An Intelligent Distributed Environment for Active Learning:

Yi Shang, Hongchi Shi, and Su-Shing Chen
Department of Computer Engineering and Computer Science
University of Missouri-Columbia
Columbia, MO 65211, USA

ABSTRACT

Active learning is an effective learning approach. In this
paper, we present an intelligent agent assisted environment
for active learning. The system is to better support student-

centered, self-paced, and highly interactive learning approach.

Students’ learning-related profiles, such as learning styles
and background knowledge, are used in selecting, organiz-
ing, and presenting learning materials. A new approach to
course content organization and delivery is being developed
based on smart instructional components, which can be in-
tegrated into a wide range of courses. The system is being
implemented using the prevalent Internet, Web, digital li-
brary, and multi-agent technologies.

Keywords: active learning, Web-based education, multi-
agent system, XML

1. INTRODUCTION

A major challenge in computer science education is to im-
prove both instructional productivity and learning quality
for a large and diverse population of students under real-
world constraints such as limited financial resources and in-
sufficient qualified instructors. The literature in education
suggests that students who are actively engaged in the learn-
ing process will be more likely to achieve success [12]. The
approach of active learning emphasizes on engaging students
in the learning process [6, 22, 23], where learning activities
involve some kind of experience or some kind of dialogue.
The two main kinds of dialogue are dialogue with self (think
reflectively) and dialogue with others. The two main kinds of
experience are observing and doing. There are several ways
to incorporate more active learning into teaching:

(1) Expand learning experiences. The most traditional
teaching consists of little more than having students read a
text and listen to a lecture, providing a very limited form of

“Research supported in part by the National Science Foun-
dation under grants DUE-9980375 and EIA-0086230 and the
University of Missouri System Research Board.

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

dialogue with others. Examples of more dynamic forms are
creating small groups of students and having them make a
decision or answer a focused question periodically, or finding
ways for students to engage in authentic dialogue with peo-
ple other than fellow classmates who know something about
the subject (on the Web, by email, or live).

(2) Take advantage of the “power of interaction.” There
are four modes of learning when the two kinds of dialogue
are coupled with the two kinds of experience. Each of the
four modes has its own value, and just using more of them
should add variety and thereby be more interesting for the
learners. However, when properly connected, the various
learning activities can have an impact that is more than ad-
ditive or cumulative; they can be interactive and multiply
the educational impact. For example, if students write their
own thoughts on a topic (dialogue with self) before they en-
gage in small group discussion (dialogue with others), the
group discussion should be richer and more engaging. If
they can do both of these and then observe the phenomena
or action (observation), the observation should be richer and
again more engaging. Then, if this is followed by having the
students engage in the action itself (doing), they will have a
better sense of what they need to do and what they need to
learn during doing. Finally if, after doing, the learners pro-
cess this experience by writing about it (dialogue with self)
and/or discussing it with others (dialogue with others), this
will add further insight. Such a sequence of learning activ-
ities will give the teacher and learners the advantage of the
Power of Interaction. Alternatively, advocates of problem-
based learning would suggest that a teacher start with doing
by posing a real problem for students to work on, and then
having students consult with each other (dialogue with oth-
ers) on how best to proceed in order to find a solution to the
problem. The learners will likely use a variety of learning
options, including observing and dialogue with self.

(3) Create a dialectic between experience and dialogue.
New experiences (whether of doing or observing) have the
potential to give learners a new perspective on what is true
(beliefs) and/or what is good (values) in the world. Dia-
logue (whether with self or with others) has the potential
to help learners construct the many possible meanings of
experience and the insights that come from them. People
learn faster when new concepts are useful in their present as
well as future lives. The roles of an educator is to assess the
audience’s interest, current skills, and aims. This informa-
tion then guides the structuring of a learning atmosphere
and selection of methods most satisfying and effective for
the learners.

The growing emphasis on student-centered active learn-
ing has yielded a veritable revolution in educational theory
and practice. A number of current theories of learning and
pedagogy revolve around constructivism, which emphasizes
the student’s knowledge construction process. In student-
centered education, students should be engaged in active
exploration, be intrinsically motivated, and develop an un-
derstanding of a domain through challenging and enjoyable
problem-solving activities. Systems and procedures that
support active learning have been intensively investigated
and developed [7, 8, 9, 11, 18].

