
Fine Grained Access Control for SOAP E-Services

Ernesto Damiani
Dip. di Tecnologie
dell’Informazione

Università di Milano
Via Bramante 65

26013 Crema, Italy

edamiani@crema.unimi.it

Sabrina De Capitani di
Vimercati

Dip. di Elettronica
Università di Brescia

Via Branze 38
25123 Brescia, Italy

decapita@ing.unibs.it

Stefano Paraboschi
Dip. di Elettronica e

Informazione
Politecnico di Milano
Piazza L. da Vinci 32
20133 Milano, Italy

parabosc@elet.polimi.it

Pierangela Samarati
Dip. di Tecnologie
dell’Informazione

Università di Milano
Via Bramante 65

26013 Crema, Italy

samarati@dsi.unimi.it

ABSTRACT
Lightweight protocols for remote service invocation via
HTTP and XML, such as SOAP, are rapidly gaining accept-
ance among developers of Internet-based e-services, espe-
cially because of their �rewall-traversal capabilities. How-
ever, no standard technique for access control security is
currently de�ned for either HTTP or SOAP itself. Con-
cerns have been raised about the possibility that di�erent
SOAP applications will deal with embedded security in dif-
ferent ways, leading to application-dependent security holes.
In this paper, we propose an approach that relies on the
XML structure of SOAP requests to support �ne-grained
authorizations at the level of individual XML elements and
attributes that compose a SOAP call. The result is a sim-
ple, yet powerful and general, technique to enforce access
restrictions to SOAP invocations.

Categories and Subject Descriptors
C.2.0 [Computers-Communication Networks]: Gen-
eral|Security and protection; K.4.4 [Computers and

Society]: Electronic Commerce|Security ; K.6.5 [Man-

agement of Computing and Information Systems]:
Security and Protection

General Terms
Security, Design

Keywords
Access control, SOAP, XML, Certi�cates, Roles

1. INTRODUCTION
Accessing information on the global Internet has become

an essential requirement of the modern economy. Recently,
the focus has shifted from access to traditional information
stored in WWW sites to access to large e-services such as
e-government services, remote banking, or airline reserva-
tion systems [7]. Global e-services are also coming of age,

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

designed as custom applications exploiting single e-services
already available on the Internet and integrating the re-
sults. The Hypertext Transfer Protocol (HTTP), the most
common protocol used on the Web today, has proved to
be an e�ective, scalable technology for transferring multi-
media information, but it was not designed for accessing
distributed e-services. Indeed, calls to e-services are more
easily modeled by distributed object protocols as Remote
Method Calls (RMCs), such as CORBA [23], DCOM [3],
and Java-RMI [11], in which clients pass parameters to re-
mote components and get some kind of result in return.
Many RMC-based protocols support object invocation ac-
cess policies that govern whether a client, acting on behalf
of its current user, can invoke the requested operation on
a target object. The policy is normally enforced by the
software implementing the protocol. For instance, CORBA
Security Service access policies [18] are expressed in terms
of the user's privilege attributes, which are encapsulated in
a Credentials object, and the target object's control at-
tributes, which are encapsulated in an AccessDecision ob-
ject. The control attributes, which are associated with ev-
ery object that accepts invocations, describe the authoriza-
tions that a user must have in order to be allowed to invoke
the requested operation on the speci�c object implementa-
tion. Most object invocation access control services are im-
plemented by intercepting all invocations, possibly on both
client and server sides. Having intercepted the object invo-
cation, the Credentials object is consulted to obtain the
client's authorizations, which are then passed as a parame-
ter to the AccessDecision object. Finally, AccessDecision
either grants or denies permission to continue the object in-
vocation. Access control provisions like those provided by
CORBA Security Services would be particularly useful on
the public Internet; on the other hand, other features of
RMC-based distributed object protocols have proved to be
rather unsuitable for Internet use. These protocols exhibit
two main problems that prevent their large-scale use on the
Net.

�Verbosity : Many RMC-based protocols require consider-
able bandwidth due to their high service to data packets
ratio. For instance, DCOM's ping-based lifecycle manage-
ment requires continuous conversation between client and
server to keep the interaction alive.

