
WebViews: Accessing Personalized
Web Content and Services

Juliana Freire
juliana@bell-labs.com

Bharat Kumar
bharat@bell-labs.com

Daniel Lieuwen
lieuwen@bell-labs.com

ABSTRACT
The ability to take information, entertainment and e-com-
merce on the go has great promise. However, the existing
Web infrastructure and content were designed for desktop
computers and are not well-suited for other types of accesses,
e.g., devices that have less processing power and memory,
small screens, and limited input facilities, or through wire-
less data networks with low bandwidth and high latency.
Thus, there is a growing need for techniques that provide
alternative means to access Web content and services, be it
the ability to browse the Web through a wireless PDA or
smart phone, or hands-free access through voice interfaces.
In this paper, we discuss issues involved in making existing

Web content and services available for diverse environments,
and describe WebViews, a system that allows casual Web
users to easily create customized views of Web sites that are
well-suited for di�erent types of terminals. In particular, we
describe our approach to provide voice access to these Web
views and experiences in building the system.

Keywords
content transcoding, dynamic content, electronic commerce,
information delivery, personalization, smart bookmarks, voice
interfaces, Web clipping, wrappers

1. INTRODUCTION
The explosion in the use and availability of wireless de-

vices and the ability they give people to access information
anytime and anywhere has great promise. In the U.S. alone,
Dataquest expects that the number of wireless data sub-
scribers will explode from 3 million in 1999 to 36 million in
2003. Thus, very soon, millions of people will be able to
access the Web, and order services and goods from wireless
Internet devices. However, the existing Web infrastructure
and content were designed for desktop computers and are
not well-suited for devices that have less processing power
and memory, small screens, limited input capabilities, and
that are connected through networks that have high laten-
cies and low bandwidth.

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

Consider for example accessing the Web from a PDA such
as the Palm Pilot, using a wireless data service such as Om-
nisky [20]. Omnisky runs over CDPD1 and has e�ective
throughput rates that vary from 5-6 kbps up to 12-13 kbps.
Combining that with a screen size of 160x160 pixels on a
6x6cm surface, it can be very hard to browse through large
pages with rich graphics. Given that these devices have sig-
ni�cantly less memory and processing power than desktops,
the available browsers only have a small subset of the fea-
tures of the widely used browsers (e.g., they do not support
Java, Javascript, and are not able to display GIF or JPEG
images). In addition, input facilities are limited|even with
Palm's Gra�tti text input system, entering text can be very
time consuming. Similar di�culties arise while trying to
access the Web using WAP phones (Internet-ready mobile
phones). Newer additions to the PDA family, such as the
Compaq iPAQ, have more memory, powerful processors, and
could eventually have more complete browser support; how-
ever, the screen size, limited input capabilities, and high
latency for page accesses still apply.
Voice interfaces have received much attention recently as

an e�ective means of user interaction which both simpli�es
the input process, and provides more convenient (hands-
free) access. The advances in voice recognition and text-to-
speech (TTS), combined with the steady increase in com-
puting power has made these technologies viable for end-
users. Standards such as Voice eXtensible Markup Language
(VoiceXML) have been proposed for making Web content
and information accessible via voice and phone. But even
though there are some VoiceXML-based services available,
most content on the Web consists of HTML pages and can-
not be easily accessed through voice interfaces.
The reality is that the Web is not really accessible anytime

or anywhere. Di�erent attempts have been made to address
these shortcomings:

� Re-engineering existing Web sites and services: content
providers create di�erent versions of their Web sites that
provide content formatted for speci�c devices. For example:
The New York Times has a palm-friendly section [18]; Ama-
zon provides a specialized interface for Web-enabled phones,
as well as for the Palm VII [3]; and various other Web sites
now have mobile phone-friendly versions (see [26] for a list
such sites).

� Creating specialized wrappers that export a di�erent view
of a Web page or service: services such as everypath.com

1CDPD [7] is a wireless IP network that overlays on the
existing AMPS (analog) cellular infrastructure.

576

and oraclemobile.com provide tools and services to create
wrappers which can export wireless-friendly clippings of a
set of Web pages and services, such as stock quotes, tra�c,
and weather information. Similar voice-enabled services are
provided by tellme.com and heyanita.com.

�Using proxies that �lter and reformat Web content: prox-
ies can be programmed to transform content according to
client's display size and capabilities. For example, Prox-
iWeb [23] transforms HTML pages and embedded �gures
into a format that can be displayed on a Palm Pilot. Phone-
Browser [22] similarly transforms HTML pages into a form
that can be read using TTS over the phone.

All these approaches have drawbacks. From a content pro-
vider's perspective, creating and maintaining multiple ver-
sions of a Web site to support di�erent devices is labor in-
tensive and can be very expensive. Even though wrappers
require no modi�cations to the underlying Web sites, they
can be costly to create and need updating whenever the cor-
responding Web site or service changes. From a user's point
of view, both solutions are restrictive, as neither do all Web
sites support all kinds of devices, nor do existing wrapper-
based solutions o�er clippings for all content and services a
user may need.
Proxy transcoders, on the other hand, perform on-the-
y

content translation and, in theory, they are a good general
solution for allowing users to browse any Web site. But since
Web pages must be presented as faithfully as possible, these
general purpose proxies do not perform any personalization.
This is clearly not the ideal solution for somebody accessing
the Web through a cellular phone with a 3-line display, or
through a voice interface. Besides, some features are hard or
even impossible to translate. It is not unusual that proxies
fail to properly transcode complex pages, or even simple,
but badly designed pages (Section 4.1 discusses this issue).

Example 1.1. [A Web view: Pricing airfare] Consider
the following scenario. Juliana plans to attend the WWW10
conference and she is looking for
ights from Newark Air-
port to Hong Kong that leave from Newark on April 29th
and return from Hong Kong on May 6th. She goes to
www.travelocity.com and after navigating through 6 pages,
and having 650 Kb of data transferred (300 Kb with images
turned o�), a page with the list of nine
ights (as well as
ads and additional navigational information) is displayed.
From a desktop browser, repeating this series of steps can

be rather tedious if one performs this type of query often
in an attempt to �nd a cheap
ight. The problem is com-
pounded if one tries to access the
ight list from a wireless
device such as the Palm Pilot with a wireless modem. In
fact, we were not able to access the
ight lists from Trav-
elocity using either ProxiWeb [23] browser version 3.5, or
AvantGo [6] version 3.3|neither was able to transcode the
�rst page properly.
The ideal in either scenario would be to create a shortcut

to the
ight list. Since the �nal page also contains additional
information, it would also be useful to extract from that page
just the list of
ights. Note that in the Palm Pilot scenario,
the shortcut could be executed at a server (with a better
connection to the Internet), and only the �nal results (the
clipped
ight list) delivered to the device. Ignoring latencies,
downloading the 650kb required to access the
ight list from
Travelocity takes anywhere between 60 and 180 secs over
CDPD, whereas from desktop computer connected to the

