causes the high variances in access rate
and bandwidth requirements, thus resulting in high average
waiting time of tasks in a system. Care should be taken
to eliminate the e�ects of variances. An interesting phe-
nomenon is that the access pattern of the web server tends to
be consistent in a short time window. For example, the coef-
�cient of variation (CoV) of access rates decrease to around
1 when they are measured on an hourly basis. The decrease
for CoV is even more obvious during busy hours. Simi-

546

lar observations have been reported in [24, 19, 23], which
suggest that a multi-state Modulated Markov Poisson Pro-
cess (MMPP) can be used to approximate or predict the
burstiness of the aggregate input of the web server, which is
discussed in more detail in Section 3.3.
Note that during a week's observation period, there is one

overload point which causes request access rate of about 10
times higher than the common peak load of the day. We ex-
amined the logs and found that the abnormal overload was
caused by a group of careless CGI based requests. Those
requests directly caused the web server failing to respond to
any other request for 21 minutes. This is one of the exam-
ples which justify the need for appropriate AC to prevent
system resources being wasted in careless or malicious re-
quest attempts.

2.2 Object type distribution
Table 1 lists the requested web object types and corre-

sponding traÆc distribution of the traces. Web object types
are categorized on the same basis as reported in [11]. It can
be observed that requests for small and static web objects,
i.e., HTML and image �les, still dominate the incoming re-
quests and web traÆc. The data show that the CoV of web
traÆc is as low as 1 to 2 for each type of web objects. How-
ever, the CoV of the aggregated web traÆc can be as high
as 14.41.

Table 1: TraÆc distribution vs. object type.

Item Req. (%) TraÆc (%) Mean (KB) CoV
HTML 19.2 15.0 5.76 1.90
Image 68.8 49.2 4.98 2.46
Audio 0.2 2.5 579.9 1.76
Video 0.1 6.7 2503.9 1.56
Dynamic 4.9 4.4 6.84 1.33
Other 6.8 20.2 19.0 7.90
Total 100 100 7.39 14.4

There are non-negligible percentage of dynamic objects.
Previous studies [18] have estimated that a dynamic ob-
ject requires 10 to 100 times of service time than a typi-
cal static object. The processing time di�erence was con-
�rmed by recent benchmark tests of popular commercial
web servers [8] and the following service time characteristic
study. The throughput of serving dynamic tasks is usually
lower than serving static tasks by a factor of 10. Contin-
uous media (CM) objects (audio and video clips) are now
being used more extensively in the web environments (com-
pared to the previous results in [11]). These data types
require high storage capacity (thus uncacheable), high den-
sity I/O processing, and sustained bandwidth with bounded
delay constraints. The average CPU time for serving a CM
object is also much higher than the average CPU time for
serving small static objects. Signi�cant di�erences in size
of di�erent type of web objects, high volume of CM ob-
jects, and computation-intensive dynamic requests suggest
that the service time variance of the requested web objects
should be considered in estimating the server capacity and
response time.

2.3 Service Time Distribution
Previous studies [5, 17, 22] suggested that the service

time of retrieving static web objects such as HTML and

10
- 3

10
- 2

10
- 1

10
0

10
1

10
2 10

3
10

4
10

5
10

6
10

7

Mean SRT(Seconds)

Fil
e S

ize
(B

yte
s)

1 20 40 60

Figure 3: Mean service time of web objects.

image �les can be divided into two parts: an almost �xed
URL processing time, and the content transfer time which
increases linearly with the �le sizes. To collect the service
time attributes, we set up an experimental environment con-
sisting of one Apache (version 1.3.12) web server and three
WebStone (version 2.5) clients, connected through a 10 Mb
Ethernet. The web server hardware is based on a Pentium
II 233MHZ CPU with 128 MB memory. The operating sys-
tem used in the server was Linux 2.2.9. The clients were
installed in Sun UltraSparc 10 with 128 MB memory, run-
ning Solaris 2.6. The CPU cycles are used as time scale to
obtain a precise time resolution. The performance monitor-
ing counters provided by the Intel P6 family processors are
used to record the elapsed busy CPU cycles of the current
process.
The service time is de�ned as the CPU cycles consumed

between the time that the server accepts a client request,
and the time that the server �nishes sending the response.
Figure 3 depicts the mean service time of static objects ver-
sus requested �le size under di�erent maximum number of
processes (MNP) in the server. It is well known that the
MNP has direct in
uence in service time distribution, which
is discussed in detail in following paragraphs. CPU cycles
have been converted into seconds in the �gure.
It can be observed from the �gure that the curves have

two phases. If the �les are smaller than 64 Kbytes, the
service times with the same MNP are almost constant. If
the �le sizes exceed 64 Kbytes, the mean service times in-
crease linearly with the �le sizes and the MNP value. We
call this phenomenon the 64 KB leap. The 64 KB leap is
mainly due to the underlying operating system kernel. In
Linux socket implementation, a 64KB send bu�er limit is
imposed for every transmission. Any send request of more
than 64KB is fragmented and the �rst 64KB is processed
while the remaining parts wait for the bu�er space. The
kernel can thus avoid crash from any imprudent code ask-
ing for more memory than what the kernel could provide.
This limit is tunable via ioctl() function. However, a large
send bu�er will not necessarily improve the overall perfor-
mance since smaller transmission may spend more time in
the queue waiting for the larger requests to be transmitted.
Some other factors also contribute to the 64 KB leap. For