In this paper, we present an intelligent agent assisted sys-
tem to support student-centered, self-paced, and highly in-
teractive learning, a first step in building an effective active
learning environment. The system provides a rich set of on-
line contents and around the clock information access, max-
imizes the interactivity between the intelligent learning sys-
tem and the students, and customizes the learning process
to the needs of individual students. In the system, students’
learning-related profiles, such as learning styles and back-
ground knowledge, are used for selecting, organizing, and
presenting the learning materials to individual students and
in supporting active learning. It supports personalized and
more pleasant interaction between the users and the learning
systems, enables adaptive delivery of IT education content,
facilitates automatic evaluation of learning outcomes, and
provides easy-to-use authoring tools. The system also incor-
porates a new approach to course content organization and
delivery, which is developed based on smart instructional
components, called lecturelets. Lecturelets are designed for
customized interactive presentation of subjects. They are
self-contained, autonomous, and can be easily integrated
into a wide range of courses. The intelligent distributed en-
vironment for active learning (IDEAL) is implemented using
the prevalent Internet, Web, digital library, and multi-agent
technologies. IDEAL adopts an open system architecture
supporting open standards in information technology and
can scale to large-scale, distributed operations.

2. MULTI-AGENT SOFTWARE SYSTEM

IDEAL is a Web-based, distributed, multi-agent learn-
ing system with a three-tier architecture as shown in Fig-
ure 1. The system ties the Web clients (for students) and
the underlying information servers (for courseware and stu-
dent profiles) together with the multi-agent resource man-
agement. The information and agents are supported by a
distributed system consisting of workstations and storage
devices connected via high-bandwidth networks. IDEAL is
implemented using the prevalent technologies of the Inter-
net, WWW, software agents, and digital libraries [17, 31,
32].

Several characteristics specific to asynchronous learning
make multi-agent systems attractive. First, the students of
a virtual class on the Internet are widely distributed, and
the number of potential participants is large. This renders
static and centralized systems inadequate. A distributed
multi-agent system with personalized agents for each stu-
dent is very attractive. Secondly, the classes are dynamic
in nature. The background, knowledge, and skill of ac-
tive students will change over time. The learning materi-
als and teaching methodologies of the courses will change
too. Thirdly, students have different background and per-
sonality. Teaching methodology should be tailored toward

309

each student’s interest and knowledge to make teaching and
learning more effective. Furthermore, students often enroll
in several courses at the same time. Coordination of learn-
ing on different topics for each student will enrich the learn-
ing experience. Finally, students tend to get together to
discuss study topics and share common interests. Smooth
communications, including visualizing and sharing common
contexts, need to be supported. Hence, multi-agent systems
have become a promising paradigm in education [3, 31].

IDEAL consists of a number of specialized agents with
different expertise. In IDEAL, each student is assigned a
unique personal agent that manages the student’s personal
profile including knowledge background, learning styles, in-
terests, courses enrolled in, etc. The personal agent talks
to other agents in the system through various communica-
tion channels. An online course is supported by a collection
of teaching and course agents. The course agents manage
course materials and course-specific teaching techniques for
a course. Multiple course agents exist on distributed sites
to provide better efficiency, flexibility, and availability. The
teaching agents can talk to any course agent of a course and
often choose one nearby for better performance. The course
agents also act as mediators for communication among stu-
dents.

A teaching agent interacts with a student and serves as
an intelligent tutor of a course. Each teaching agent obtains
course materials and course-specific teaching techniques from
a course agent and then tries to teach the materials in the
most appropriate form and pace based on the background
and learning style of the student. The teaching agents may
adopt various cognitive skills such as natural language un-
derstanding, conversation, natural language generation, learn-
ing, and social aspects. These skills make it easier for stu-
dents to interact with the teaching agents through natural
forms of conversation and expression. Multimedia presenta-
tions such as graphics and animation make difficult concepts
and operations easier to understand.

The basic components of a teaching agent are a domain ex-
pert module, a pedagogical module, and a student modeler.
The domain expert module creates exercises and questions
according to the student’s background and learning status,
provides solutions, and explains the concepts and solutions
to remedy student’s misconceptions. It contains a problem
generator, a problem solver, an explanation generator, and
a domain knowledge base. The pedagogical module deter-
mines the timing, style, and content of the teaching agent’s
interventions. It is a rule-based production system that uses
the student model and pedagogical knowledge to determine
the appropriate actions. The student modeler provides a
model of a student based on her learning style, knowledge
background, and interests. It may also incorporate the in-
formation gathered through dialogues with the student and
the student’s learning profile such as the actions the student
performed and the explanations she asked for.

