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ABSTRACT
As streaming video and audio over the Internet becomes
popular, proper proxy caching of large multimedia objects
has become increasingly important. For a large media ob-
ject, such as a 2-hour video, treating the whole video as
a single web object for caching is not appropriate. In this
paper, we present and evaluate a segment-based bu�er man-
agement approach to proxy caching of large media streams.
Blocks of a media stream received by a proxy server are
grouped into variable-sized segments. The cache admission
and replacement policies then attach di�erent caching val-
ues to di�erent segments, taking into account the segment
distance from the start of the media. These caching policies
give preferential treatments to the beginning segments. As
such, users can quickly play back the media objects with-
out much delay. Event-driven simulations are conducted to
evaluate this segment-based proxy caching approach. The
results show that (1) segment-based caching is e�ective not
only in increasing byte-hit ratio (or reducing total traÆc)
but also in lowering the number of requests that require
delayed starts; (2) segment-based caching is especially ad-
vantageous when the cache size is limited, when the set of
hot media objects changes over time, when the media �le
size is large, and when many users may stop playing the
media after only a few initial blocks.
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1. INTRODUCTION
The explosive growth of the World Wide Web has led to

signi�cant increases in user latency and network congestion
for Internet applications. One popular approach to reducing
response time and network traÆc is to deploy proxy caches
on the edge of the Internet close to the users. A proxy cache
stores recently accessed web objects in the hope of satisfying
future client requests without contacting the content server.
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As requests for and delivery of streaming video and au-
dio over the Web becomes more popular, caching of media
objects on the edge of the Internet has become increasingly
important. Recently, several commercial companies have
announced media distribution services on the Internet us-
ing a number of proxy caches. Examples include Akamai
(www.akamai.com), Digital Island (www.digisle.com), En-
ron (www.enron.com) and others. Companies that provide
hardware and software caching products include Inktomi
(www.inktomi.com), CacheFlow (www.cache
ow.com), Net-
work Appliance (www.netapp.com) and others.
However, existing techniques for caching text and image

objects are not appropriate for caching media streams. The
main reason is due to the large sizes of typical media objects.
For a large media �le, such as a 2-hour video, treating the
whole video as a single web object to be cached is impracti-
cal. Just storing the entire contents of several long streams
would exhaust the capacity of a conventional proxy cache.
Hence, only the very few video objects that are hot should
be cached entirely. Most media objects probably should only
be cached partially.
Because of the high start-up overhead and isochronous re-

quirement, a streaming media request typically is not started
by a proxy server until suÆcient blocks of data are cached lo-
cally. Such delayed starts can frustrate users and make cus-
tomers unhappy. To overcome this problem, the beginning
portions of most media objects should be cached. Hence,
from the caching perspective, the beginning portion of a
media stream is more important than the later portion.
The importance of beginning portions of most media ob-

jects and the observation that most media objects should
only be cached partially lead us to a segment-based ap-
proach to proxy caching of large media objects. Blocks of
a media object received by the proxy server are grouped
into variable-sized, distance-sensitive segments. In fact, the
segment size increases exponentially from the beginning seg-
ment. For simplicity, the size of segment i is 2i�1 and con-
tains media blocks 2i�1; 2i�1+1; � � � ; 2i�1. The motivation
for such exponentially-sized segmentation, as compared with
�xed size segmentation, is such that we can quickly discard
a big chunk of a cached media object that was once hot
but has since turned cold. This way the cache manager can
quickly adjust to the changing reference patterns of partially
cached objects. For example, the cache manager can release
1/2 of a cached media object in a single action. In a �xed
size segmentation, in contrast, a sequence of actions must
be taken to achieve the same e�ect. This is particularly
important for large media objects, such as videos.
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The number of segments cached for each object is dynam-
ically determined by the cache admission and replacement
policies. They attach di�erent caching values to di�erent
segments based on the reference frequency and the segment
distance from the beginning of a media. The caching poli-
cies give preferential treatments to the beginning segments.
Hence, a partially cached media object always starts from
the beginning, facilitating immediate starts of user requests.
In addition, we cache more segments for media objects with
higher reference frequencies.
Event-driven simulations were conducted to evaluate this