547

example, asynchronized disk I/O is widely used in current
UNIX operating systems, and the default size for read-ahead
operation is 64 KB. At most 64 KB can be loaded from the
hard disk in one I/O operation.
The slopes of service time increase linearly with the num-

ber of maximum processes, because the increase of process
number caused higher probability of page faults, higher con-
text switching, and synchronization overhead. Based on the
observation from Figure 3, the service time of a task T (s; n)
can be estimated by the �le size s KB and MNP value of n.

T (s; n) = a+ [s=64] � (b+ c � n); (1)

where a is the service time for small static web objects, i.e.,
requests for �les smaller than 64 KB. b is the data trans-
ferring time factor, and c is the context switching overhead
factor. Using linear regression, we get the relative value for
a; b, and c as: a : b : c = 1 : 0:06 : 0:18.
Rechecking the �le size distributions, we �nd that less

than 1% of HTML and image �les are larger than 64 KB.
Thus the service time of most HTML and image �les are
rather uniform. Service times of dynamic objects, mainly
CGI requests, depend on the computation complexity of the
URL processing instead of response size. Using the CGI
scripts test set provided by WebStone 2.5 test set, the av-
erage service time of a CGI request is around one order of
magnitude higher than the service times of static objects
with a �le size less than 64 KB. The experimental results
indicate that the object type is a good indicator of the re-
quested CPU time, which can be derived from the requested
URL. Besides, classi�cation of object types introduces less
overhead than retrieving �le size information, which requires
one fstat() system call in UNIX operating systems.

3. PACERS ADMISSION CONTROL
ALGORITHM

This section presents how the web server workload char-
acteristics impacts the design of our AC algorithm. The
goal of the PACERS algorithm is to provide response delay
bounds to incoming requests while preserving the system
throughput of busy web servers.

3.1 Overview of the algorithm
Usually a queue of incoming requests is maintained in a

web server awaiting to be processed. Using the tail-dropping
AC scheme, incoming requests are put in the queue until the
queue is full. Queue length is not always a good indicator of
system load, especially when the variance of processing time
is high. Without e�ective AC, the server response time and
throughput deteriorate drastically when the aggregate re-
quest rate exceeds server capacity, indiscriminately a�ecting
all clients. Abdelzaher and Bhatti [5] reported that as much
as half of the web system's processing capacity is wasted on
eventually aborted/rejected requests when the load is high.
To accommodate the high variance in request rate and ser-

vice time of web servers, we propose a simple and adaptive
AC algorithm, Periodic AC based on Estimation of Request
rate and Service time (PACERS), to ensure the availability
and delay performance of prioritized tasks. The predictive
strategy estimates the periodic request rate of each priority
group, and guarantees the performance of higher priority
tasks by restricting admission of lower priority tasks. The
request rate estimation is based on the history of access

pattern. Service time of each task is estimated based on the
request types which is more or less delineated by the size
of the responses. Inaccurate estimations are dynamically
adjusted by a double-queue architecture as described later.

3.2 Admission Control and Delay Bounds
We �rst examine a non-prioritized system to have a sys-

tematic understanding of the proposed algorithm. Assume
that the time is divided into discrete slots (0; T), (T; 2T),
..., (kT; (k + 1)T); For simplicity, we use the beginning
point of each time period, kT , to represent the duration
(kT; (k + 1)T). Let c be the unit processing capacity of the
system, C(kT) be the predicted system processing capacity
in period kT , S(i; kT) be the service time needed by the ith
task at period kT , and n(kT) be the number of admitted
tasks in period kT . If the server has a precise knowledge
of service time needed by each task, the admission decision
can be made based on the following expression,

C(kT) = c � T >=

n(kT)X

i=1

S(i; kT): (2)