3. COMMUNITY INTERACTION

In a learning community, instructors and students work
together systematically toward shared academic goals. Col-
laboration is stressed, and competition is deemphasized. The
instructor’s primary role shifts from delivering content to
setting up learning environments and serving as coach, ex-
pert guide, and role model for learners. The student’s role
changes as well, from relatively passive observer of teach-

Personal Agent 3
Client % Course A
;
User | & | ﬁ] Course Agent
[=
5| & e I
8 z Teaching Agent
Al
Course Agent

Server: A Distributed Multi-Agent System

Teaching Age

% TAl

Teaching Agent

Personal Agent 2

X

Course B

Teaching Agent

B2

Course Agent Course Agent

Bl
% TB1

Teaching Agent

it

X

Personal Agent 1

Figure 1: The framework of IDEAL, a Web-based interactive learning environment.

ing and consumer of information to active co-constructor of
knowledge and understanding [2, 10, 28].

There are three major issues in the online support of a
learning community: how to support various communica-
tion channels including one-to-one, one-to-many, and many-
to-many, how to find other people that share similar in-
terests, and how to visualize and share common contexts.
Active support using agent technology based on interaction
between software agents and between humans and software
agents is necessary in addressing these issues [13].

The learning community enabled by IDEAL contains a
collection of personal units and course agents. A personal
unit consists of a user and his or her personal agents. Each
personal agent can acquire the user’s profile and help the
user by gathering, exchanging, and viewing information.
The course agents provide shared information, knowledge,
or contexts within the course community and act as medi-
ators for informal communication among people. They can
collect the user profiles and maintain information on the
course community.

4. STUDENT MODELING

Student modeling is crucial for an intelligent learning en-
vironment to be able to adapt to the needs and knowledge
of individual students [5, 20]. There are many techniques
for generating student models. Most of them are computa-
tionally complex and expensive, for example, the Bayesian
networks [20, 21, 29], the Dempster-Shafer theory of evi-
dence [4], and the fuzzy logic approach [14]. Other tech-
niques although computationally cheap, such as the model
tracing approach [1], can only record what a student knows
but not the student’s behavior and characteristics.

The difficulties in applying Bayesian modeling are the
high cost in knowledge acquisition and in the time to up-
date the student model. The inference in Bayesian belief
networks is NP-hard, and the model requires prior proba-
bilities. In developing practical and efficient Bayesian meth-
ods, we trade complexity of knowledge representation and
depth of modeling for linear-time belief updating and a small
number of model parameters.

In IDEAL, a student model is inferred from the perfor-
mance data using a Bayesian belief network. The measure
of how well a skill is learned is represented as a probability

distribution over skill levels, such as novice, beginning, inter-
mediate, advanced, and expert. Under the assumption that
the performance on questions is independently distributed,
to model one skill with n skill levels and ¢ questions for
each in a Bayesian network, we need ng probabilities plus
the n prior probabilities of the skill levels to calculate the
probability distribution of skill levels given all the question
scores. To model k skills with the same skill levels for each,
we need kng probabilities, which is too large for non-trivial
real-world applications.

To reduce the number of probabilities required and im-
prove the efficiency of the algorithm in IDEAL, questions
of similar difficulty are grouped into categories associated
with the conditional probabilities of answering each set of
questions correctly to the possible skill levels. Now, only
knc probabilities are required, where ¢ is the number of cat-
egories.

The probabilities are further reduced by matching the
question categories to the skill levels. For n + 1 skill lev-
els, only n question categories are required. If a student has
reached a certain skill level, then he should be able to answer
all questions at that skill level and all easier questions. Con-
sidering that students sometimes miss questions that they
should know or may guess the right answer, the probability
of a slip s, e.g., 0.1, and a probability of a lucky guess g,
e.g., 0.2, are used in the conditional probabilities for cor-
rect answers to questions of increasing difficulty. By using
these two probabilities, a simple way to set the conditional
probabilities for 5 skill levels is as follows:

Question Skill Levels
Categories Novice | Begin- | Inter- | Advanced | Expert
ning | mediate
Beginning g 1—s 1—s 1—s5 1—s
Intermediate g g 1—s 1—s5 1—s
Advanced g g g 1—35 1—s
Expert g g g g 1—s

310

Now, the total number of probabilities required is reduced
to the prior probabilities for the skill levels plus the proba-
bilities s and g.

Based on this model, the probability distribution of the
skill levels given performance data can be determined in lin-

ear time. Based on the Bayesian theory and the assumption
that the performance data are independent, the conditional
probability of skill levels is as follows:

p(X =2;08) = I%*p(hxj)*p(ax:xj)
1 n
= @ *p(X=$j)*i1:[lp(€i|X=$j)
= L>|< =x;)*
= p(é') p(X])

1—
gz?:j-u Cit 4 (1 _ g)z?:j+1 €i—

)) i .
S)Ei=1 Cit 4 52i=1 Cim g

—~

(1)

where X represents the skill levels; € is the evidence vec-
tor of n elements, in which each element e; contains two
numbers, e;4 and e;—, corresponding to the number of cor-
rect and incorrect answers to questions at difficulty level ¢,
respectively.