variable-sized, distance-sensitive segment approach to proxy
caching of large media objects. We compared the segment-
based proxy caching with a whole media approach and a
pre�x/suÆx approach. In the pre�x/suÆx approach, a me-
dia is partitioned into a pre�x and a suÆx. A small portion
of the cache is dedicated for caching the pre�xes while the
rest of the cache for the suÆxes. We measured the byte-
hit ratio as well as the percentage of requests with delayed
starts. When a request arrives and the beginning blocks
of the requested media are not cached, the request has a
delayed start. Sensitivities analyses on various parameters
were conducted. The results show that (1) the segment-
based approach indeed is e�ective not only in increasing the
byte-hit ratio over a wide range of conditions, but also in
lowering the percentage of requests with delayed starts; and
(2) the segment-based approach is especially advantageous
under the conditions that (a) the cache size is limited, (b)
the set of hot media objects changes over time, (c) the me-
dia �le size is large, and (d) many users may decide to stop
viewing the media playback after only a few initial blocks.
There has been research work on the multimedia caching

and proxy services [1, 3, 9, 8, 10, 14, 13]. However, to
the best of our knowledge, none has examined the e�ec-
tiveness of variable-sized, distance-sensitive segment caching
policies for large media objects. Earlier research on multime-
dia caching proposed storing a sliding interval of successive
frames to satisfy client requests that arrive close together in
time [5, 11]. Other recent work proposed having the proxy
server cache a �xed subset of frames, such as the pre�x of a
stream or a subset of other frames, to reduce the overhead
of transmitting to the client [9, 12, 7, 2, 6]. Various as-
pects of pre�x caching were also studied, such as workahead
smoothing [9, 8] and protocol considerations [3]. Unlike the
segment-based caching approach presented in this paper, the
suÆx was not cached in [9]. Partial segment caching of me-
dia objects was proposed to be combined with a dynamic
skyscraper broadcasting to reduce the media delivery cost
from a remote server to regional servers [2, 4]. However, the
emphasis in [2] was on caching the initial segments of many
media objects and relying on remote multicast delivery of
the later segments, rather than fully caching fewer highly
popular objects. In contrast, in our segment-based caching
scheme, the most popular media objects are fully cached
while the less popular objects are partially cached. More-
over, the number of initial segments cached is dynamically
determined by the popularity of an object.
The rest of the paper is organized as follows. Section 2 de-

scribes the details of the variable-sized, segment-based proxy
caching, including the system architecture, media segmen-
tation policy, and cache admission and replacement policies.
Section 3 presents our event-driven simulations and results.
Finally, Section 4 summarizes the paper.

media content

cached
segments

proxy server
content server

client device

the Internet

Figure 1: System architecture for media streaming
on the Internet.

2. DESIGN OF SEGMENT-BASED PROXY
CACHING OF MEDIA STREAMS

2.1 Caching media streams over the Internet
Fig.1 shows the general system architecture for media

streaming over the Internet by employing proxy caching.
A proxy server is placed geographically near the client ac-
cess device, which can be a PC, a TV or another display
device. A user request originated from a client device is di-
rected to the proxy server. If the requested media object is
cached, then it is transmitted right away to the client device.
Otherwise, it is fetched �rst from the content server to the
proxy server and then transmitted to the client device. It
is assumed that the latency between a client device and the
proxy server is negligibly small, but the latency between the
proxy server and the content server is relatively large and
cannot be ignored. Therefore, in order for a client device to
immediately playing back the media, enough initial blocks
must be present at the proxy server to mask the latency be-
tween it and the content server. Prefetching can be issued
for the remaining not-yet-cached media.