Internet through a cable modem the transfer would take
less than 5 seconds.
In general, it would be useful if one could easily create not

only simple shortcuts, but di�erent views of Web sites that
are better suited to be accessed from di�erent terminals. For
wireless devices and voice interfaces, it would be useful to
reduce the number of required interactions, and the amount
of data input and transferred. For example, one could cre-
ate a clipping template for searching for
ights from Trav-
elocity that would automatically login and navigate to the
page where Juliana enters the details of her itinerary (with
Newark automatically �lled in as the departure airport by
the system). 2

Our Contributions: We propose the WebViews architec-
ture as a solution for creating customized views of Web con-
tent and services. The main idea is to let end-users easily
create and maintain simpli�ed views of Web content and
services, from CNN health headlines to bank balances. By
allowing users to create their own Web views, a service can
be o�ered that is personalized and not restricted to a set
of supported Web sites, in contrast with services such as
tellme.com that only allows access to a pre-speci�ed menu of
popular choices. Users can easily customize such Web views
for speci�c devices. In addition, since these Web views pro-
vide a simpler view of sites and services, they are consider-
ably simpler to transcode into other languages (or formats).
A number of requirements exist for a system that creates

Web views. First, since it is targeted to end-users, it must
be easy to use and require no programming expertise. An-
other important requirement is that Web views should be ro-
bust. Since Web sites may change often, Web views should
degrade gracefully with these changes, i.e., if changes are
minor, the Web views should still return the desired con-
tent. In the event of radical changes, they should be easy to
update.
In this paper we describe how WebViews ful�lls these re-

quirements, and discuss how it can be used for information
delivery to diverse devices. We also describe the implemen-
tation of (and our experiences with) VoiceViews, a system
that provides voice-enabled access to WebViews. Our goal is
to cover the main issues involved in building such a system,
but to keep within space limitation, we are forced to make
some restrictions in scope. For example, we do not discuss
issues such as security and scalability.
The structure of the paper is as follows. Section 2 de-

scribes the architecture of WebViews, and how the system
�ts into an information delivery platform. Section 3 provides
a brief overview of voice-enabled interfaces and presents the
techniques we used for transcoding Web views into Voice-
XML, including how we produce robust clippings and how
we generate markup to allow navigation within the voice di-
alogues. We discuss our experiences in building the system
in Section 4 and related work in Section 5. We conclude in
Section 6, where we also outline directions for future work.

2. SYSTEM OVERVIEW
There are two main steps involved in creating Web views:

retrieving a Web page that contains the desired information,
and extracting relevant content from the retrieved page.
Given the growing trend of creating interactive Web sites
that publish data on demand, retrieving information from
the Web is becoming increasingly complicated. Many sites,

577

from online classi�ed ads to banks, require users to �ll a se-
quence of forms and/or follow a sequence of links to access a
page they need, and often, these hard-to-reach pages cannot
be bookmarked using the bookmark facilities implemented
in popular browsers. To create Web views of these pages,
the process to access them must be automated. Also, as de-
scribed in Example 1.1, once the desired page is retrieved,
a user may want to specify individual elements of the page
she is interested in, so that irrelevant information is �ltered
out. A Web view thus must encapsulate the actions required
to retrieve a particular page, along with the speci�cation of
which elements should be extracted from the retrieved page.
It is possible to automate the retrieval of pages by writ-

ing wrappers in Java or in specialized languages such as
WebL [14]. One can also write Perl scripts to extract in-
dividual fragments of Web pages. However, this approach
is not feasible for casual Web users that are not program-
mers. In addition, given the dynamic nature of the Web,
maintaining these programs and scripts can be very costly,
as they might require modi�cations every time Web sites
change. The WebViews architecture addresses these prob-
lems by providing a VCR-style interface similar to the Web-
VCR [4] to transparently record browsing steps; and a point-
and-click interface to let users select page fragments. From
a desktop, using a browser and the WebViews Recorder ap-
plet, a user can create a Web view by simply browsing to
the desired page and selecting on that page the components
of interest|no programming is required. Furthermore, the
system uses techniques that enhance the robustness of Web
views, so that they work even if certain changes occur in the
underlying Web sites.
After a Web view is created, it can be accessed through

a WebViews server, which is a Web-hosted service located
at an ISP, ASP, or a company intranet. As Figure 1 shows,
the WebViews server accepts requests from HTTP clients
and returns XHTML responses. A request to the WebViews
server contains an identi�er for a particular Web view (and
additional parameters|see Section 2.5) which when exe-
cuted, accesses a particular Web page, clips it, and returns
the resulting content to the requesting client. Note that re-
questing clients can be proxy transcoders that translate the
clipped content into various formats (e.g., HDML, WML,
VoiceXML, etc.).

Example 2.1. [Usage Scenario: pricing airfare] If Ju-
liana wishes to create a Web view for the Travelocity exam-
ple presented in Section 1, she starts a WebViews Recorder
applet at her desktop. She then goes to the main Travelocity
page (www.travelocity.com), hits the Record button on the
applet, and browses to the itinerary page. As soon as the
Record button is clicked, the applet transparently records all
her navigation actions. When the desired page is reached,
she hits the Stop button, and speci�es the content to be ex-
tracted from the �nal page (e.g., only the itinerary details).
At this point, the Recorder applet has all the information
required for the Web view, which can be saved. After it is
uploaded to the WebViews server, the Web view is then ac-
cessible to any HTTP client. When Juliana wants to access
this view from her Palm Pilot, she accesses the WebViews
server, which after authenticating her request, automatically
navigates to the itinerary page, extracts the speci�ed con-
tent from the page, and returns the extracted XHTML con-
tent (which ProxyWeb transcodes before it reaches her Palm
Pilot). 2

Cache
manager

User profile
manager

gateway
Voice

proxy
Palm

proxy
WAP

http

http

http

http
voice

wap

Proxi
Web

Javascript
interpretor

extractor
Content

browser
Web

Web

�
�
�
�

�
�
�
�
�
�
�
�

WebViews
scheduler

 DB
WebViews

WebViews Recorder
Applet

player
WebViews

WebViews Server

WebViews execution engine

Figure 1: WebViews server architecture

The architecture of the WebViews server is shown in Fig-
ure 1. The WebViews server consists of the following mod-
ules: 1) the WebViews DB, which stores Web view spec-
i�cations; 2) the user pro�le manager, that performs user
authentication for sensitive Web views stored on the server
(e.g., a Web view that retrieves a user's 401(k) balance),
as well as manages other aspects of the user account; 3)
the WebViews scheduler, that periodically executes Web
views (if so speci�ed by the Web view requestor); 4) the
cache manager, that stores cached Web views; and 5) the
WebViews execution engine, that interacts with the Web-
Views player, which together with the Web browser and the
Javascript interpretor, retrieves Web documents and parses
HTML pages; and the content extractor (which clips inter-
esting components of retrieved pages). We now give a more
detailed description of Web view creation and execution.