The advantages of this model are (1) questions can be
added, dropped, or moved between categories with minimal
overhead; (2) the model incorporates uncertainty and al-
lows for both slips and guesses in student performance; (3)
the time complexity is linear in the number of data items,
whereas updating belief networks is in general NP-hard; and
(4) only a small number of parameters are required. The re-
strictions of the model are that only binary-valued evidence
is modeled and only one skill can be modeled at a time.

5. CURRICULUM SEQUENCING

Curriculum sequencing is one of the key components in
an intelligent tutoring system [19, 27, 30]. In our approach,
the topics are represented in a dependency graph, with links
representing the relationship between topics, which include
prerequisite, co-requisite, related, and remedial. Remedial
topics such as special topics are not required to be learned
by all the students. Each topic is divided into subtopics
corresponding to smaller grained units that allow the intel-
ligent tutor to reason at a finer level. When a subtopic is
displayed to the student, the actual content is dynamically
generated based on the student model.

Curriculum sequencing can be seen as a two-step process:
finding relevant topics and selecting the best one. A student
is ready to learn a topic only if he has performed sufficiently
well on its prerequisites. How well a topic is learned is judged
by the student’s performance on and his access patterns to
the course materials. The access patterns include how much
time he has spent studying a topic, whether he used corre-
sponding multimedia materials such as audio and video, and
if the topics were reviewed multiple times. Specifically, the
performance on a topic is determined based on the following
three factors:

1. Quiz performance. Quizzes give a tutor the most direct
information about the student’s knowledge. Quizzes
can be dynamically constructed based on the student
model. Questions are provided to cover the topics most
recently completed, as well as topics that should be re-
viewed. Each question has a level of difficulty, which is
also used in updating the student model. Correctly an-
swering a harder question demonstrates a higher abil-
ity than correctly answering an easier question. The

311

quiz scores are calculated using the following formula:

Scoref+t =
a * Score® + if answered
(1-—a)x4 correctly
max(0, if answered
ax Score® — (1 — a) » LEL=2) incorrectly

(2)

where 0 < a < 1 is a constant corresponding to the
updating rate, k is the index of the updating iteration,
1 < d < L is the level of difficulty, and L is the total
number of levels. The Score is bounded between 0 and
1. Each topic has an initial score of 0 or some heuristic
value derived from prior knowledge.

2. Study performance. The main interaction that stu-
dents have with the learning environment is through
viewing or listening to the course materials in multi-
media forms. The study score is used to judge how
much comprehension the student has gained through
these activities. A topic is usually presented in mul-
tiple pages and each page is assigned a weight corre-
sponding to its importance. Then, the study score in
the range from 0 to 1 is calculated based on the pages
visited and the amount of time spent on each page.
An optimal time for each page is used as the baseline.
If the student spends this optimal amount, then the
score for the page is 1. As he moves away from this
point, his score decreases. The study score of a stu-
dent on a topic is the weighted sum of the scores on
the pages calculated as follows:

N
Study_Score = Z w; S;

i=1

3)

where N is the number of pages, w; is the weight on
the ¢th pages with Efvzl w; = 1, and S; is the score on
the ¢th page. If page ¢ is studied more than once, the
total time on the page is used for S;.

3. Reviewed topics. The review score on a topic records
how much the student has returned to review the topic
again. It is based on how many times the topic is
reviewed and how much of the materials is viewed each
time. If a student is reviewing frequently, then he has
not learned the material. The review score is in the
range from 0 to 1 and starts at 1 for each topic. Each
time the student reviews the topic, the review score
is updated by multiplying the value calculated using
Equation (3).

These three scores, quiz performance, study performance,
and reviewed topics, are then combined into a single value,
learned score, indicating how well the topic is learned. The
quiz score is the most important among the three. When a
student has a reasonably high quiz score, such as over 0.8,
then the other scores do not matter much and the final value
is the quiz score. However, if his quiz score is less than 0.8,
the other factors become important, and the final value is a
weighted sum of the three scores with weights such as 0.7,
0.2, and 0.1, respectively.