2.2 Segmentation of media objects
To simplify the management of segments, we use a simple

segmentation method (see Fig. 2 for an example). A media
�le is divided into multiple equal-sized blocks, which is the
smallest unit of transfer. Multiple blocks are then grouped
into a segment by the proxy server, where the cache admis-
sion and replacement policies attach di�erent caching values
to di�erent segments. The size of a segment is sensitive to
its distance from the beginning of the media. The closer to
the beginning a segment is, the smaller the size it will be.
The number of blocks grouped in segment i is 2i�1. Segment
i contains media blocks 2i�1; 2i�1 + 1; � � � ; 2i � 1, if i � 1;
Segment 0 contains block 0. In general, segment i is twice as
large as segment i�1, except the last segment. The purpose
of this exponentially-sized segmentation is to allow the cache
manager to quickly discard a big chunk of cached media ob-
ject, especially when the object size is large. For example,
the cache manager can discard 1/2 of a cached object in a
single action. In contrast, it takes a sequence of actions to
do the same for a �xed size segmentation approach.
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Figure 2: Example of media segmentation.

The segmentation process is transparent to the media con-
tent provider or the client device. It is the artifact intro-
duced by the proxy server to make cache management more
e�ective. The basic concept is to create smaller sized seg-
ments at the beginning and give them higher caching prior-
ities. This is important because the initial segments deter-
mine the latency perceived by the users, and hence are more
important to cache. Moreover, many viewers may decide to
stop viewing after only a few initial segments. In such cases,
it is not even necessary to fetch the later segments. The later
segments are therefore made progressively larger so that we
can reduce the number of segments that the proxy server
needs to track and manage.

2.3 Cache admission policy
We consider two important cache management policies.

One is the cache admission policy and the other is cache
replacement policy. These two are closely related.
The primary idea of cache admission control is to permit

only segments from media objects which are popular enough
to enter the cache. The admission control applies di�erent
criteria to di�erent segments of the same media object. The
basic consideration is the distance of a segment from the be-
ginning of the media object, i.e., the segment number. The
beginning segments of an object have a critical impact on
the initial delay to start the media. If cached, the video may
be streamed immediately to the requesters. The later seg-
ments, if not cached, can be prefetched after the request is
received. However, fetching these later segments does have a
signi�cantly negative impact on network traÆc. Thus, these
later segments still should be cached if they are requested
frequently enough.
Thus, we use a two-tiered approach to admission control

based on the segment number. For a segment with a seg-
ment number smaller than a threshold, Kmin, it is always
eligible for caching. However, for a segment with a segment
number no smaller than Kmin, it is determined eligible for
caching only if its caching value is larger than some cached
segments also with segment numbers no smaller than Kmin.
For simplicity, we assume that a portion of the cache ca-
pacity is used to store the initial segments while the rest to
store the later segments. Hence, the initial Kmin segments
of a media object are cached as a unit and can only be re-
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Figure 3: The size distribution of cached media ob-
jects for variable-sized segment scheme.

placed by the initial segments of other media objects. The
value of Kmin should be determined by the criterion that
enough of the non-cached segments can be fetched in time
from the content server so that continuous streaming can
be guaranteed once it is started. It depends on the network
delay between the proxy server and the content server. It
also depends on the load condition of the content server.
With such a cache admission control, the highest num-

bered segment cached for a given media is always the last
one to be included into the cache and the �rst one to be
replaced. Each partially cached media object always gets
a consecutive set of segments cached starting from the be-
ginning. At least there are Kmin initial segments stored for
any cached objects. Some of the most frequently requested
objects may have the entire contents cached. Fig. 3 shows
an example of the size distribution of cached media objects.
Some objects are fully cached, e.g., the entire contents of
objects 1{3 are cached. Other objects are only partially
cached. For example, objects 8{14 have the minimumKmin

segments cached.

2.4 Cache replacement policy
The caching value of a segment depends on two variables:

reference frequency of an object and the segment distance.
We simply de�ne a segment's caching value to be the ratio
of reference frequency over segment distance. It is a simple
re
ection of the fact that we favor the initial segments of
objects with higher reference frequencies. However, we did
vary this value function in our simulations. We changed it to
become the ratio of reference frequency over the n-th power
of segment distance, where n is a positive number. But, the
results were only slightly sensitive to n, if at all. Hence,
n = 1 was used.
We use timestamp to estimate the reference frequency of