If expression 2 is true, then the request is admitted, oth-
erwise it is rejected. The maximum response delay of each
task is bounded by the value of T if the service time of each
task is known prior to the admission decision phase.
In a prioritized system, the periodic system capacity seen

by di�erent priority groups changes with the prediction of
resource requirements of each priority group. By adjust-
ing the assigned system capacity to each priority group,
the PACERS algorithm provides service quality assurance to
prioritized tasks. There are two kinds of service disciplines
that can be provided by the PACERS algorithm: priori-
tized resource allocation (PRA) and weighted fair allocation
(WFA). PRA is implemented by assigning resources equal
to the whole system capacity to the highest priority tasks
(or premium tasks). Lower priority tasks get the remaining
resources. The WFA is realized by setting shares of system
resources in each priority group, where each priority group
get at most/least their shares. In this study we only discuss
the PRA control scheme. The WFA scheme can be easily
extended from the PRA scheme by setting a minimum or
maximum resource ratio for each priority group.
The objective of the server is to ensure QoS to high pri-

ority tasks whenever their arrival rate is lower than the sys-
tem capacity. Thus, for high priority tasks, the available
resources are equal to the system period capacity. For lower
priority tasks, the available resources are the system capac-
ity minus the predicted resource requirements of higher pri-
ority requests during a time period. Since the priority ratio
and distribution of the types of incoming tasks vary over
time, dynamic assignment of system capacity is needed to
preserve the system throughput.
Assume all the requests are classi�ed and are assigned

a priority p; (p = 1; ::; P), wherein P denotes the highest

priority. Let �predictedi ; (i = 1; ::; P) be the predicted inter-
arrival rates of tasks for each priority group. The system
capacity available to priority group p at time kT � t �
(k + 1)T , denoted as Cp(kT; t), is:

Cp(kT; t) = C(kT)�

PX

i=p+1

�predictedi (kT) � T �

�p(kT) � t: (3)

548

A task with priority p is admitted if the service time is
equal or less than available capacity Cp(kT; t).

3.3 Estimation of Request Rate
The resources allocated to each priority group is based

on the prediction of the request rate of incoming priori-
tized tasks. Apparent seasonal workload patterns corre-
sponding to daily cycles discussed in the previous section
can be used to predict current traÆc intensity based on the
workload history. On the other hand, reports in [19, 23] sug-
gested that the aggregate web traÆc tends to smooth out
as Poisson traÆc in short observation time windows. This
fact was further proved by Morris and Lin in [24]. Based
on the above published results, we decided to use Markov-
Modulated Poisson Process (MMPP) described in [16] to
capture the seasonal behavior of the aggregate workload of
web servers, while preserving the tractability of modulated
Poisson process. The request arrival process is described
as a Markov process M(i) with state space 1; 2; :::; i; :::; N .
State i has arrivals with Poisson process at rate �i. To fol-
low the seasonal behavior, especially the day/night cyclic
behavior of the web server load, the observed traÆc data
is chopped into subsets for each hour on a daily basis. The
Markov transition matrixQ(n) = [Qij(n)]; (n = 1; :::; 24) for
each hour can be easily calculated by quantizing the inter-
arrival rate in each observation period, and calculating the
frequency at which M(n) is switched from state i to state
j. The predicted access rate �predicted(kT) can be expressed
by the following equation:

�predicted(kT) = [�((k � 1)T)]: �Q(kT); (4)

where [�((k � 1)T)] is the state vector of measured inter-
arrival rate in the previous period. Q(kT) can be further
adjusted by comparing the di�erences between predicted
data and measured data, to catch up with the long term
trends of a web server load. In the experiment, we use three
state (pinc; psame; pdec) transition matrices to capture the
traÆc trends in each observation period. pinc is the proba-
bility of increment request rate, psame the probability of the
same request rate, and pdec the probability of decrement
request rate. The Æ value for increment and decrement is
10% of measured value. The experiment shows that there is
not much di�erence in the capability of capturing the traf-
�c trends in each observation period between a three state
transition matrix and more complicated state transition ma-
trices.

3.4 Estimation of Service Time
While deciding to accept a request, the system should en-

sure that the sum of service time of accepted tasks do not
exceed the system capacity. In reality, it is not possible to
know the service time S(i; kT) in advance. High variance
in resource requirement is a widely recognized characteristic
of web server workload. As indicated in the previous sec-
tion, however, the service time and bandwidth requirement
of the same type of requests are more or less consistent. Ser-
vice time of web objects can be thus estimated based on the
distribution of the types of requests to the server. We ap-
proximate the service time of each task by using weighted
computation quantums (CQ) matching the CPU processing
time of di�erent type of tasks.
When a new request arrives, the system checks if there

are enough CQ available to grant to the request. Only re-

Q
p

TS

ACMClient cloud

Q
b

Nb

drop

primary

backup

drop

S1

S2

SN

Server

Figure 4: Web server system structure.

quests that are granted enough CQ can be enqueued and
served eventually. The number of CQ issued to each task
is determined by the resource requirement of the request.
Here we denote Tn as the number of types of requests to a
web server, which can be derived from the workload char-
acterization of a web server. Let Ni(kT) be the number of
requests of type i in period kT , CQi be the weighted CQ
matching the CPU processing time for type i tasks. Then
Equations (2) and (3) can be approximated as:

C(kT) �

TnX

i=1

CQi �Ni(kT) (5)

Cp(kT) �

TnX

i=1

CQi �Ni;p(kT): (6)

As in the case of Equations (2) and (3), a request is admit-
ted if Equations (5) and (6) hold true, otherwise is rejected.