The ready score of a topic indicates whether the student is
ready to learn the topic or not. It is calculated based on the
topic’s learned score and its pretopics’ learned scores. If a
given topic’s learned score is too low, it should be presented
again, perhaps being taught differently than it was the first

time. In order to start a new topic, a student should show
sufficient scores in its pretopics. One formula of the ready
score is the weighted-sum of the topic’s learned score and
its pretopics’ learned scores with predetermined weights.

In IDEAL, the student has the option of letting the teach-
ing agent choose the next topic or choosing it himself. In
both cases, the student must achieve sufficiently high ready
score for the topic. If the teaching agent is asked to choose
the next topic, it will choose one with the highest ready
score. If the student decides to choose the next topic, he is
presented the topic dependency graph annotated with sug-
gestions on which topics to repeat and/or which new topics
to study.

Once a topic is chosen, how to teach, such as how to
dynamically construct page contents, can be made based
on the three individual topic scores. For example, a student
who has poor quiz scores on a topic and who has not studied
the topic for very long should be treated differently from a
student with the same quiz score but who spent much more
time studying. The second student should be presented with
more background materials to improve his comprehension.
Furthermore, each time a student reviews a topic, it should
be taught in a different way than it was the last time.

6. COURSE MATERIAL ORGANIZATION
AND DELIVERY

In IDEAL, it is essential to have an effective electronic
means for managing, delivering, processing, and present-
ing educational materials. Achieving these goals requires
an approach that is not only extensible into the future but
also adaptable to incorporate new technologies and require-
ments. To ensure broad adoption, the technology selected
needs to be widely and freely available as an open stan-
dard. By selecting a paradigm that by its very nature is
dynamically defined, extensible, and simple, these goals can
be intrinsically met.

We develop an innovative approach based on active XML
(eXtensible Markup Language) documents for organizing
and delivering course materials. Courses materials are de-

composed into small components, corresponding to lecturelets,

around the subjects to be learned. Lecturelets are “smart”
XML documents, namely XML documents that carry not
only contents but also Java code. Lecturelets can be dy-
namically assembled to cover course topics according to in-
dividual student’s progress. By using standards for access-
ing XML documents with style information, lecturelets can
be cataloged, searched, exchanged, and viewed. In contrast
to most of the existing learning materials that are static, our
approach provides an exciting dynamic process that can be
infinitely extended. It has the potential to change the way
universities manage and transfer their educational materials.

Our approach is enabled by the four complementary and
powerful technologies: XML, template, agent, and reposi-
tory. Each component adds unique tools that leverage the
other pieces.

(a) XML provides the foundation. XML brings with it
all the rich capabilities and transport layers of the Web and
the Internet in general. The logical structure of an XML
document can be specified in a Document Type Definition
or DTD. Representing the course materials as structured
XML documents makes searching, archiving, reading, and
navigating the documents simpler.

312

(b) Templates are the rules providing the glue that holds
the whole dynamic interactive learning process together.
Templates are referenced or travel along inside the XML
as a special section, and can be easily read and interpreted.
They are supplemented by DTDs. DTDs enable task in-
teroperability, while templates enable processing, including
presentation, of tasks. DTDs let two participants under-
stand each other’s XML documents, while templates define
what happens to the documents. The leading browsers sup-
porting XML allow for the lecturelets to be viewed exactly
the way the user wants it.

(c) Agents interpret the templates to perform the task
needed and may interact with the user to create a new tem-
plate for each new specific task, or look up and attach the
right template for an existing job. They also can reference
DTD’s to determine display characteristics for documents.
This is where Java and ActiveX fit in. Lecturelet agents on
the Web browser can obtain updated information and in-
structions from the server agent and can also provide feed-
back to the server agent for statistical analysis and data
mining. The benefit of using intelligent agents is to make
the system much easier to use, more intelligent, and more
fault tolerant. In many cases agents will resolve problems
without the user being aware there was a problem.

(d) The repositories provide the storage for lecturelets,
student models, and other components involved in the learn-
ing process. New lecturelets can be dynamically added to
the repositories with little interruption to the ongoing learn-
ing activities. The repositories also allow for indexing, au-
tomatic lookup, and sharing of lecturelets among different
learning systems.

Lecturelets contain both the XML documents and the in-
structions (templates/agents) on how the documents should
be processed or displayed. The internal elements of lec-
turelets and the framework for intelligent delivery of lec-
turelets on the Internet are shown in Figure 2. The lec-
turelet framework makes the transfer of educational mate-
rials between different software systems transparent to the
user and as easy as possible. It allows software agents to
reach out to the Internet to read from and “make sense” of
online course listings. In XML, each document is an object
and each element of the document is an object, too. Being
XML documents containing both data and code, lecturelets
can be manipulated as objects.