2.1 Creating Smart Bookmarks
To create a Web view, a user must �rst specify the page to

be clipped. If the page requires multiple steps to be retrieved
and does not have a well-de�ned URL, the user can use the
recording component of the applet to create the script to
access the page. It has a VCR-style interface to transpar-
ently record browsing actions|users can simply navigate
their way to the �nal page while their actions (links tra-
versed, forms �lled along with the user inputs, and any other
interactions with active content) are transparently recorded
and saved in a smart bookmark (SMB).
During recording, if the user is required to �ll out forms,

she can optionally specify which �eld values are to be stored
in the Web view speci�cation itself, and which ones are to be
requested from the user every time theWeb view is executed.
This allows the user to create parameterized Web views. For
example, a Web view to retrieve a restaurant list from the
Yellow Pages at mapsonus.com can have a zip code parameter,
so the user does not need to create a separate Web view for
each city. Also, for security reasons, a user may choose not
to save certain kinds of information such passwords inside
a Web view (parameterization issues are discussed in Sec-
tion 2.5), or to save it encrypted. An excerpt of the SMB to

578

retrieve the itinerary page from travelocity.com (discussed
in Example 1.1) is shown in Figure 2.

<BOOKMARK id="juliana travel">
<URL> http://travelocity.com </URL>
<LINK>
<loc> document.links[8] </loc>
<href> <![CDATA[http://dps1.travelocity.com/

lognlogin.ctl?tr module=AIRG&SEQ=1]]> </href>
<text> null </text> <target> null

</target>
</LINK>
<FORM>
<!-- Login form --> ...

</FORM>
<LINK>
<!-- 9 Best Itineraries link --> ...

</LINK>
<FORM>
<loc> document.forms[0] </loc>
<action>
<![CDATA[https://dps1.travelocity.com:443/

lognmain.ctl?SEQ=1]]>
</action>
<method> POST </method> <name> null

</name>
<target> null </target>
<ATTRS>
<ATTR> <name> trip option </name>

<loc> 5 </loc>
<type> radio </type>
<prop> stored </prop>
<val> roundtrp </val> </ATTR>

<ATTR> <name> depart airport </name>
<loc> 10 </loc>
<type> text </type>
<prop> stored </prop>
<val> EWR </val> </ATTR>

<ATTR> <name> depart month </name>
<loc> 11 </loc>
<type> select-one </type>
<prop> stored </prop>
<selected index> 3 </selected index>
<text> Apr </text> </ATTR>

<ATTR> <name> depart day </name>
<loc> 12 </loc>
<type> select-one </type>
<prop> stored </prop>
<selected index> 28 </selected index>
<text> 29 </text> </ATTR>

...

</ATTRS>
</FORM>

</BOOKMARK>

Figure 2: Smart Bookmark to retrieve itineraries
from Travelocity

2.2 Creating Web Views
Once the desired page is retrieved, the clipping compo-

nent of the WebViews applet can be used to specify the
fragments of the page that should be extracted. An interest-
ing problem is how to identify these fragments. In general,
any extraction speci�cation needs to provide the ability to
1) address individual or groups of arbitrary elements in a
page, and 2) specify rules (that use the above addressing
scheme) to extract the relevant content from the page. We
wanted a solution that was standard, powerful, portable and
e�cient, and most importantly, which could be used to eas-
ily create robust extraction expressions (i.e., that would not
break under minor changes to page structure).
We chose XPath [32] as the mechanism for specifying ex-

traction expressions. XPath views an XML document as a
tree and provides a
exible mechanism for addressing any
node in this tree. One drawback of using XPath is its re-
quirement that pages be well-formed. Since browsers are
very forgiving in this respect, manyWeb sites generate pages
that are ill-formed (e.g., have overlapping tags, missing end

tags, etc.). Consequently, the WebViews system must �rst
clean up HTML pages (e.g., using tools such as HTML
Tidy [27]) before XPath can be applied. Another alternative
we considered for specifying extraction expressions was the
XML DOM API. However, XPath allows a more
exible and
easier way to create robust clipping expressions that are im-
mune to minor changes in page structure. DOM addresses
(without storing extra information, or using other heuristics
to compensate for page changes) can be very brittle even to
minor layout changes.
Continuing with Example 2.1, suppose Juliana is only in-

terested in the �rst three itineraries from Travelocity (where
each itinerary is represented by two HTML tables|one with
pricing information, the other with route information). Af-
ter recording the navigation steps, she speci�es an XPath
expression that will extract only the desired content from
the �nal page. For example, she could use either of the
following expressions (note that (1) is very similar to using
DOM addresses):

(1) //html/body/center[2]/div/table[2]/tr/td/
table[position()>=3 and position()<=8]

(2) //table/tr/td[(contains(string(),'Price:')
or contains(string(),'Option')) and
not(descendant::table)]/parent::tr/
parent::table[position() >= 1 and

position() <= 6]

These expressions can be rather complicated, and writing
them can be an involved task. In addition, as seen above,
there are multiple ways to specify a particular page element,
and some may be preferable to other in terms of robustness
(as explained in Section 2.4). Since our system is directed
towards naive users, we cannot expect them to know about,
far less be able to specify, XPath expressions. To address
these problems, we are currently designing a point-and-click
interface that lets users select portions of Web pages (as
they see them in the Web browser), and it automatically
generates extraction expressions. The point-and-click inter-
face will provide users with di�erent levels of abstraction
corresponding to a breadth-�rst search in the portion of the
document tree that is visible in the browser. For example,
if a user is interested in particular cells of a table, she must
�rst select the table and then zoom into the table to select
the desired cells. Section 2.6 gives more details on how the
GUI produces XPaths and other clipping information.
Figure 3 illustrates a Web view speci�cation for Exam-

ple 2.1, simpli�ed for exposition purposes. The �rst part of
a Web view speci�cation points to the SMB that retrieves
the desired page (see Figure 2). The <EXTRACT> elements
contain the extraction speci�cations. Note that multiple
fragments can be speci�ed, and users may choose to specify
these fragments according to the terminal where they will
be displayed. For example, if the Web view is to be dis-
played in a Palm Pilot, the user could choose to extract the
�rst 3 itineraries (the extraction tag with fragment name =

"first 3 itineraries"), whereas if the Web view is to be dis-
played in a Web-enabled cellular phone with a 3-line display,
a single itinerary may be preferable (e.g., the extraction tag
with fragment name = "first itinerary").

2.3 Executing Web Views
After a Web view is speci�ed, it can be saved and uploaded

to a WebViews server. Users may then access Web views

579

<WEB-VIEW id="juliana clippings">
<BOOKMARK idref="juliana travel" />
<REFRESH-INTERVAL> 24 Hours </REFRESH-INTERVAL>
<EXTRACT fragment name = "first 3 itineraries">
<![CDATA[

(//table/tr/td[(contains(string(),'Price:')
or contains(string(), 'Option')) and
not(descendant::table)]/parent::tr/
parent::table)
[position() >= 1 and position() <= 6]

]]>
</EXTRACT>
<EXTRACT fragment name = "first itinerary">
<![CDATA[

(//table/tr/td[(contains(string(),'Price:')
or contains(string(), 'Option')) and
not(descendant::table)]/parent::tr/
parent::table)
[position() >= 1 and position() <= 2]