3.5 The Double Queue Structure
Since Equations (5) and (6) are approximations of Equa-

tions (2) and (3), care needs to be taken to amortize the
accumulated delay in
uence of over-admission during a time
period. Assume that a restricted prioritized processing is en-
forced inside a queue, i.e., no lower priority tasks get served
if there is a higher priority task waiting, incoming requests
are queued in the order from high priorities to low prior-
ities. Requests in the same priority are queued in FCFS
order. When over-admission happens, it is possible that low
priority tasks stay in the queue for a long time awaiting ser-
vices while high priority tasks get dropped due to lack of
queue space. On the other hand, under-admission wastes
system capacity. A double-queue structure is used to han-
dle the over/under admission problems. A primary queue is
used as the incoming task queue, and a secondary queue is
added for the backed up requests (we call this as the backup
queue). The system structure is shown in Figure 4.
An incoming request is �rst sent to the AC manager ACM.

The ACM classi�es the request priority and decides if the re-
quest can be enqueued. Enqueued requests wait to be served
in the primary queue Qp. At the beginning of the next pe-
riod, un�nished requests are sent to the backup queue Qb.

549

When Qb becomes full, it is cleared up and queued tasks
are dropped. Other methods for expunging tasks from Qb
can be explored. The task scheduler TS picks up requests in
the queues and sends to the server pool. No request in the
Qb can be picked up unless the Qp is empty. Replies are
sent back through the server network interface Nb. By us-
ing a double queue structure, newly accepted requests need
not wait for a long time for service, thus bounded delay is
achieved for most of the requests.

4. RESPONSE DELAY ANALYSIS
The PACERS algorithm provides delay bounds and aver-

age waiting time assurance as well as throughput regulation.
In this section, we analyze the delay bounds and the waiting
time for the requests.

4.1 Ideal Case Delay Bounds
When the short term arrival rate is faster than the pro-

cessing rate, newly arrived requests have to wait in the queue
for service. If the variations of job arrival rate and processing
rate are high, more queue space is needed, and the average
queueing time and response delay tend to be high. If enough
bu�er space is not available, denial of service occurs when
the queue is full.
One way to increase the response time predictability of a

system is to limit the number of requests in a given \short
time" period T to no more than what the system can handle
in that period of time. Borowsky et al. [10] provided a
theoretical proof that the service time required by pending
jobs is no more than T in a FCFS work-conserving system, if
the sum of service time required by the arriving jobs at any
duration T is bounded by time T . Thus the response time
(or delay) of all requests can be bounded by T by restricting
the workload arriving in every interval of length T time.
In a prioritized environment where each request is as-

signed a speci�c priority, the processing order and resource
allocation are based on the priority of each request. The
FCFS processing assumption in the above theorem is no
longer valid. In [12], we proved that the mean response
time of a request is bounded by the arrival rate with equal or
higher priority and the service rate of the system, if requests
with di�erent priorities have the same service requirement
distribution and a strict priority scheduling is used.
Let p(1 � p � P) denote the priority of the requests

and P be the total number of priorities. Let sp(i) be the
service time requirement of task i belonging to priority p,
and Np(t � T; t) be the number of requests of priority p
arriving during the period T .
Lemma : In a prioritized preemptive work-conserving

environment with no pending work, if N(t�T; t) requests ar-
rive belonging to a single priority level p, then their response

time is bounded by Tp(Tp < T) if
PN(t�T;t)

i=1 sp(i) � Tp
(proved in [10]).
Theorem : If the priority levels are in the increasing

order of p, the response time of a task with priority p is
bounded by

PP

q=p Tq. If
PP

q=1 Tq � T , the response time of
any task is bounded by T .
Proof : Let Rp;i(n) be the response time of the ith task

in the priority class p during period n, and busy time(n) be
the amount of time in (n) that the system is busy during
period n. Let the request time series be partitioned into
periods of n with length T .
For n = 1; i:e:; t = (0; T), without loss of generality, let all

requests arriving during (0, T) be reshu�ed to be served in
the decreasing order of p (for p = 1; ::; P), then RP;i(1) <=

TP ; fori = 1; :::; NP (1), and Rp;i(1) <=
PP

q=p+1 Tq+Tp <=PP

q=p Tq; fori p = 1; ::; P .
Assume the above expressions hold true in the period k�1,

reshu�e the requests in queue in the decreasing order of p
during period k. Let Qp(k) be the sum of the service times
for the pth priority tasks, then