Once defined, templates can be applied to the objects
in XML documents. Based on user defined templates, lec-
turelets will be re-organized during the learning process and
displayed accordingly, and may even trigger events on their
own. For example, they will be able to find an application
by using the searching, classifying, and routing mechanisms.
They will have learning status self-contained for users to set
and interrogate. Lecturelets can either run independently, or
interact with each other through standard XML messages.

IDEAL is able to use the many search tools that are being
adapted for XML. The lecturelet framework will allow for
the search of educational materials in various ways. In addi-
tion to the keyword-based search, the objects in XML doc-
uments allow for more intelligent searches such as content-
based search. There are already SGML query languages
that are similar to SQL in power. With standardized DTDs
for different applications one could retrieve information ac-
curately. The relationships in the document structures can
be used as well as the objects themselves in the query. The

Lecturelet Server

Digital Library Server Agent
* Lecturelet sequencing
* Lecturelet searching
* Lecturelet delivering
* Student modeling

* Statistics analysis

Lecturelet Repositol

lecturelet

lecturelet

lecturelet

Student profile

Lecturelet

Content in XML
* Concept definition/description
* Examples

* Exercises and projects

* Quizzes and exams

* Supplemental information

Client)
Web quwser"”

Lecturelet

Java Code/Template
* Customized presentation
* Interaction

* Sub-topic sequencing

* Animation
* Evaluation

INTERNET

Figure 2: The framework for intelligent delivery of lecturelets and the internal elements of lecturelets.

DTD allows for precise relational searches of the XML doc-
uments either in the local repositories or on the Web.

IDEAL provides an interactive learning environment that
combines the visual presentation of course information, class
notes, and executable components of learning materials. In
learning a subject, the lecturelet agent is essentially a teach-
ing agent. The lecturelet agent obtains the student model
from the lecturelet server and updates the model by observ-
ing the student’s learning process. It teaches the materials
in the most appropriate form and pace based on the back-
ground and learning capability of the student.

The lecturelet agent contains a student model, a simple
subject-unit sequencing module and an assessment compo-
nent. The student model represents the student’s learn-
ing style and knowledge levels. The subject-unit sequencing
module is responsible for selecting the most appropriate ba-
sic subject units to be presented to the student based on the
performance of the student on previous subject units, the
student models, and the dependency relationships between
the subject units. A lecturelet on a subject usually contains
a collection of basic subject units. The assessment compo-
nent records the usage of the lecturelet, the performance of
students on the exercises and quizzes, and the comments
from the students. The assessment data will be uploaded to
the server when the current session is finished. The student
model and profile will then be revised on the lecturelet server
by the server agent accordingly. The lecturelet agent may
also adopt various cognitive skills such as natural language
understanding, conversation, natural language generation,
learning, and social aspects. These make it easier for stu-
dents to interact with the agent through natural forms of
conversation and expression.

A course is composed of a collection of lecturelets. The
server agent on the lecturelet server manages lecturelets and
their relationships. It configures the lecturelets into a coher-
ent course sequence based on the course objective and the
target audience. It uses the pedagogical modeling technique
to deliver the appropriate subsequent lecturelets to individ-
ual students based on their performance and interests. It
collects student performance data from lecturelet agents and
performs data analysis and data mining to extract useful in-
formation for improving teaching in the future. The agent

313

on the lecturelet server also manages the student profiles
and is responsible for updating student models.

7. IMPLEMENTATION DETAILS OF THE

PROTOTYPE

A prototype of IDEAL is implemented using Java so that
the system can run on heterogeneous platforms. It con-
sists of interface agents, personal agents, teaching agents,
and course agents. The software agents communicate with
each other in XML messages through a variety of commu-
nication channels, including peer-to-peer, multicasting, and
broadcasting. Real-time communication among users has
been implemented in the forms of chat room, white board,
and streaming audio and video. The hardware environment
consists of high-performance workstations and storage de-
vices connected via high-bandwidth, low-latency networks.
The agents run concurrently on the servers and workstations
in the distributed environment with operating system level
support for software agents. The courseware and student
profile database are stored in RAIDs and accessed through
the storage area network (SAN) consisting of RAIDs and
servers connected via a Fibre Channel switch. The multi-
media courseware is in the form of XML documents and or-
ganized as a flexible, extensible, and scalable digital library.
The Web-based interface acts as a bridge between the stu-
dent and IDEAL. This interface interacts with the HTTP
Web server for adaptive delivery of electronic courses over
the WWW| assignment submissions, and student learning
assessment. The Web-based interface with a rigorous au-
thentication process is implemented using new technologies,
including Java Servlets and JSP (JavaServer Pages).