an object. Each segment of an object uses the same times-
tamp. A timestamp records the last time an object is re-
quested. Speci�cally, the reference frequency is estimated
as the inverse of the time since the last reference to the cur-
rent time. Namely, the reference frequency is estimated as
1=(T �T 0), where T is the current time and T 0 is the times-
tamp maintained for an object. If an object requested is
not already in the cache, the timestamp is assumed to be a
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minus in�nite, so that the reference frequency will be zero.
As a result, the caching value of segment i of an object is
de�ned simply as 1=((T � T 0)� i).
Two LRU stacks are maintained, one for the initial Kmin

segments and the other for the later segments. For each
LRU entry, we maintain the object ID, the timestamp of
the last request to this object, the last block ID of cached
media, and the total number of requests currently still play-
ing this object. Assume that K denote the �rst segment
of media object O that is not yet cached, i.e., segments
0; 1; 2; � � � ; (K � 1) of object O are cached. If K � Kmin,
this segment is eligible for caching only if its caching value
is greater than that of its replacement segment. The candi-
date segments for replacement can be found from the LRU
stack beginning from the bottom. Since we have always
cached contiguous media from the beginning, a candidate
segment for replacement is always the largest numbered seg-
ment. Thus, the replacement policy simply examines a small
number of media objects from the bottom of the LRU stack
to �nd the replacement segment.
Fig. 4 shows the caching algorithm for segment i of an

object P using the admission as well as replacement policies
outlined above. In order to maintain caching contiguous
media for object P , we invoke this caching algorithm only
if segment i � 1 of object P has been cached. Otherwise,
segment i will not be considered for caching. When an object
is requested for the �rst time, the initial Kmin segments are
always eligible for caching and a simple LRU scheme can be
used to �nd the replacement. However, since the reference
frequency is zero, the later segments will not be eligible for
caching. The later segments may be eligible for caching on
subsequent requests. In order to make room for segment
i of object P , many cached segments might be replaced.
The least valued segment in the cache is identi�ed one by
one for replacement consideration. A replacement candidate
segment will be removed from the cache if its caching value
is smaller than that of segment i of object P and there is no
active user currently playing back the media.

3. PERFORMANCE EVALUATION

3.1 Methodology
We implemented an event-driven simulator which models

a proxy cache server to evaluate this variable-sized segment-
based approach. Two LRU stacks were implemented to
track media objects in the cache. One was to track the initial
segments and the other to track the later segments. A por-
tion Cinit of the total cache capacity was dedicated for the
initial segments. The later segments are managed in another
LRU stack, but segment-based cache admission and replace-
ment policies (see Fig. 4) are used instead of simply LRU.
We computed two important performance metrics: byte-
hit ratio and fraction of requests with delayed starts. The
byte-hit ratio measures the ratio of total bytes from cached
objects over the total bytes of objects requested. When a
request arrives and the initial Kmin segments are not in the
proxy cache, it has a delayed start.
For the simulations, we assumed that the media objects

are videos. The video size is uniformly distributed between
0:5B and 1:5B blocks, where B is the mean video size. The
default value of B is 2,000. The playing time for a block
is assumed to be 1.8 seconds. In other words, the playing
time for a video is between 1,800 seconds and 5,400 seconds,

if (i < Kmin) f // the LRU stack for initial segments
�nd a replacement segments, if necessary;
cache segment i;

g
else f // the LRU stack for later segments

if (object P is referenced for the �rst time)
exit;

while ((there is not enough free space for segment i)
and
(replacement candidate can still be found)) f

�nd object Q whose largest cached segment is least
valued;
let segment j be the largest cached segment of
object Q;
if ((1=((T � T 0

P )� i) > 1=((T � T 0

Q)� j)) and
(no user is playing Q))
replace segment j of object Q and increase
free space;

g
if (there is enough free space for segment i of
object P )

cache segment i;
g

Figure 4: Caching algorithm for segment i of object
P .

or 30-90 minutes. The cache size is expressed in terms of
number of media blocks. The default cache size is 400,000
blocks. The inter-arrival time is assumed to be exponen-
tially distributed with mean �. The default value of � is
60.0 seconds. Table 1 shows the de�nition of these system
parameters and the default values used in the simulations.
The requested video titles are drawing from a total of M

distinct video titles. The popularity of each of the M video
titles follows a Zipf-like distribution Zipf(x;M) [15]. A Zipf-
like distribution takes two parameters, x andM , the former
corresponding to the degree of skew. The distribution is
given by pi = c=i1�x for each i 2 f1; � � � ;Mg, where c =