Qp(k) = Qp(k � 1) +
PX

q=p

Nq(k�1)X

i=1

sq(i)�

busy time(k); (7)

Clearly, Qp(k � 1) <= busy time(k). By assumption,PP

q=p

PNq(k�1)

i=1 sq(i) <=
PP

q=p Tq, so

Qp(k) <=

PX

q=p

Nq(k�1)X

i=1

sq(i) <=

PX

q=p

Tq: (8)

Hence, by induction from Equation (8), we get Rp;i(k) <=PP

q=p Tq(i = 1; :::; Np(k); for p = 1; :::; P; and k = 1; 2; :::,
i.e., the response delay boundary of each prioritized task
can be achieved by controlling the requested service time
in each period of length T . As long as the sum of service
times requested by high priority tasks does not exceed T ,
the system response time can be assured by restricting the
number of admitted low priority tasks.
The granularity of T e�ects the system performance. In-

creasing the value of T smoothes out the access variance
between adjacent periods and allows more requests to be
admitted. However, larger value of T also increases the vari-
ance of response time and degrades the system responsive-
ness. Both user perceivable delay and system throughput
should be considered in determining an appropriate value of
T .

4.2 Waiting Time Estimation
The service time of a web object can be estimated from

statistics of the same or similar type of web object with
acceptable variance. The number of requests allowed by the
system can be derived from the expected waiting time and
the job arrival rate. Let Wp(t) denote the expected waiting
time of tasks with priority p at time t, Ap(t) be the expected
arrival rate of tasks with priority p at time t. Let W (t)
denote the expected waiting time of a task in the system
at time t, A(t) be the expected arrival rate of tasks of the
system at time t. In the period k, the expected number of
tasks in the system equals:

N(k) =W (k) �A(k) =

PX

p=1

Ap(k)Wp(k): (9)

According to Little's Law [20], the waiting times of each
priority group equals:

Wp(k) =
N(k)�

PP

i=p+1Ai(k)Wi(k)

Ap(k)
: (10)

On the other hand, the waiting time of a task in the pth
priority group equals the residual life of the executing task
W0 plus the sum of service times of equal or higher priority
tasks in the queue, and the sum of service times of higher
priority tasks arriving while it waits in the queue. The mean

550

service time of group i in period k is represented as Si(k).
The waiting time is thus equal to :

Wp(k) = W0 +
PX

i=p

Ni(k) +

PX

i=p+1

Wp(k)Ai(k)Si(k): (11)

Let �i(k) = Ai(k)Si(k). By combining results of Equa-
tions (10) and (11) we can get,

Wp(k) =
W0

(1�
PX

i=p

�i(k))(1�
PX

i=p+1

�i(k))

�
1

c(1�
PX

i=p

�i(k))(1�
PX

i=p+1

�i(k))

: (12)

c is the unit processing capacity of the system, its inverse
value is the worst case expected residual life of an executing
task, which happens when the utilization factor approaches
to 1. Equation (12) shows the mean waiting time of priori-
tized tasks by using the estimation of the inter-arrival rate
of equal or higher priority tasks.
Similarly, we can get the expected task inter-arrival rate

and acceptable number of tasks in each period based on the
expected waiting time. The result is shown as:

Np(k) = Ap(k) � T =

W0 �Wp(k)(1�
PX

i=p+1

�i(k))
2

1�Wp(k)Sp(k)
PX

i=p+1

�i(k)

T:

(13)
Note that the above analyses are based on the periodic

data collection assumption. In fact, all the data used in the
above equations can be easily obtained from a few counters
which are reset periodically. The workload of each prior-
ity level is estimated at the end of each period. Expected
number of tasks is determined based on the expected inter-
arrival rate. During one period, if the number of incoming
tasks of one priority level exceeds the expected number, then
there is no need to accept new requests in the same priority
level until the beginning of next period.

5. SIMULATION MODEL AND
PARAMETERS

In this study, we simulate an event driven server model
using empirical workload from real trace �les. The refer-
ence locality, size and object type distribution are extracted
from the logs of the Computer Science departmental web
server at Michigan State University and are used for the
workload generation. We only consider two priority levels
to simplify the study since the primary concern is to exam-
ine the e�ectiveness of the PACERS algorithm. The system
con�guration is shown in Table 2.
Three performance metrics are used in the simulation:

server throughput, mean response time, and response delay
bound miss rate of each priority group. System throughput

Table 2: Simulation Con�guration.