We have experimented with several distributed object-
oriented environments in developing multi-agent systems [24,
25, 26], including Java Remote Method Invocation (RMI),
JATLite [16], and JavaSpace [15]. Among these Java tech-
nologies, Java RMI provides an intermediate network layer
that allows Java objects residing at distributed sites to com-
municate using normal method calls. It is reliable, has good
performance, and works on many platforms. JATLite allows
users to quickly create software agents that communicate
robustly over the Internet and supports mobile agents. It

provides a variety of agent functionalities including regis-
tering with an Agent Message Router (AMR) using a name
and password, connecting/disconnecting from the Internet,
sending/receiving message asynchronously, and transferring
files with FTP. A problem with the current implementa-
tion is that the software is not very stable and sometimes
hangs completely. JavaSpace supports robust distributed
communication and data interchange and provides a simple,
expressive, and powerful tool that eases the traditional bur-
den of building distributed applications. JavaSpace is very
new, has not been fully developed, and is slow.

A prototype of the Web-based lecturelet management and
delivery system together with a sample set of lecturelets
on Web and agent technologies is also developed in the
CECS department at MU. The implementation consists of
the server side and the client side connected through the In-
ternet. The server side consists of the intelligent agents, the
student profiles, and the lecturelets that can be sent dynam-
ically to the client and can be dynamically updated. The
server agent is responsible for delivering these lecturelets
to the client and handling all kinds of requests from the
client. The lecturelet agent is responsible for teaching the
lecturelets. Prototypes of the agents are implemented on
top of distributed object-oriented software environments in-
cluding Java RMI, JavaSpace, and JATLite.

The client side consists of a browser that has support for
XML and Java applets. Applets are used for dynamic pro-
cessing on the client side thus reducing the load on the server
as well as on the network. The contents in XML are pre-
sented either using XSL (eXtended Stylesheet Language) or
Java applets depending on the level of processing that needs
to be done on the client side. As a simple example of client-
side processing, we take a look at the quiz applet. The quiz
applet allows the user to take the quiz at the client side.
The “quiz.xml” file looks like:

<quiz>
<query>
<subject>Which of the following is a programming
language?
</subject>
<choices>
<item>English</item>
<item>Emacs</item>
<item choice="correct">Java</item>
</choices>
</query>
<query>
<subject>Who invented the Internet?</subject>
<choices>
<item>Al Gore</item>
<item>George Bush</item>
<item choice="correct">Hard to identify
</item>
</choices>
</query>
</quiz>

The document consists of the content structured by a set
of tags. The questions and the answer choices are the con-
tent, and the tags associated with this content are used to
present this document. The attribute “correct” plays a vital
role in dynamically validating the student’s choices against
the correct choice. The XML document is parsed to obtain

314

an object model for presentation in an applet. The nodes
in the object model are extracted using a number of meth-
ods of the DOM API. Once the student finishes the quiz,
the student’s choices are dynamically validated against the
correct solution on the client side.

The presentation of the lecturelets is quite simple. The
XML file and its corresponding XSL file are placed on the
Web server. According to the student’s request, the Web
server responds appropriately. The response is generally a
method invocation on the servlet object. This method of
handling requests is far more efficient than CGI.

There are a number of aspects that are essential to build a
reliable learning system. They include security on the client
side to prevent the student from printing off the test/quiz
and others, effective lecturelet search techniques, effective
student modeling to model student performance, and a dy-
namic question set for each quiz/exam every time it is re-
taken by the student. In addition, we need to do more re-
search to further increase the intelligence of the learning
system.

8. REFERENCES

[1] J. R. Anderson, A. T. Corbett, K. Koedinger, and
R. Pelletier. Cognitive tutors: lessons learning. The
Journal of the Learning Sciences, 4(2):167-207, 1995.
T. A. Angelo. The campus as learning community:
Seven promising shifts and seven powerful levers.
AAHE Bulletin, 49(9):3-6, 1997.

L. Barnett, J. Kent, J. Casp, and D. Green. Design
and implementation of an interactive tutorial
framework. SIGCSE Bulletin, 30(1):87-91, March
1998.

M. Bauer. A Dempster-Shafer approach to modeling
agent references for plan recognition. User Modeling
and User-Adapted Interaction, 5:317-348, 1996.

J. E. Beck and B. P. Woolf. Using a learning agent
with a student model. In B. P. Goettl, H. M. Halff,
C. L. Redfield, and V. J. Shute, editors, Intelligence
Tutoring System (Proc. 4th Int’l Conf. ITS’98), pages
6-15. Springer, 1998.