1=[
PM

i=1
1=i1�x] is a normalization constant. Setting x =

0 corresponds to a pure Zipf distribution, which is highly
skewed. On the other hand, setting x = 1 corresponds to a
uniform distribution with no skew. The default value for x
is 0.2 and that for M is 2,000.
The popularity of each video title changes over time. This

is used to simulate the scenario that there may be di�erent
user groups accessing the video titles at di�erent times and
their interests may be di�erent. In other words, the most
popular videos at the moment may be replaced by another
ones at a later time. In our simulations, the popularity dis-
tribution changed every R requests. When it did, another
well-correlated Zipf-like distribution with the same param-
eters was used [13]. The correlation between two Zipf-like
distributions is modeled by using a single parameter k that
can take on any integer value between 1 and M . First, the
most popular video in Zipf-like distribution 1 is made to cor-
respond to the r1-th most popular video in Zipf-like distribu-
tion 2, where r1 is chosen randomly between 1 and k. Then,
the second most popular video in distribution 1 is made to
correspond to the r2-th most popular video in distribution 2,
where r2 is chosen randomly between 1 and min(M;k+ 1),
except that r1 is not allowed, and so on. Thus, k represents
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Table 1: System parameters and default values

Notation De�nition (Default values)

B mean number of blocks per video (2,000
blocks)

� mean request inter-arrival time (60 s)
C total cache capacity (400,000 blocks)

Cinit portion of cache capacity used to cache
initial segments (10%)

Kmin initial segments cached for a video (6 seg-
ments, or 32 blocks)

M number of distinct video titles (2,000)
Zipf(x;M) Zipf-like distribution for video titles

(Zipf(0.2, 2,000))
k maximum shifting distance for a hot video

(10)
R number of requests between shifting of

hot videos (200)

the maximum position in popularity a video title may shift
from one distribution to the next. k = 1 corresponds to
perfect correlation, and k = M to the random case or no
correlation. We used an indirect video mapping array to
implement this change of popularity distribution. The �rst
element in the mapping array always represents the most
popular. However, the video to which the �rst element maps
may change. Hence, the change in popularity distribution
was implemented by changing the videos to which the array
maps.

3.2 Simulation results
We compared the variable-sized segment approach to a

full video and a pre�x/suÆx schemes. The full video scheme
simply uses an LRU for replacement. Every requested video
is cached in its entirety. The pre�x/suÆx scheme partitions
a video into a pre�x and a suÆx. The pre�x size is the same
as the Kmin initial segments of the variable-sized segment
approach. Furthermore, the same portion of cache capacity
is dedicated to store the pre�xes. Both pre�x and suÆx are
managed using LRU replacement. Note that an object is
always cached once it is referenced in an LRU policy. In
contrast, there is a cache admission policy in the variable-
sized segment approach.

3.2.1 The impact of cache size
First, we studied the impacts of cache size on the byte-hit

ratio and delayed start. For a wide range of cache sizes,
the variable-sized segment approach has the highest byte-
hit ratio and the lowest fraction of requests with delayed
starts. Fig. 5 shows the impact of cache size on the byte-hit
ratio. Fig. 6 presents the impact of cache size on the frac-
tion of requests with delayed starts. The full video approach
and the pre�x/suÆx has comparable byte-hit ratio (see 5),
with the full video approach having a slight advantage over
the pre�x/suÆx one. The advantage in byte-hit ratio of
the variable-sized segment approach is more signi�cant for
a smaller cache size. For instance, the byte-hit ratio for the
variable-sized segment approach is 21% better for a smaller
cache size of 300,000 and 8% better for a much larger cache
size of 900,000. With higher byte-hit ratio, the variable-sized
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Figure 5: The impact of cache size on byte-hit ratio.
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Figure 6: The impact of cache size on delayed start
(variable-sized segment and pre�x/suÆx are identi-
cal).