Parameter value

Priority Level 2
Scheduling Period 1 sec.
Static Obj. Throughput 1000 req./sec
Dynamic Obj. Throughput 100 req./sec
Network Bandwidth 100 Mbps
Disk Bandwidth 100 Mbps
Caching hit ratio 0.7
Maximum open connections 1000
Maximum queue length 1000
Maximum server process number 30
Response delay bound 1 sec.

indicates the server capability. Mean response time and de-
lay bound miss rate quantify the service qualities in each
priority group. The delay bound miss rate presents the pro-
portion of tasks whose response time exceed the bounded
delay.
Based on the data reported in Section 2, web objects are

classi�ed into 4 types: static, dynamic, audio and video ob-
jects. The CQs consumed by each object types and their
input percentage are listed in Table 3. The CQs allocated
to each object type is based on the results in Section 2.3.

Table 3: CQs requested by each object types.

Object Types Static Dynamic Audio Video
CQs 1 10 20 100
Request Freq. 94.7 5 0.2 0.1

6. PERFORMANCE EVALUATION
Our experiments compare the performance of the PAC-

ERS algorithm to that of a simple admission control (SAC)
algorithm, which is analogous to the leaky bucket [26] algo-
rithm used in traÆc engineering in network transmissions.
The SAC algorithm produces CQ at a constant rate match-
ing the server throughput; each admitted task consumes one
CQ. Incoming tasks are dropped if there is no CQ available.
However, estimation of the request rates is not implemented
in the SAC algorithm. The SAC scheme outperforms the
tail-drop scheme, since it smoothes out the web server traf-
�c and also provides preliminary overload protection.
In the experiment, the ratio of high priority to low priority

tasks is 1 to 1, and both types of tasks are randomly dis-
tributed in the whole arrival sequence. The web server trace
is used to generate request at various rate and the perfor-
mance is recorded from the simulated server environment.

6.1 Throughput Performance
Figures 5 and 6 plot the throughout of stress test of two

priority groups. Normalized load in the x-axis is the ra-
tio of real load to the system capacity, and the normalized
throughput is ratio of the throughput to the system capac-
ity. In the stress test, the aggregate request rate increases
continuously till 2.5 times of the system capacity. The ob-
jective of this experiment is to explore the capability of the
algorithm in preserving the system throughput and delay
performance under extremely high load by the stress test.

551

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Normalized load for high priority tasks

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

SAC, Priority Ratio 1:1

Low prio throughput
High prio throughput
High prio Load

Figure 5: Throughput using SAC.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Normalized load for high priority tasks

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

ACES, Priority Ratio 1:1

Low prio throughput
High prio throughput
High prio Load

Figure 6: Throughput using PACERS.

Figure 5 shows the throughput variation using the SAC
algorithm. It can be observed that the throughput of each
priority group is proportional to the traÆc percentage of
each group. High priority tasks su�er from the same low
throughput as low priority tasks when the aggregate work-
load is high. Prede�ned QoS pro�le strictly prioritized ad-
mission and scheduling, are not ensured.
Figure 6 shows the throughput of each priority group

when the PACERS scheme is deployed. The system stops
serving low priority tasks when the high priority load ap-
proaches about 80% of system capacity. On the other hand,
the throughput of high priority tasks equals the request rate
of high priority group until the system utilization reaches
0.8, which is the highest throughput of the system using the
traces as input workload. The throughput of high priority
tasks remains at the 80% level when the high priority tasks
overload the system. It can also be observed that the ag-
gregate throughput of the two AC schemes remains at the
same level, which con�rms that the PACERS scheme does
not degrade the system aggregate throughput.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

10
−1

10
0

10
1

10
2

10
3

10
4

Normalized load for high priority tasks

T
hr

ou
gh

pu
t /

 D
el

ay

Priority Ratio 1:1, Low prio task performance

SAC throughput
SAC delay
PACERS throughput
PACERS delay
delay bounds

Figure 7: Performance of low priority tasks.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

10
−1

10
0

10
1

10
2

10
3

10
4

Normalized load for high priority tasks

T
hr

ou
gh

pu
t /

 D
el

ay

Priority Ratio 1:1, High prio task performance

SAC throughput
SAC delay
PACERS throughput
PACERS delay
delay bounds

Figure 8: Performance of high priority tasks.

6.2 Delay Performance
The average delay for each priority group is also well con-

trolled in the PACERS scheme. As shown in Figures 7 and
8, the average delay of each priority group is much lower
than the prede�ned delay bounds of 1 second.
Figure 7 shows the delay and throughput variation of low

priority tasks using the two AC algorithms. Using SAC
algorithm, the throughput of low priority tasks is propor-
tional to its traÆc ratio. However, extremely long delays
are introduced when prioritized processing is used. On the
contrary, the PACERS algorithm blocks admission of low
priority tasks during high load periods in exchange of low
delay bounds miss ratio. The prediction and CQ assignment
behavior of the PACERS scheme avoids unnecessary wait-
ing of low priority tasks, thus decrease the system overload
during high load periods.
Figure 8 shows the high priority task delay and through-

put performance of the two AC algorithms. Using SAC al-
gorithm, high priority task throughput is proportional to
the ratio of high priority traÆc to the total traÆc volume,
although the high priority task traÆc is low. Delays of high

552

2 4 6 8 10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

1.2

Time series

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

PACERS, Priority Ratio 1:1

Low prio throughput
High prio throughput
High prio Load

Figure 9: Throughput under
uctuating load.