C. Bonwell. Building a supportive climate for active
learning. The National Teaching and Learning Forum,
6(1):4-7, 1996.

C. Buron, M. Grinder, and R. Ross. Tying it all
together: Creating self-contained, animated,
interactive, web-based resources for computer science
education. SIGCSE Bulletin, 31(1):7-11, March 1999.
C. A. Carver, R. A. Howard, and W. D. Lane.
Enhancing student learning through hypermedia
courseware and incorporation of student learning
styles. IEEE Trans. on Education, 42(1):33-38,
February 1999.

C. Chou. Developing hypertext-based learning
courseware for computer networks: The macro and
micro stages. IEEE Trans. on Education, 42(1):39-44,
February 1999.

K. P. Cross. Why learning communities? why now?
About Campus, 3(3):4-11, 1998.

A. Davidovic and E. Trichina. Open learning
environment and instruction system (OLEIS).
SIGCSE Bulletin, 30(3):69-72, September 1998.

[12] V. F. Hartman. Teaching and learning style

2]

preferences: Transitions through technology. VCCA
Journal, 9(2):18-20, 1995.

F. Hattori, T. Ohguro, M. Yokoo, S. Matsubara, and
S. Yoshida. Socialware: Multiagent systems for
supporting network communities. Communications of
the ACM, 42(3):55-61, March 1999.

L. W. Hawkes, S. J. Derry, and E. A. Rundensteiner.
Individualized tutoring using an intelligent fuzzy
temporal relational database. Int’l Journal of
Man-Machine Studies, 33:409-429, 1990.

E. Freeman S. Hupfer and K. Arnold. JavaSpaces
Principles, Patterns, and Practice. Addison-Wesley,
1999.

JATLite. http://java.stanford.edu/java_agent/html.
N. R. Jennings and M. J. Wooldridge. Agent
technology: Foundations, applications, and Markets.
Springer, Berlin, 1998.

H.A. Latchman, C. Salzmann, D. Giblet, and

H. Bouzekri. Information technology enhanced
learning in distance and conventional education. IEEE
Trans. on Education, 42(4):247-254, November 1999.
D. McArthur, C. Stasz, J. Hotta, O. Peter, and

C. Burdorf. Skill-oriented task sequencing in an
intelligent tutor for basic algebra. Instructional
Science, 17(4):281-307, 1988.

W. R. Murray. A practical approach to Bayesian
student modeling. In B. P. Goettl, H. M. Halff, C. L.
Redfield, and V. J. Shute, editors, Intelligence
Tutoring System (Proc. 4th Int’l Conf. ITS’98), pages
424-433. Springer, 1998.

V. A. Petrushin and K. M. Sinista. Using probabilistic
reasoning techniques for learner modeling. In World
Conf. on AI in Education, pages 418-425, Edinburgh,
1993.

315

[22]

23]

[30]

[31]

[32]

L. G. Richards. Promoting active learning with cases
and instructional modules. Journal of Engineering
Education, 84(4):375-381, 1995.

L. Rubin and C. Hebert. Model for active learning:
Collaborative peer teaching. College Teaching,
46(1):26-30, 1998.

Y. Shang, C. Sapp, and H. Shi. An intelligent web
representative. Information, 3(2):253-262, 2000.

Y. Shang and H. Shi. A web-based multi-agent system
for interpreting medical images. World Wide Web,
2(4):209-218, 1999.

H. Shi, Y. Shang, A. Joshi, and M. Jurczyk.
Laboratory-oriented teaching in web and distributed
computing. In Proc. 2000 ASEE Annual Conference &
Ezposition, St. Louis, June 2000.

M. K. Stern and B. P. Woolf. Curriculum sequencing
in a Web-based tutor. In B. P. Goettl, H. M. Halff,

C. L. Redfield, and V. J. Shute, editors, Intelligence
Tutoring System (Proc. 4th Int’l Conf. ITS’98), pages
584-593. Springer, 1998.

V. Tinto. Universities as learning organizations. About
Campus, 1(6):2-4, 1997.

M. Villano. Probabilistic students models: Bayesian
belief networks and knowledge space theory. In
Intelligence Tutoring System (Proc. 2nd Int’l Conf.
ITS’92), pages 491-498. Springer, 1992.

G. Weber. Individual selection of examples in an
intelligent learning environment. Journal of Artificial
Intelligence in Education, 7(1):3-31, 1996.

G. Weiss, editor. Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence. The
MIT Press, Cambridge, MA, 1999.

xml.com. XML.COM online, 2001.
http://www.xml.com.