segment approach can achieve the same caching e�ectiveness
with a smaller storage requirement. As a result, it can re-
duce the system cost for the organizations running proxy
caching. For example, in order to achieve a 50% byte-hit ra-
tio, the variable-sized segment approach needs only 500,000
blocks in cache size while the pre�x/suÆx approach requires
700,000 blocks, a 40% increase.
Even though the full video and the pre�x/suÆx approaches

perform almost equally in byte-hit ratio, they di�er dra-
matically in the fraction of requests with delayed starts (see
Fig. 6). The full video approach has a signi�cantly higher
fraction of requests with delayed starts. For example, for
a cache size of 400,000 blocks, 60% of the requests cannot
start immediately under the full video approach. On the
other hand, only 15.6% of requests need to be delayed. Be-
cause of the same amount of cache capacity dedicated for
storing the initial blocks, the variable-sized segment and the
pre�x/suÆx approaches perform identically in Fig. 6 for the
whole range of cache sizes.

3.2.2 The impact of skew in video popularity
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Figure 7: The impact of skew in video popularity on
byte-hit ratio.
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Figure 8: The impact of skew in video popularity
on delayed start (variable-sized segment and pre-
�x/suÆx are identical).

Secondly, we examined the impact of skew in video pop-
ularity on the byte-hit ratio and delayed start. Again, the
variable-sized segment approach has the highest byte-hit ra-
tio and lowest fraction of requests with delayed starts under
a wide range of degrees of skew in video popularity. Speci�-
cally, we varied the Zipf parameter, x, from 0.1 to 0.8. Fig. 7
shows the impact of skew in video popularity on byte-hit
ratio while Fig. 8 shows the impact on delayed start. In
general, the more skewed the video popularity is, i.e., more
viewers are interested in fewer titles, the better the byte-hit
ratio is. Thus, caching is more e�ective if most viewers are
repeatedly requesting the same smaller number of videos.
For example, for x = 0:1, the byte-hit ratios are above 50%
for all three approaches. However, for x = 0:8, the byte-hit
ratios are only about 10% for all three approaches. Under
such conditions, caching is simply not e�ective, no matter
which approach is employed.
In addition to Zipf parameter, x, we also studied the im-

pact of the maximum video shifting position k, during popu-
larity distribution change. The default R was set to be 200.
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Figure 9: The impact of the maximum shifting po-
sition of a video.

Fig. 9 shows the impact of the maximum shifting position
of a video. Here, we shows the variable-sized segment and
the pre�x/suÆx approaches. In general, as the maximum
distance increases, the byte-hit ratios for both approaches
decrease, but only very slightly. The variable-sized segment
approach is consistently better than the pre�x/suÆx ap-
proach. As expected, this is due to the fact that the popu-
larity distributions in video titles are highly correlated with
k ranging from 5 to 40. Note that k = 1 represents perfect
correlation and k = M = 2; 000 represents no correlation.
We also varied the values of R, and the results were sim-
ilar in the sense that the byte-hit ratios are only slightly
sensitive to R for the similar reason.

3.2.3 The impacts of other system parameters
Fig. 10 shows the impact of mean video length on the

byte-hit ratio. In general, as the media �le size increases,
the byte-hit ratios decrease for all three approaches. Notice
that the advantage of the variable-sized segment approach
over the other two is more signi�cant when the media �le
size is larger. For example, the advantage is about 28% for
mean video size of 3,000 blocks, but is only about 9% for
the case of 1,000 blocks. This shows that the variable-sized
segment approach is particularly useful in proxy caching of
large media streams.
Besides the media �le size, the number of distinct media

objects can also impact the caching e�ectiveness. Gener-
ally, there are many media objects exist on the Web. As
user requests spread over more distinct objects, caching be-
comes less e�ective. Fig. 11 shows the byte-hit ratios of the
three approaches under di�erent numbers of distinct objects
users can request. Once again, the variable-sized segment
approach has a bigger advantage over the other two when
the condition for caching is less favorable.
Fig. 12 and Fig. 13 examine the percentage of cache ca-