� Firewall traversal and user authentication: Many organi-
zations are reluctant to enable RMC-based protocols such
as CORBA-IIOP or DCOM through their security �re-

504

walls. Moreover, current authentication techniques for
RMC protocols were not designed for Internet use. For in-
stance, in the case of DCOM, it seems unlikely that generic
Internet-based clients will ever be able to perform domain-
based authentication with DCOM application servers.

Several vendors provide patches based on tunneling
�rewall-traversal, encapsulating packets sent to RMC
servers into a single packet stream to a bastion host. How-
ever, these products tend to be very sensitive to con�gura-
tion mistakes and are not interoperable. To foster a clean
solution to this problem, the Internet and Web communi-
ties have provided several proposals for the use of XML
in lightweight network protocols and distributed applica-
tions: XML-RPC [28], SOAP [2], XMI [27], WebDAV [25],
ICE [24], and IOTP [4] are only a few examples. In this
paper, we focus on SOAP [2], seen as an attempt to cod-
ify the main concepts behind lightweight techniques into
a simple and generic protocol that can serve as an indus-
try standard. The XML Protocol Working Group of the
W3C (http://www.w3.org/2000/xp) is studying the de�ni-
tion of protocols for the remote invocation of services in
the XML context and is currently dedicating considerable
attention to SOAP. SOAP is a clean and elegant solution
to the verbosity and �rewall traversal problems; however,
no standard technique for access control security has been
yet de�ned for either HTTP or SOAP itself. Concerns have
been raised about the possibility that di�erent SOAP appli-
cations will deal with embedded security in di�erent ways,
leading to application-dependent security holes. We propose
a simple yet general technique to specify and enforce �ne-
grained access control for SOAP-like invocations, leveraging
the XML encoding used by SOAP for both service invoca-
tion and responses. Our approach allows the speci�cation
of �ne-grained usage policies for e-services using XML. We
believe the application of access control techniques to XML-
based service invocations to be crucial for the development
of reliable and secure e-services.
The paper is structured as follows. Section 2 brie
y out-

lines �rewall-related issues for RMC-based protocol security.
Section 3 presents the features of the SOAP protocol that
are relevant to our approach and discusses the limitation of
�rewall-based security policies applied to it. Section 4 de-
scribes our proposal for a �ne-grained
exible access control
technique for SOAP invocations, which overcomes depen-
dence from �rewalls. Section 5 discusses the design and
implementation of an authorization �lter enforcing our ap-
proach. Finally, Section 6 draws our conclusions.

2. FIREWALL IMPACT ON OBJECT
PROTOCOLS

Most organizations insert �rewalls between their publicly
accessible Web servers and the remote clients who can access
those servers, blocking incoming traÆc according to various
criteria. Firewalls partition the Internet in security cells,
whose boundaries are diÆcult to penetrate for remote ser-
vice invocations. As a simple example, consider the TCP/IP
architecture, where each well-known service is assigned a
port number and each service request carries that number.
While blocking all ports except the standard port 80 used
for HTTP connections is a common practice, it prevents
using distributed object protocols like CORBA or DCOM,
which rely on dynamically assigned ports for remote method

POST /QuoteService HTTP/1.1
SOAP-Action="http://www.acme.com/GetQuote"

Content-Type: text/xml; charset="UTF-8"
Content-Length: nnnn
<!-- XML tree encoding the invocation goes here -->

Figure 1: A HTTP header carrying a SOAP request

invocations. Enabling access to an e-service through a �re-
wall requires manual intervention for the �rewall con�gu-
ration, discouraging free development of applications using
e-services as building blocks. Furthermore, clients of dis-
tributed applications that lie behind another corporate �re-
wall su�er a similar problem. Requiring clients to recon�g-
ure their �rewalls to access a remote e-service is a rather
unrealistic assumption.
Several palliative remedies to these problems have been

proposed in recent years, such as COM Internet Services
(CIS) [14] and Remote Data Services (RDS) [20]. CIS makes
it possible to use DCOM over HTTP on port 80, thanks to a
special HTTP-based handshake used to establish the initial
connection between client and server. From that point on,
CIS relies on DCOM over TCP. While CIS does solve the
�rewall traversal problem, it is a platform-speci�c solution
for Windows-based systems and retains all the verbosity of
the original DCOM protocol. Remote Data Services (RDS)
allows for instantiating remote DCOM objects and invoking
their methods over HTTP. Again, however, RDS is platform-
speci�c, as it relies on a proprietary Dynamic Link Library
running on Microsoft Internet Information Service.
In the next section, we describe SOAP, a standard,

platform-independent solution that was recently proposed
to solve these problems.