]]>
</EXTRACT>

</WEB-VIEW>

Figure 3: Web View for airfares from Travelocity

via URLs that uniquely identify them. Users may further
specify additional parameters such as input values for a Web
view (e.g., the password to access a bank account); the mode
of operation (pull or push); whether the Web view should
be cached and how often it should be refreshed. Given the
Web's unpredictable behavior (network delays, unreachable
sites, etc.), caching plays an important role in a WebViews
server. Users can specify for each Web view, if and how often
it should be executed and cached (e.g., execute the Web view
in Figure 3 every 24 hours, and cache the itineraries).
In addition, users may also specify how they want the Web

view to be delivered. In pull mode, the URL invokes a CGI
script at the server, which in turn executes the Web view
speci�cation and immediately returns the clipped content to
the requesting client. In push mode, the execution and de-
livery of the Web view are asynchronous, i.e., the Web view
can be returned to the client later, possibly through proto-
cols other than HTTP (e.g., Web views could be emailed).
Push mode is preferable when back-end Web sites are slow
or temporarily unreachable, or when the end user cannot or
does not want to keep a session open for too long. (Some
wireless data services, such as Sprint PCS, charge for usage
time.)
The execution of a Web view is as follows. The SMB in the

Web view speci�cation is replayed, and after the �nal page
has been retrieved (and tidied), the extraction expressions
are evaluated to extract the desired content by an XSLT [33]
processor such as XT [34] or Xalan [31]. The extracted
content is then returned to the client.
To allow access to diverse devices, we assume the presence

of appropriate gateways that perform protocol conversion to
and from HTTP, as well as the necessary transcoding of con-
tent retrieved from the WebViews server, e.g., a WAP proxy
to allow access to WAP-enabled devices, a Voice gateway to
enable voice access to Web content, and even specialized
gateways such as a Palm proxy. In Section 3.3, we discuss
how annotations to the extraction speci�cation can lead to
better transcoding for voice access.
Note that all processing (retrieval and extraction) is done

at the WebViews server. Only select portions of Web pages
are returned to the requesting client, e�ectively giving users
one-click access to desired content, and considerably reduc-
ing communication between the client and the WebViews
server. This feature is especially useful in wireless envi-
ronments where users must access the Web through high-

latency, low-bandwidth connections and where some naviga-
tion steps (e.g., those involving Javascript) are impossible.
Further, if the desired content is to be sent to a handheld
device or via a voice interface, the task of transcoding the
content becomes much easier|only a portion of the �nal
page needs to be transcoded, and none of the intermediate
pages.

2.4 Robustness Issues
Since Web pages may change between the time of creation

and execution of a Web view, the system uses techniques to
ensure that replaying a sequence of recorded actions will
lead to the intended page, and that the correct fragments
are extracted|even when the underlying pages are modi-
�ed. Usually, changes to Web pages do not pose problems
to a user browsing the Web, but they do present a chal-
lenge to a system that performs automatic navigation. In
a sequence of recorded browsing actions, some links may
contain embedded session ids, and forms may contain hid-
den elements that change from one interaction to the next.
Thus, for each user action during replay, the WebViews sys-
tem must locate the correct object (link, form or button) to
be operated on, and this can be challenging in the presence
of changes to Web pages (e.g., addition/removal of banner
ads). Moreover, any algorithm used to determine the new
position of the object on the changed page must be reason-
ably fast, since it needs to be executed for every recorded
user action. Hence, we cannot rely on algorithms that re-
quire expensive parsing or pattern matching (e.g., [21, 9]).
As discussed in [4], during replay, if an exact match for a
navigation action cannot be found in a page, heuristics (and
optionally, users' hints) are an e�ective means to �nd the
closest match for the action.
Extraction expressions also need to be made robust to

changes to Web pages. For example, in the XPath expres-
sion (1) above, if the position of the center tag contain-
ing the desired tables changes (e.g., a new preceding sib-
ling center tag appears in the document), the expression
will no longer retrieve the correct tables. Instead of abso-
lute positions of nodes, the speci�cation needs to include
other information that helps the system uniquely identify
elements to be extracted, even if the node positions happen
to change. For instance, the XPath expression (2) speci-
�es tables that contain the \Price" or \Option" string|this
expression would still retrieve the correct itineraries even if
new center tags are added (in Section 2.6 we discuss how
these expressions can be automatically generated).
Even though the heuristics we have developed are robust

to minor changes in the page structure, they can still break
if the page structure changes radically. In such cases there
needs to be a mechanism to detect and report errors to the
client. During replay, if the WebViews player is not able to
locate an object involved in a recorded action, it suspends
the replay and noti�es the user. The user may then re-record
the SMB (to correct the problematic step) before the corre-
sponding Web view is used again. Similarly, if the result of
applying the XPath extraction expression to the �nal page
returns nothing, the system reports \not found". Depend-
ing on what is sought, this may be an error. It may also
mean that what is sought|e.g., a column by a particular
columnist|may not be available at present, but might well
be tomorrow. It is also possible that the XPath expression
returns an undesired object (if the page structure changes

580

radically). In such cases, the user may need to correct the
extraction expression.

2.5 Parameterizing Web Views
A nice feature of smart bookmarks (SMBs) is the ability

it gives users to change the input parameters used during
navigation at each replay. For example, in Example 1.1, if
Juliana wants to check airfares on di�erent travel dates, she
need not record a new SMB, instead she can easily param-
eterize her SMB. Parameterization is possible due to the
robustness features of SMBs, and their ability to navigate
through dynamic pages. The original WebVCR prototype
allowed users to specify whether form elements should be
automatically �lled, or whether they should be provided by
the user during replay. In the latter case, the replay would
stop at each page where attributes needed to be input. This
approach works well if replay takes place at a desktop, but
it may not be feasible in a thin-client environment (as these
pages would have to be shipped to the client). Instead, the
WebViews engine generates a page where a user can specify
the values of all parameters required for navigation steps.
The user-speci�ed values are then fed into the SMB at the
appropriate times during replay.
However, two issues need to be resolved to support reliable

parameterization of Web views: internal attribute names
that are undescriptive and invalid selections. Consider for
example the Book a
ight page at Travelocity, where users
specify the itinerary details. The internal name for the de-
parture month attribute is dep dt mn 1, which can be hard to
identify. Also month values must have a speci�c format, e.g.,
April is represented by \Apr", and if users input \April",
the submission will fail. The WebVCR component of Web-
Views was extended to allow users to edit input attributes
directly in the Web view. At recording time, users can spec-
ify mappings from internal names to more descriptive tags
of their choice. In addition, extra information is saved for
elements (e.g., all values in a selection list are saved) so
that inputs can be checked for validity (as we discuss in
Section 3.3, this additional information can be very useful
for transcoding Web views). Note that checking for validity
of values is only possible for elements such as selection lists
and radio buttons, where a domain is well-de�ned|it is not
possible for text �elds. Thus, even though we can reduce
the likelihood of failures, they cannot be entirely avoided.
It is worth pointing out that parameterization only works

reliably for deterministic sites|if there are di�erent naviga-
tion paths for di�erent values (or combination of values) of
parameters, it will invariably fail when an alternate path is
taken. For example, in DBLP2 one can search for authors
of papers in databases and logic programming by name. If
the name is unambiguous, the result of the search will be a
list of all that author's papers. But if multiple authors share
that name, a list with these authors is displayed. To create
a parameterized Web view for DBLP, WebViews would need
the ability to express conditional statements.