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

load curve

Time series

A
ve

ra
ge

 r
es

po
ns

e
de

la
y

Delay performance, Priority Ratio 1:1

Low prio delay
High prio delay

Figure 10: Delay under
uctuating load.

priority tasks are kept low because prioritized processing is
used. On the contrary, the PACERS algorithm preserves
throughput performance of high priority tasks during high
load periods at the cost of increased average response delay,
but still within the delay bounds.

6.3 Sensitivity Test
We test the performance of the PACERS algorithm un-

der
uctuating load situation. The result shows that the
PACERS algorithm is very sensitive in detecting variation
of system loads, thus preserving throughput and delay per-
formance in di�erent priority groups under varying loads.
Figures 9, 10 and 11 plot throughput and delay variation
under
uctuating workload. The experiment is aimed at
examining the sensitivity of the PACERS algorithm to the
variation in the workload. The workload can be classi�ed as
sustained lightload or overload, and occasional lightload or
overload. The occasional overload duration is 2 time units,
and the sustained overload duration is 10 time units. Each
time unit is 1000 times of the observation period.
The maximum resource requirements of high priority re-

quests equal the system capacity. It can be observed from

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

load curve

Time series

D
el

ay
 b

ou
nd

 m
is

s
ra

te

Priority Ratio 1:1

Low prio ratio
High prio ratio
High prio Load

Figure 11: Delay bound miss ratio under
uctuating

load.

Figure 9 that the PACERS scheme is very sensitive to the
load
uctuation, which blocks the low priority tasks under
high load situation to preserve the throughput of high pri-
ority tasks, and resume service of low priority tasks during
medium to low load situation. Figure 10 shows the delay
variation of the two priority groups. The delay of high pri-
ority tasks follow the trends of incoming high priority work-
load, but the maximum value is only about one-�fth of the
delay bounds. The delay of low priority tasks is also well
controlled under the delay bound. Figure 11 shows the delay
bounds miss ratio of the two priority groups. High priority
tasks experience zero delay bounds miss ratio under various
load situations; delay bound miss ratio of low priority tasks
occasionally exceeds zero.

7. RELATED WORK
Several studies on QoS support in web servers have ad-

dressed the technology of prioritized task processing and
admission control issues. Bhatti and Friedrich [9] addressed
the importance of server QoS mechanisms to support tiered
service levels and overload management. A Web-QoS ar-
chitecture prototype was developed by adding connection
manager module to the Apache [1] Web server. Admission
control is implemented by blocking low priority tasks when
the number of high priority waiting tasks exceeds the thresh-
old. Eggert and Heidemann [15] evaluated application level
mechanisms to provide two di�erent levels of web services.
The admission control is implemented by limiting process
pool size and response transmission rate to di�erent prior-
ity groups. Pandey et al. [25] described a distributed HTTP
server which enables QoS by prioritizing pages on a web site.
The admission control is realized by assigning communica-
tion channel to prioritized pages. Most of these admission
control mechanisms are based on a prede�ned \threshold".
Performance of high priority tasks is guaranteed by emu-
lation of a �xed bandwidth \leased line". However, it is
expensive to satisfy the requirements of bursty workload us-
ing \leased line" scheme, since peak loads are several orders
of magnitude higher than the average load.

553

8. CONCLUSION
When a server is unable to provide satisfactory service to

all requests, selective resource allocation is a promising tech-
nique to assure service to requests which are more important
to clients or servers. In this study, we present a novel and
e�ective admission control algorithm, PACERS, to adapt
to the highly variant access patterns and processing of web
server environments. Tasks are admitted based on the es-
timation of periodical behavior of prioritized task groups
and service times. Theoretical proof and simulation results
demonstrate that the PACERS algorithm is able to provide
assurance of response time and throughput performance for
each priority group under various workload situations. The
algorithm can be expanded for web server session control if
the session/connection establishment requests are assigned
lower priority to protect existing sessions in the server. Es-
timation of the average response time of the server system
can be used to determine the appropriate queue space, thus
can be used for capacity planning.

9. REFERENCES
[1] Apache server project.

http://www.apache.org.

[2] Di�erentiated services (di�serv).
http://www.ietf.org/html.charters/di�serv-
charter.html.

[3] Integrated Services (intserv).
http://www.ietf.org/html.charters/intserv-
charter.html.

[4] Usability Engineering. Academic Press, 1993.