3. SOAP IN A NUTSHELL
We give a brief and informal overview of the SOAP pro-

tocol, including the format of SOAP HTTP requests and
responses. For the sake of conciseness, we only deal with
SOAP features that are relevant to our approach, and there-
fore our description does not attempt to be exhaustive.

3.1 SOAP Requests
SOAP requests carry remote method invocations over

HTTP. They are fully declarative, inasmuch they do not dic-
tate how the target component should handle the request.
Many application scenarios can be envisioned for this kind of
requests; for instance, a courier service could o�er to its cus-
tomers an Internet-based e-service to get quotes and place
orders for international deliveries. Client applications could
freely integrate this service with others, using HTTP as the
common transport protocol. For instance, the HTTP POST
request in Figure 1 encodes the invocation of a quote service
using the SOAP protocol.
It should be noted that while the HTTP request in Fig-

ure 1 points to a valid Uniform Resource Identi�er (URI) of
http://www.acme.com/GetQuote, it leaves it entirely to the
SOAP software gateway behind the URI to decide how to
activate the corresponding local component and invoke lo-
cally the speci�ed method. Note that the Content-Type
header contains the generic value text/xml, used by all
XML-based HTTP traÆc. In principle, the SOAP-Action
�eld could be used by �rewalls that, by looking at the URI
value of the �eld, could �lter out all HTTP requests carrying

505

<SOAP-ENV:Envelope xmlns:SOAP-ENV =
"http://schemas.xmlsoap.org/soap/Envelope"
xmlns:ACME="http://www.acme.com/soap"
SOAP-ENV:EncodingStyle =
"http://schemas.xmlsoap.org/soap/encoding"
ACME:headers="#ref-0" ACME:main="#ref-1">
<SOAP-ENV:Header ACME:id="ref-0">

<!-- header entries go here -->
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<!-- method element -->

<ACME:GetQuote ACME:id="ref-1">
<!-- parameter elements go here -->

</ACME:GetQuote>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 2: The SOAP XML payload

SOAP traÆc, or, conceivably, allow only certain interfaces
to pass through. However, this would require the �rewall to
be SOAP-aware to some extent.

3.2 SOAP XML Payload
The SOAP XML payload contains the encoded invoca-

tion; its lexicon is de�ned by a standard XML namespace
SOAP-ENV. In SOAP, the XML payload is used mainly to en-
code parameters' datatypes in a platform independent way,
much as CORBA's Common Data Representation [23] or
DCOM's Network Data Representation [3]. The XML pay-
load includes a root Envelope element and a child Body el-
ement, the latter having an optional Header sibling. The
SOAP payload's root element Envelope provides the se-
rialization context for the method calls that follow. The
Envelope element can contain additional attributes (quali-
�ed by a suitable XML namespace).
Elements encoding methods and parameters must also be

namespace-quali�ed. To illustrate this point in the exam-
ple of Figure 2, we added an attribute named main, whose
value is a URI fragment identi�er that points to the method
element. Assuming a Header tag to be present, our sample
Envelope also contains another additional attribute (named
headers) whose value is again a URI fragment identi�er,
which references the Header element. The headers and
main custom attributes we added make it possible to ac-
cess the method or headers elements simply by following
the ID-IDREF implicit link.
The Body element contains a �rst sub-element whose name

is the method name. This element should contain all the
information that the software gateway needs to perform the
corresponding local invocation. Namely, it contains a child
element for each parameter, as follows:

<ACME:GetQuote ACME:id="ref-1">
<ACME:OriginZIP> 90070 </ACME:OriginZIP>
<ACME:DestZIP> 16804 </ACME:DestZIP>
<ACME:Weight> .500 </ACME:Weight>
<ACME:ServiceType> Overnight </ACME:ServiceType>

</ACME:GetQuote>

The Header element contains auxiliary information (called
header entries) not functionally related to the method
invocation, such as transaction management and pay-
ment. SOAP headers may contain the standard Actor

and MustUnderstand attributes (as well as other optional,

HTTP/1.1 200 OK
Content-Type: text/xml; charset="UTF-8"
Content-Length: nnnn
<SOAP-ENV:Envelope xmlns:SOAP-ENV =
"http://schemas.xmlsoap.org/soap/Envelope"
xmlns:ACME="http://www.acme.com/soap"
SOAP-ENV:EncodingStyle =
"http://schemas.xmlsoap.org/soap/encoding">
<SOAP-ENV:Body>