2.6 GUI Design
As discussed above, writing robust XPath expressions can

be a rather involved task|not a task for naive users. We are
currently building a GUI that can produce clippings auto-
matically. The GUI will allow users to choose a logical sec-

2http://www.informatik.uni-trier.de/~ley/db/indices/a-
tree/index.html

tion of a page (e.g., a table, a paragraph) to extract (much
like ezlogin's JumpPage service [10] does) and produce the
appropriate XPath.
If a user chooses a non-tabular entity (e.g., a paragraph),

the GUI asks for predecessor and successor text. The system
then determines whether the predecessor (successor) text is
within the selected page section or not. Using this informa-
tion, an XPath expression can be automatically generated.
If the user chooses a table, the GUI asks her to specify the

�rst row of the table that she is interested in, whether that
row contains column labels, and if so, which column labels
are of interest. Identifying the �rst row of interest within
the table allows clipping to eliminate elements within the
table that are of no interest (e.g., links included in the table
simply for layout purposes). For instance, for Figure 4, the
user might specify the row containing DATE as the �rst row of
interest, that that row contains column labels, and that the
columns MAKE/MODEL, YEAR, PRICE, and MILES are of interest.
The GUI also allows the user to optionally specify a phrase
immediately prior to the chosen row|e.g., the word \Show-
ing" in Figure 4. The user may similarly specify a phrase in
the text immediately past the last row she is interested in
clipping. (If none is speci�ed, the system assumes that all
rows are of interest.) The GUI also asks her to identify the
row labels that are of interest (if any) and whether the table
is laid out row-wise (e.g., Yahoo! stock quotes) or column-
wise (e.g., Quicken stock quotes). This information is very
valuable for transcoding data for output to a small screen
device or a telephone.
Since similar techniques are used to generate a robust

XPath for both column-wise and row-wise layout, we will
only describe XPath generation for the latter. For both, the
GUI can generate robust clippings in XPath|clippings that
survive signi�cant changes to the HTML structure that leave
the table of interest's form alone. For instance, the table can
move from being top-level to being nested several levels deep
in another table or vice versa and the XPath will continue
to work properly. The following form of XPath is used for
row-wise layout with a user-speci�ed �rst row.

(//table/tr/td[contains(string(),
'<USER-SPECIFIED-LABEL>')
and not(descendant::table)]/parent::tr)[1]

The expression looks for a table containing a row with
\<USER-SPECIFIED-LABEL>" (e.g., \YEAR") as a data
item. The \not(descendant::table)" part makes sure that
the clipping gets the most deeply nested table for which such
a row exists. Without it, when the table of interest is embed-
ded inside another table, the expression would retrieve the
containing table|XPath �nds the outermost entity match-
ing an expression when going down the tree (and the most
deeply nested element matching an expression when going
up). The clipping grabs that header row (retrieved using
parent::tr) and succeeding rows. Starting at the header
row skips extraneous information preceding the proper table
content. An example of how to extend such an expression
to handle predecessor text is given in Section 4.2. Note that
column and row clipping (if any) is a post-processing step
on the XHTML returned by XPath application.
The system allows users to specify a lot of information.

However, it should be noted that all the information re-
quested other than choosing the unit to clip is optional. The
more information given, the more robust, the clipping can
be. Also, the information about row-wise vs. column-wise

581

layout is very valuable information that can be passed to
the transcoder. Without it, the transcoder must make an
informed guess as to how the table is structured using a
technique like that in [13]. Having the user specify this,
increases the likelihood that their custom content will be
transcoded in a meaningful form (see Section 3.3).

3. VOICE-ENABLING WEBVIEWS

3.1 Voice Interfaces
Interactive voice response (IVR) systems have tradition-

ally been expensive to develop and run, being restricted to
proprietary application development environments and to
running on specialized hardware. As a result, for a long
time, voice access was limited to a few services, such as
accessing �nancial institutions, or consulting yellow pages.
The steady increase in processor speeds, combined with de-
velopments in TTS and voice recognition technologies has
made it possible to run IVR systems on commodity hard-
ware with specialized boards. This opens up exciting possi-
bilities for providing multi-modal input to computers (and
soon to PDAs) as well as making it possible for small compa-
nies or even individuals to provide services over the phone.
VoiceXML [28] has recently been proposed as a standard

XML-based markup language for IVR systems. VoiceXML
replaces the familiar HTML interpreter (Web browser) with
a VoiceXML interpreter and the mouse and keyboard with
the human voice. As noted in [15], \the Web revolution
largely bypassed the huge market for information and ser-
vices represented by the worldwide installed base of tele-
phones, for which voice input and audio output provide the
sole means of interaction". VoiceXML has the potential to
remedy this oversight.
It should be noted that some Web content is available

by phone already. Also, some voice browsers and HTML
to VoiceXML transcoders have been built (e.g., pwWebS-
peak [24], PhoneBrowser [22], and Vox Portal [12]). How-
ever, as Goose et al. [12] point out, the e�ectiveness of such
systems is compromised in the presence of improperly struc-
tured documents [29]. Furthermore, much of the informa-
tion on a Web page is not related to the primary purpose
of the person browsing to the page (e.g., ads, links to other
parts of the site). Thus, it is very painful to hear such pages
transcoded into voice, substantially reducing the utility of
such browsers. By simplifying the content retrieval process,
and �ltering out uninteresting components of Web pages,
the WebViews architecture can render the desired informa-
tion in voice in a terser, far more user-friendly manner than
more general voice browsers can.
It is worth pointing out that transcoding even simpli�ed

versions of HTML pages into VoiceXML presents interesting
challenges. The serial nature of voice interfaces is in many
ways incompatible with visual interfaces. For example, voice
interaction becomes intractable if users are presented with
too many choices (e.g., a list with all American states). In
contrast, displaying many choices may be inconvenient, but
it is still manageable. In what follows, we describe the Voice-
Views prototype, and our approach to provide voice access
to Web views.

3.2 Transcoding Web Views into VXML
Section 2 assumed the presence of transcoding proxies to

enable access to various devices. Note, however, that the

VoiceXML

Interpreter

 DB
User profile

User profile
manager

GenerateVoiceViewList

Transcoding Engine

user id

list of Web
views in a
dialogue

selected

dialogue

Web view

VoiceXML Clipped page Web view
encoded in XHTML

Figure 5: Low-level architecture of the VoiceViews

prototype

transcoding functionality can also be incorporated into the
WebViews server, with the added advantage that the user
can now annotate the Web view and supply extra informa-
tion that can be used in the transcoding process to pro-
duce better quality content, and a more user-friendly ex-
perience. The main drawback of this tight-coupling it that
the transcoding engine and server must agree on a set of
annotations. If they are developed by separate parties, this
will sometimes discourage such an architecture, unless, of
course, a standard for such annotations exists.
We have built an engine that transcodes clipped HTML

content into VoiceXML. In what follows, we describe its ar-
chitecture, and discuss how it can be combined with the
WebViews server to create VoiceViews. Note that we still
assume the presence of a Voice gateway (running a VoiceXML
interpretor) that connects the PSTN network to the IP net-
work. The user calls a phone number, and the VoiceXML
interpretor requests the WebViews server for any VoiceXML
dialogs to be played to the user.
The current transcoding architecture is diagramed in Fig-