[5] T. F. Abdelzaher and N. Bhatti. Web server qos
management by adaptive content delivery. In IEEE
Infocom, 2000.
http://www.ieee-infocom.org/2000/papers.

[6] J. Almeida, M. Dabu, A. Manikutty, and P. Cao.
Providing di�erentiated quality-of-service in web
hosting services. In 1998 Workshop on Internet Server
Performance, June 1998.
http://www.cs.wisc.edu/~cao/publications.html.

[7] V. Almeida, A. Bestavros, M. Crovella, and
A. de Oliveira. Characterizing reference locality in the
www. In In Proceedings of the Fourth International
Conference on Parallel and Distributed Information
Systems, December 1996. IEEE.

[8] G. Alwang. Web servers benchmark tests. PC
Magazine, May 1998.

[9] N. Bhatti and R. Friedrich. Web server support for
tiered services. IEEE Network, pages 64{71,
September/October 1999.

[10] E. Borowsky, R. Golding, P. Jacobson, A. Merchant,
L. Schreier, M. Spasojevic, and J. Wilkes. Capacity
planning with phased workloads.
In Proc. WOSP'98, Santa Fe, NM, October 1998. ACM.
www.hpl.hp.com/research/itc/csl/ssp/papers/index.html.

[11] X. Chen and P. Mohapatra. Lifetime behavior and its
impact on web caching. In Proceedings of the IEEE
Workshop on Internet Applications (WIAPP'99), San
Jose, CA, July 1999.
dlib.computer.org/conferen/wiapp/0197/pdf/01970054.pdf.

[12] X. Chen and P. Mohapatra. Providing di�erentiated
service from an internet server. In Proceedings of
IEEE Internet Conference on Computer

Communications and Networks (ICCCN'99), Boston,
MA, October 1999.

[13] X. Chen and P. Mohapatra. Service di�erentiating
internet servers. submitted to IEEE Transaction on
Computers, 2000.

[14] M. E. Crovella and A. Bestavros. Self-similarity in
world wide web traÆc: Evidence and possible causes.
IEEE/ACM Transactions on Networking,
5(6):835{846, December 1997.

[15] L. Eggert and J. Heidemann. Application-level
di�erentiated services for web servers. In World Wide
Web Journal, 3(2):133{142, 1999.

[16] V. S. Frost and B. Melamed. TraÆc modeling for
telecommunications networks. IEEE Communications
Magazine, 32(3):70{81, March 1994.

[17] M. Harchol-Balter, M. E. Crovella, and C. D. Murta.
On choosing a task assignment policy for a distributed
server system. In Proceedings of Performance Tools
'98, Lecture Notes in Computer Science, volume 1469,
pages 231{242, 1998.

[18] A. K. Iyengar, E. MacNair, and T. Nguyen. An
analysis web server performance. In Proceedings of the
IEEE 1997 Global Telecommunications Conference
(GLOBECOM '97), Phoeniz, AZ, November 1997.

[19] A. K. Iyengar, M. S. Squillante, and L. Zhang.
Analysis and characterization of large-scale web server
access patterns and performance. World Wide Web,
pages 85{100, 1999.

[20] L. Kleinrock. Queueing Systems. John Wiley & Sons,
1976.

[21] T. T. Kwan, R. E. McGrath, and D. A. Reed. User
access patterns to ncsa's world wide web server. CS
Tech Report UIUCDCS-R-95-1934, University of
Illinois at Urbana-Champaign, February 1995.
ftp://ftp.cs.uiuc.edu/pub/dept/tech reports/1995/.

[22] K. Li and S. Jamin. A measurement-based
admission-controlled web server. In Proceedings of the
IEEE Infocom 2000 Conference, Tel-Aviv, Israel,
March 2000.

[23] J. C. Mogul. Network behavior of a busy web server
and its clients. Technical Report Technical Report
WRL 95/5, DEC Western Research Laboratory, Palo
Alto, CA, October 1995.

[24] R. Morris and D. Lin. Variance of aggregated web
traÆc. In IEEE Infocom, 2000.
http://www.ieee-infocom.org/2000/papers.

[25] R. Pandey, J. F. Barnes, and R. Olsson. Supporting
Quality Of Service in HTTP Servers. In Proceedings of
the Seventeenth Annual SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, pages
247{256, Puerto Vallarta, Mexico, June 1998. ACM.

[26] K. Sohraby and M. Sidi. On the performance of bursty
and correlated sources subject to leaky bucket
rate-based access control schemes. In Proceedings of
the Conference on Computer Communications (IEEE
Infocom), pages 426{434, Bal Harbour, Florida, April
1991.

[27] T. Wilson. E-biz bucks lost under ssl strain. Internet
Week Online, May 20 1999.
http://www.internetwk.com/lead/lead052099.htm.

554