<ACME:GetQuoteResponse>
<ACME:Amount> 18 </ACME:Amount>

</ACME:GetQuoteResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 3: A SOAP response

SOAP Client SOAP Gateway Local Component

SOAP request

SOAP response

RMC-based request

(1)

(2)

(3)

(4)

RMC-based response

CLIENT SIDE SERVER SIDE

Figure 4: Execution Sequence of a SOAP Call

namespace-quali�ed ones), respectively stating the URI of
the �nal destination of the message and whether header pro-
cessing capability on the part of the recipient is mandatory
(1) or not (0).
In the remainder of the paper, we shall use SOAP header

entries to support client identi�cation and a variety of se-
curity arrangements in the framework of a complete access
control technique.

3.3 SOAP Response
A SOAP response is similar to a request, apart from the

fact that it adds a Response suÆx to the element name used
for the method. For instance, for the method GetQuote, the
response element is GetQuoteResponse. A sample response
to our GetQuote call of Figure 2 is reported in Figure 3.

3.4 Firewalls and SOAP
The SOAP messaging protocol piggybacks a lightweight

distributed object protocol on top of HTTP, using HTTP
connections to carry messages formatted with XML. In other
words, SOAP de�nes a mechanism to pass commands and
parameters between HTTP clients and servers that uses
XML for data encoding and is therefore independent from
the operating system, programming language, or object
model used on either the server or the client side. SOAP
solves the �rewall traversal problem, as it relies on HTTP as
the transport mechanism. Moreover, custom HTTP headers
have been proposed as a technique for identifying SOAP in-
vocations [2]. As illustrated in Figure 4, when a client sends
a SOAP invocation over HTTP, the header triggers the ex-

506

ecution of a software gateway on the server side, which for-
wards the invocation to the target component using (locally)
a suitable heavyweight RMC-based protocol. This technique
addresses the verbosity problem, as it uses a simple XML
structure for both invocation and response. Moreover, rely-
ing on custom HTTP headers makes it possible for system
administrators to con�gure �rewalls to selectively block out
SOAP requests using SOAP-speci�c HTTP headers. Be-
sides the �rewall security bene�ts of designing SOAP using
extended HTTP headers, the SOAP speci�cation does not
de�ne any protocol-speci�c security features. SOAP imple-
mentations may well utilize any standard HTTP security
feature, taking advantage of HTTP authentication mech-
anisms as well as SSL for secure channel communications
(using secure HTTP connections via HTTPS). Also, secure
cookies have been proposed [19] to provide user authenti-
cation, integrity and con�dentiality when interacting with
WWW sites. However, these techniques are not a valid sub-
stitute for a fully-
edged security model, and several secu-
rity issues related to SOAP are still to be solved. Indeed,
both �rewall �ltering of HTTP headers and the secure cook-
ies approach have been conceived for simple document re-
trieval on the WWW and cannot be considered satisfactory
for remote invocations. Access to e-services requires a more
sophisticated security model than the one normally applied
to HTTP traÆc. This is the focus of the next section.

4. ADDING FINE-GRAINED AUTHORIZA-
TIONS TO SOAP

While the invocation of Figure 1 does not contain any
provision for access control, the organization managing a
remote interface to an international courier service is likely
to impose some constraints. For instance, getting quotes
could be restricted to retailers, or allowed only for customers
connecting from a trusted domain. Of course, checking the
�rst constraint could be done by writing application code
on the server, while the second constraint could be enforced
via the SOAP speci�c �rewall con�guration just discussed.
Both these ad-hoc solutions, however, potentially restore the
dependence on �rewall con�guration and operation, whose
elimination was the reason why a lightweight, XML-based
protocol like SOAP was selected in the �rst place. Our re-
search line is to avoid �rewall dependence while providing
organizations managing e-service with full control on how
their SOAP servers are used. To this end, we propose to
employ �ne-grained XML access control techniques to spec-
ify usage policies for SOAP based e-services, in order to
obtain the full functionality of an object invocation access
control service.
As illustrated in Figure 5, our access control system is