ure 5. The usage scenario is as follows. When the user
calls a special phone number, a �xed caller identi�cation
VoiceXML dialog is started. The dialogue attempts to iden-
tify the user using his caller ID (which it uses as userid);
if that is not available, the system interrogates the user for
the userid. Once the userid is obtained, the list of Web
views associated with that user is looked up (via Generate-
VoiceViewList) from the User Pro�le DB, and a VoiceXML
dialog is generated that prompts the user to select between
one of his recorded Web views. The user can then make
his selection via touch-tone or spoken input. Once the user
makes a choice, the VoiceXML interpreter passes the Web
view information to the Transcoding Engine, which in turn
queries the WebViews execution engine to execute the Web
view. The Transcoding Engine converts the clipped con-
tent into VoiceXML, utilizing the extra annotations supplied
with the Web view.
Figure 6 shows the VoiceXML dialogue generated by our

transcoder for the clipping (appropriately tidied) of the Ya-
hoo! car page shown in Figure 4. In the dialogue, each car
listing is transcoded as a field of a VoiceXML form. The
form contains all the data transcoded from a single top-level
table. The transcoded output could also have been output
as a single block so that the entire contents would have been
read as a unit using TTS, but that would have given the user

582

Figure 4: Yahoo! Car page retrieved by the WebVCR for Transcoding

<?xml version="1.0" ?>

<vxml version="1.0" caching="safe">

<form>
<field name="row1">
<grammar type="application/x-jsgf">

next fnextg | skip fskipg </grammar>
<prompt bargein="true">

make/model: Acura Integra
<break size="medium"/> year: 1995
<break size="medium"/> price: 11000
<break size="medium"/> miles: 59100

</prompt>
<catch event = "nomatch noinput">

<assign name="row1" expr="'next'" />
<goto nextitem="row2" />

</catch>
<filled>

<if cond="row1 == 'next'">
<goto nextitem="row2" />

<else />
<goto next="#end table" /> </if>

</filled>
</field>
...

<form id="end table">
<block> <goto next=

"http://www.voiceviews.com/GenerateVoiceViewList.
cgi?userid=9081234567" />
</block>

</form>
</vxml>

Figure 6: Transcoding of Yahoo! Auto data into

VoiceXML

no option but to listen to the whole table being read or to
hang up. As it is, the script listens for special keywords,
namely \next" and \skip", allowing the user to quit hear-
ing details of a single row or of the rest of the table. If the
user says nothing (noinput) or something incomprehensible
(nomatch), the script goes to the next row.

3.3 Using Clipping Information
In order to intelligently transcode a table, Web view an-

notations are crucial. A table may be organized row-wise,
column-wise, or neither (e.g., being used simply for layout)|
and each requires substantially di�erent transcoding. For in-
stance, if the table of interest in Figure 4 is treated as being

there simply for layout, the transcoded voice would be par-
tially incomprehensible|something like: \Showing 1 -15 of
34 listings Previous Ads Next Ads DATE MAKE MODEL
YEAR PRICE ... FULL LISTING 10/26/00 Acura Inte-
gra 1995 11000 ...". The knowledge that MAKE/MODEL,
YEAR, PRICE, and MILES are the columns to transcode
and that the table is laid out row-wise allows the transcoder
to pair headers and values together (see Figure 6), and to
eliminate uninteresting data. Similar techniques are use-
ful for small screens (e.g., WAP phones) even where tables
are supported, because they produce something much more
readable than tables with rows that wrap lines.
Also useful is the information stored for the parameteri-

zation of WebViews for entities like radio buttons and pull-
down lists to enable users to specify the corresponding val-
ues. For these entities, parameterized SMBs store the list
of acceptable choices that the user may enter. (Note that
this information is not required in un-parameterized book-
marks since the choice is �xed for them). Not only does this
information allow the system to prevent bad user-input, it
also makes it possible to transcode the parameterized data
in a more convenient form. Rather than reading out each
possible value with an associated number and having the
user enter that number by voice or touchtone, the system
can generate a grammar that accepts the legitimate choices.
The lists are generally small enough that voice recognition
will work reasonably well. For example, when giving a user
the choice to enter the name of a state, allowing the user
to say \WV" immediately is far more convenient than ask-
ing her to wait to hear and respond to \47 WV". It is worth
pointing out that due to the limitations of voice-independent
recognition systems, this technique does not work well for
text �elds where no information about the domain is avail-
able, or when domains are large.

4. EXPERIENCES
In order to verify that our WebViews creation, extraction

and transcoding framework works in practice, we created

583

various Web views of popular as well as not so popular Web
sites. In particular, we wished to determine how widely
applicable (in terms of coverage) our tools are, verify the
e�ectiveness of our robustness techniques, as well as deter-
mine the applicability of our transcoding strategies. We now
discuss some of the issues we faced, as well as some general
techniques we developed.

4.1 Cleaning HTML Content
Even though we used HTML Tidy [27] to transform pages

into XHTML (for easier extraction and transcoding), we
found that problems remained for a number of Web sites.
We had to perform further post-processing on Tidy's out-
put before the HTML content was usable (e.g., for input
to Xalan for evaluating extraction expressions). For exam-
ple, we found that we had to explicitly remove Javascript
from pages after tidying them, since the \<"s that appear
in some scripts caused the tidied document to remain mal-
formed XML. We give details on a subset of the problem
resolutions below (note that these problems deal only with
the �nal page from which relevant content is to be extracted,
and not to the intermediate pages obtained when executing
a Web view):
Non-standard tags: Tidy is able to clean up most bad
HTML. However, it does require that the document tags be
legitimate HTML tags. Some sites generate proprietary tags
which are \illegal", but ignored by browsers. To handle ille-
gal tags that showed up in sites we cared about, we installed
the corresponding tags in Tidy's default tag table. This was
done without modifying the Tidy source code.
Duplicate attributes: Another problem we found in many
pages was the presence of multiple attribute de�nitions, for
example:

<td bgcolor="#000000" align="CENTER" valign="TOP"
align="CENTER">

Tidy does not detect duplicate attribute de�nitions. How-
ever, our XML parser gave up parsing when it found an
attribute multiply de�ned. To solve this problem, we had
to go over the Tidy output and eliminate multiply de�ned
attributes.