pacity dedicated for storing the initial segments or pre�xes.
Because of reduced cache capacity for the later segments or
suÆxes, the byte-hit ratio decreases as the percentage used
for initial segments increases. This slight decrease in byte-
hit ratio can be o�set by the substantially increased bene�ts
of reduced delayed starts. For example, let us compare the
cases of 5% and 15%. The byte-hit ratio is barely decreased,
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Figure 10: The impact of video length.
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Figure 11: The impact of total number of distinct
media objects.
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Figure 12: The impact of cache capacity used for
initial segments on byte-hit ratio.
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Figure 13: The impact of cache capacity used for
initial segments on delayed starts.

but the fraction of delayed starts drops substantially. How-
ever, no more bene�ts can be derived once the percentage of
cache for storing the initial segments increases beyond 20%.

3.2.4 The impact of user viewing behavior
Finally, we study the impact of a not uncommon user

behavior on the Web. Most users may prematurely stop
playing back a video after viewing only the �rst few seg-
ments. There are many possible reasons for a user to stop
playing prematurely. Among them, the media content may
not be what the user has anticipated or the media is simply
too long and the user has lost interest in it. For this study,
we created three scenarios representing partial completion
of viewing the video. In partial completion scenario I, there
are 50% of users completing the entire video while 50% of
users stopping at half of the video. In partial completion
scenario II, 25% of users complete 1=4 of a video, 25% of
them complete 1=2 of a video, 25% of them complete 3=4 of
a video and another 25% of them complete the entire video.
In partial completion scenario III, 50% of users complete
1=4, 20% of them complete 1=2, 20% of them complete 3=4

42



full completion
partial completion I

partial completion II
partial completion III

user behavior

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tr
af

fic
 r

at
io

variable-sized segment prefix/suffix

Figure 14: The impact of user viewing behavior on
traÆc ratio.

and only 10% of users complete the entire video. Partial sce-
nario III represents a case where most viewers stops quite
early.
Fig. 14 shows the traÆc ratio of both the variable-sized

segment and pre�x/suÆx approaches. The traÆc ratio sim-
ply computes the ratio of total bytes retrieved from the con-
tent server over the total bytes for requested objects. For
the variable-sized segment approach, the prefetch request for
the next segment is issued when the proxy server is trans-
mitting the �rst blocks of the current segment. Namely, we
only prefetch one segment ahead. Hence, if a user stops
early, network traÆc may be saved. For the pre�x/suÆx
approach, however, the prefetch request for the suÆx must
be issued once a request is made, making it unable to save
traÆc even if a user prematurely stops viewing a video. Here
we assumed that the entire suÆx was fetched. In Fig. 14,
the traÆc ratio decreases for the variable-sized segment ap-
proach as more users stop viewing the video earlier. Since
we always prefetch the next segment, the traÆc ratio of par-
tial completion scenario I is the same as the full completion
case.

4. SUMMARY
In this paper, we have presented a variable-sized segment

approach to proxy caching of large media objects, such as
videos. Proper proxy caching is very important as stream-
ing video and audio over the Internet becomes ever more
popular. Instead of treating the entire video as a web ob-
ject, our segment-based approach groups media blocks into
variable-sized segments with a simple segmentation method.
The cache admission and replacement policies assign di�er-
ent caching values to di�erent segments, taking into account
both reference frequency and segment distance from the be-
ginning of the media. These caching policies give prefer-
ential treatments to the initial segments, resulting partially
cached objects starting from the beginning segment.
Event-driven simulations were conducted to evaluate the

variable-sized segment approach and compare it with a full
video approach and a pre�x/suÆx caching approach. The
pre�x/suÆx approach partitions a video into a pre�x and
a suÆx. The results show that (1) indeed the variable-
sized segment approach is e�ective in not only increasing

the byte-hit ratio (or reducing total traÆc) but also lower-
ing the the fraction of requests that require delayed starts;
(2) variable-sized segment approach is particularly e�ective
when the cache size is limited, when the set of hot media
objects changes over time, when requests spread over a large
number of media objects, when the media �le size is large
and when many users may stop viewing the video after only
a few initial segments.
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