4.2 Extracting Desired Content
There were a number of problems that we encountered

when clipping content from HTML pages, most relating to
robustness of extraction expressions, and the expressiveness
of XPath. Some of these problems are discussed below.
Changes to page structure: In building robust extrac-
tion expressions, keeping around a fair bit of context infor-
mation is quite valuable as some sites change their HTML
layout frequently, while maintaining a very similar appear-
ance. One particularly dynamic site is Yahoo! Autos. In the
course of the day, the same SMB can return pages in at least
three di�erent forms: with all the cars in a single top-level
table, with all the cars in a single table embedded in another
table, and with some of the cars in a \Featured Cars" table
and the rest in a much bigger table|both tables having the
same structure (once one gets past the layout data to the
logical data). The �rst two variants are taken care of by
ignoring the path to the Auto table and simply looking at
its form|which was �xed. The third was taken care of use
predecessor text. The column headers of the main listing
always followed a row containing \Showing 1 - n of m list-

ings". The row following \Showing" contained the column
header information. The following XPath which uses both
predecessor information and the form of the table works for
all cases:

//table/tr/td[contains(string(),'Showing') and
not(descendant::table)]/parent::tr/
following-sibling::tr/
td[contains(string(), 'YEAR')]/parent::tr

Note that in this case \Showing" was inside the table be-
ing transcoded. For handling text preceding (following) the
table, the system would �nd a text node containing the de-
sired anchor text and then search the following (preceding)
nodes for a table of the desired form.
WYSIWYG { Not!: We found that we had to be very
careful in our assumptions about the string() that would
come back from an XML entry, when looking for key strings
that the user had speci�ed to identify which document frag-
ments to clip. Line breaks appear in unexpected places. For
example, while \AllnnListings" and \All Listings" in the
XHTML look the same when rendered on the screen, they
do not compare as the same. Which form the text came out
in appeared random within a document|sometimes the text
was all on a single line, sometimes it was broken across lines.
Consequently, we normalize the output of Tidy to replace
line breaks with blanks before using XPath to extract data.
Note that this has no e�ect on voice transcoding.
Limitations of XPath: We found one limitation of XPath
which was the lack of an axis for location paths combining
\self" and \following-sibling". One can simulate this by us-
ing \preceding-sibling" to go backwards in the document
and then choosing \following-sibling" from that point pro-
vided a preceding sibling exists. If no preceding sibling ex-
ists, then combining \parent" and \child" can be used. How-
ever, no one expression can express this relationship. This
is unfortunate, because when clipping a contiguous collec-
tion of HTML entities, the ability to specify that an entity
containing a particular piece of text and some number of
succeeding entities should be grouped together for clipping
would be quite useful. However, such an expression cannot
be written unless it is known whether or not the entity of
interest will have predecessor siblings or not. Such an ex-
pression could have been used to write expression (2) (from
Section 2.2) in a di�erent way that requires less user input:

(//table/tr/td[contains(string(),'Price:') and
not(descendant::table)]/parent::tr/
parent::table/following-sibling-or-self::table)
[position() >= 1 and position() <= 6]

4.3 Transcoding Issues
In the general WebViews server architecture presented in

Figure 1, we assume that the transcoding for various for-
mats would be performed by an appropriate gateway that
communicates with the WebViews server. However, generic
transcoders often do not work well with complex HTML,
even after the relevant content is extracted from the re-
trieved page. However, we found that certain extra infor-
mation could be speci�ed in the Web view, which could be
used to greatly improve the quality of the transcoding, and
hence result in a better user experience.
Table Layout: A few sites layout their rows as a single
row whose embedded data entries, <td>s, contain line breaks.
To handle such sites, the GUI needs to check for embedded
linebreaks within <td>s and ask the user whether or not the

584

peculiar layout of rows is being used or the row entry is
simply long|if at least two entries have a similar number
of linebreaks.
VoiceXML: Unfortunately, standards compliance with the
VoiceXML 1.0 spec is spotty. We have experimented with
three VoiceXML interpreters, and all of them have missed
some useful features of the spec. One of them not only
failed to implement one tag according to the spec, but im-
plemented a tag with the same name but di�erent semantics.
(We gave up trying to develop VoiceXML documents on that
platform because of its frequent disregard for the standard.)
Even for the two better behaved platforms, the di�erence in
implemented feature sets makes it impossible at present to
develop scripts of any complexity that will run on both.
These lacks also made VoiceXML dialogues much longer

than they would have been in a full-featured VoiceXML im-
plementation. For instance, the transcoding of each row
in Figure 6 could have been considerably simpli�ed (i.e.,
the grammar, catch, and filled parts could have been re-
moved) had form level grammars (grammars that apply to
the whole form and not just to an individual �eld within the
form) been implemented in the VoiceXML platform we are
using. Then, those implementation details could have been
shared across rows being transcoded. We also would have
supported more features like \back". We dropped them to
keep the VoiceXML �le from becoming even larger. When
transcoding large tables, we did not want to make the Voice-
XML �le so large that XML parsing becomes noticeable.
Consequently, we dropped useful but infrequently used nav-
igation options. If the code were shared at the form level,
this would not have been an issue.

5. RELATED WORK
There are two main areas of work related to WebViews:

wrapper creation, and information delivery to diverse ter-
minals. We review some of the important literature in these
�elds, and mention a few commercial products.
In the area of information integration, many systems and

techniques have been proposed to wrap Web sites. Most of
the work in this area focuses on extracting structure from
semi-structured data (e.g., [5, 2]). The extractor component
of the WebViews system is not concerned with understand-
ing the structure or discovering the schema of the under-
lying data, but in providing robust mechanisms to identify
high-level HTML/XML syntactic components (e.g., the �rst
table after a speci�c string). The �rst version of WebViews
uses XPath to address speci�c components to be extracted
from Web pages. Other languages could also be used for
this purpose, for example WebL [14] or the scheme used
by W4F [25]. These languages provide good mechanisms
to extract fragments from documents|in some cases, they
are easier to use than XPath. However, XPath is a widely
accepted standard and there are freely available tools to pro-
cess XPath expressions.
Whereas data extraction has been studied extensively,

not much attention has been given to data retrieval. Web-
VCR [4] was to the best of our knowledge the �rst proposal
for automating Web navigation without requiring program-
ming expertise. In order to provide customization of Web
views, the WebViews system extends the WebVCR to han-
dle parameterized SMBs (as described in Section 2).
The issue of wrapper robustness has been studied recently

in [4, 21, 9]. In our previous work [4] we introduced a set of

heuristics to improve the robustness of automated naviga-
tion for SMBs. Davulcu et al. [9] propose techniques to gen-
erate resilient regular expressions that are able to identify
speci�c objects in many variations of the same document.
Phelps and Wilensky [21] proposed the use of redundant
speci�cations in order to maintain robust locations within
documents so as to support document annotation. Their
techniques are closely related to those we use for producing
robust clippings. Our focus is slightly di�erent, instead of
�nding arbitrary locations in text documents, we need to
�nd more well-de�ned structures like tables for transcoding
and so have access to more semantics, and unlike [21], our
matching routines take internal structure of elements into
account.
On the commercial side, there has been a proliferation

of personalization systems which o�er services that range
from noti�cations about changes to certain Web pages (e.g.,
Mind-it [17]) to the creation of personal portals (e.g., Yodlee
[35]). Most of these services have limited coverage, i.e., they
o�er clippings for a limited number of sites. More recently,
services such as Octopus [19] and ezlogin [10], allow creation
of clippings from arbitrary Web pages. However, to the best
of our knowledge they have some important limitations:3

they are restricted to pages that have well-de�ned URLs;
and they are very sensitive to changes in these pages. The
WebViews system addresses both of these limitations. Since
it is able to record navigation actions, it lets users create
clippings for virtually any Web site/page. In addition, the
Web views it generates are robust.
Another important area of work related to this paper is

information delivery to heterogeneous devices. A number
of companies (e.g.,tellme, heyanita, oraclemobile) provide
tools and professional services for Web site creation and
hosting. For example, OracleMobile creates and hosts wire-
less Web sites for online businesses, wireless ISPs, and en-
terprises. The goal is to ensure that content is instantly
available on every mobile device|including Web-enabled
phones, PDAs, two-way wireless messaging devices and one-
way pagers. In contrast with wireless application service
providers (WASPs), the focus of this paper is in providing
a service to end-users, not content providers. The require-
ments and constraints in these scenarios are quite di�er-
ent. Whereas for WebViews no cooperation is required from
the sites, WASPs work together with content providers. By
gaining access to the internals of the Web sites through the
cooperation of content providers, WASPs are able to create
reliable views and update them before they break (since it
is to content provider's interest to notify the WASP about
changes). Nonetheless, the tools and techniques we propose
would also be useful in this context|but, of course, some
extensions and adaptations would be necessary. For exam-
ple, a more powerful model for Web sites like navigation
maps [8] that support non-determinism and iteration would
be necessary to handle more complex navigation, as opposed
to linear paths currently supported through SMBs.
Content transcoding has attracted much attention recently.

Device-speci�c transcoders are used that perform on-the-

y content translation in order to provide Web access to a
variety of devices. The kind of translation done by these
proxies include reduction of image resolution [11, 1], modi�-
cation of HTML constructs that cannot be e�ectively viewed

3These limitations are also mentioned in [16].

585

in smaller screens (e.g., ProxiWeb rewrites pages that con-
tain frames so that they display the links corresponding
to the frames), and translation from HTML to other lan-
guages such as the wireless markup language (WML) [30]
and VoiceXML (VXML) [28]. Given the growing complex-
ity of Web sites (e.g., the presence of scripting languages,
dynamic content, malformed content), transcoding can be
very hard, and in practice, many pages and services are not
amenable to transcoding and cannot be accessed through
a variety of devices that require non-HTML content such
as WAP phones (which require WML) and voice interfaces
(e.g., VoiceXML). By allowing users to easily customize ser-
vices and �lter out irrelevant content and complex features,
the WebViews system greatly simpli�es the transcoding pro-
cess, increasing the Web coverage for many devices. Note,
however, that some of the features provided by the generic
transcoding proxies can still be layered on top of the Web-
Views system, for example, image resolution can be reduced
in case the extracted content contains an image.

6. CONCLUDING REMARKS
In this paper we describe the WebViews architecture, how

it simpli�es the creation of robust customized views of Web
content and services, and how these views can be tailored
for presentation in di�erent devices. We also describe the
implementation of the VoiceViews system, and discuss how
Web views can be e�ectively transcoded into VoiceXML.
Our initial prototype is geared towards letting casual Web

users create Web views. Consequently, we cannot assume
any cooperation from Web sites, and robustness of Web
views is an essential requirement. In addition, since users
are not experts, tools have to be very simple to use. One
interesting future direction of work is to investigate how the
WebViews architecture can be extended to handle the busi-
ness scenario, where a content provider himself wants to cre-
ate di�erent views of his own content. For example, more
powerful facilities to model Web sites (such as the naviga-
tion maps proposed in [8]) that support non-determinism
and iteration are likely to be needed.
As a �nal note, it is worth pointing out that the applica-

tions of WebViews go beyond information delivery to diverse
environments. For example, Web views can be used as basic
building blocks for personal portals such as the ones pro-
vided by mynetscape.com.

7. REFERENCES
[1] S. Acharya, H. Korth, and V. Poosala. Systematic

multiresolution and its application to the world wide
web. In Proc. of ICDE, pages 40{49, 1999.

[2] B. Adelberg. NoDoSe - a tool for semi-automatically
extracting structured and semi-structured data from
text documents. In Proc. SIGMOD, pages 283{294,
1998.

[3] http://www.amazon.com/anywhere.

[4] V. Anupam, J. Freire, B. Kumar, and D. Lieuwen.
Automating Web navigation with the WebVCR.
WWW9/Computer Networks, 33(1-6):503{517, 2000.

[5] N. Ashish and C. Knoblock. Wrapper generation for
semi-structured internet sources. SIGMOD Record,
26(4):8{15, 1997.

[6] http://www.avantgo.com.

[7] CDPD.
http://www.wirelessdata.org/develop/cdpdspec.

[8] H. Davulcu, J. Freire, M. Kifer, and I. Ramakrishnan.
A layered architecture for querying dynamic web
content. In Proc. SIGMOD, pages 491{502, 1999.

[9] H. Davulcu, G. Yang, M. Kifer, and I. Ramakrishnan.
Computation aspect of resilient data extraction from
semistructed sources. In Proc. of PODS, 2000.

[10] http://www.ezlogin.com.

[11] A. Fox and E. Brewer. Reducing www latency and
bandwidth requirements by real-time distillation.
WWW5/Computer Networks, 28(7-11):1445{1456,
1996.

[12] S. Goose, M. Newman, C. Schmidt, and L. Hue.
Enhancing web accessibility via the Vox Portal and a
web-hosted dynamic HTML$VoxML converter.
WWW9/Computer Networks, 33(1-6):583{592, 2000.

[13] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong.
Medium-independent table detection. In Proc. of
Document Recognition and Retrieval VII (IS&T/SPIE
Electronic Imaging), volume 3967, pages 291{302,
2000.

[14] T. Kistlera and H. Marais. WebL: A programming
language for the Web. WWW7/Computer Networks,
30(1-7):259{270, 1998.

[15] B. Lucas. VoiceXML for web-based distributed
conversational applications. Commun. ACM,
43(9):53{57, 2000.

[16] H. McCracken. Web savvy: Better ways to browse the
web. PC World magazine, December 2000.

[17] Mind-it. http://www.netmind.com/.

[18] http://channel.nytimes.com/partners/palm-pilot.

[19] http://www.octopus.com.

[20] http://www.omnisky.com.

[21] T. Phelps and R. Wilensky. Robust intra-document
locations. WWW9/Computer Networks,
33(1-6):105{118, 2000.

[22] http://phonebrowser.research.bell-labs.com.

[23] ProxiWeb. http://www.proxinet.com.

[24] pwWebSpeak.

[25] A. Sahuguet and F. Azavant. Building light-weight
wrappers for legacy web data-sources using W4F. In
Proc. of VLDB, pages 738{741, 1999.

[26] http://www.sprintpcs.com/wireless/

wwbrowsing providers.html.

[27] http://www.w3.org/People/Raggett/tidy.

[28] http://www.voicexml.org.

[29] Web accessibility initiative. http://www.w3.org/WAI.

[30] Wireless Application Protocol Forum. Wireless
Application Protocol: The Complete Standard. Wiley,
1999.

[31] http://www.luxnet.at/docu/xalan/overview.html.

[32] http://www.w3.org/TR/xpath.

[33] http://www.w3.org/TR/xslt.

[34] http://www.jclark.com/xml/xt.html.

[35] Yodlee2go. http://www.yodlee.com.

586