based on an authorization �lter which intercepts every in-
vocation addressed to the SOAP gateway and evaluates it
against authorizations specifying restrictions to service ac-
cessibility. Based on the authorizations, the request may:
1) be rejected; 2) be allowed as is; or 3) be �ltered and ex-
ecuted in a modi�ed form, where �ltering of a request may
involve elimination of some of its parameters that the cur-
rent invoker is not allowed to specify. Once �ltered, requests
are passed to the SOAP gateway, which will produce a re-
sponse to be returned to the client. The response also is
sent through the access control system and may be subject
to some �ltering. In this paper, we focus on the speci�cation

and enforcement of restrictions applicable to requests (i.e.,
request �ltering). Response �ltering can be performed in a
similar way.

4.1 Authorization Objects
In traditional authorization systems, an object charac-

terizes an entity on which access is being requested and
consequently authorizations de�ne whether access to the
entity should be granted or not [22]. In the SOAP con-
text, full interfaces may not be readily available. However,
clients submit requests, whose XML structure is modeled
after the interface o�ered by the remote e-service. There-
fore, in our opinion, it makes more sense to consider the
requests themselves as objects of our authorization system.
Fine-grained authorizations are supported by allowing ref-
erence to speci�c elements/attributes within a request (such
as the method name or the value of any of its parame-
ters). Reference to individual elements and attributes can
be used to: 1) evaluate conditions on requests (e.g., in
the case where a request can pass only if its parameters
have certain values), and 2) explicitly refer access restric-
tions to speci�c portions of a request (e.g., in the case
where speci�c parameters within a request should be �l-
tered out). In our model, authorization objects therefore
coincide with XML elements and attributes in the SOAP
request (or response), identi�ed via path expressions writ-
ten using a simple XPath-like syntax [26]. An XPath ex-
pression on an XML document tree is a sequence of element
names or prede�ned functions separated by the character /
(slash): l1=l2= : : : =ln. Path expressions may terminate with
an attribute name, syntactically distinguished pre�xing it
with the special character @. For instance, path expres-
sion /SOAP-ENV:Envelope/SOAP-ENV:Body/ACME:GetQuote
denotes the nodes of the GetQuote element (the method's
name), which are children of Body elements, which in turn
are children of Envelope elements. Absolute path expres-
sions, pre�xed by a slash character, start from the root of
the document while relative ones, starting with an element,
describe a path whose initial point is any element in the
document.
The XPath syntax allows to specify conditions on any el-

ement of a path expression. Conditions are enclosed within
square brackets and may operate on the \text" of elements
(i.e., the character data in the elements) or on names
and values of attributes. For instance, path expression
SOAP-ENV:Envelope/SOAP-ENV:Body/ACME:PlaceOrder/

[./ServiceType="48-hours"] identi�es all orders of type
\48-hours".

4.2 Authorization Subjects
Authorization subjects characterize entities whose re-

quests have to be evaluated and to which authorizations
(permissions or denials) can be granted. In our model we
allow the identi�cation of subjects on the basis of:

� the identity of users (on behalf of which the client is
executing);

� the location (either numerical or symbolic) from which
the request originates;

� the membership of the user in user groups (stored at
the server);

507

local
component

SOAP client

SOAP request

SOAP response

Authorization Filter SOAP gateway

����

Figure 5: The System Operation

� the role/s in virtue of which a user is presenting his
request (e.g., premier member).

The support of roles appears crucial in an open context
in which SOAP can operate, where not all individuals may
be registered at a service and requests may arrive from pre-
viously unknown parties. In such a context the ability to
invoke a service often depends on the capacity in which a
user can exercise [1, 12] (which we characterize with a role)
rather than on who the user actually is. Note that support
of both groups and roles is not redundant, as the two ex-
hibit di�erent behaviors. In particular, unlike groups, roles
carry a dynamic behavior and can be activated and deac-
tivated by users at their will. This behavior is re
ected in
our system where groups de�ne named sets of users (whose
composition is de�ned and known at the SOAP server) and
roles activation is enabled by attaching credentials with a
request. Our model therefore need not to control role as-
signment and consequent activation/deactivation (which, as
a matter of fact, are not competence of the SOAP server but
of the authority managing the role) but only needs to know
the name of the roles.
A subject presenting an invocation request is charac-

terized by a 4-tuple huser-id, IP-address, sym-address,
frole-idgi identifying a user connected from a given ma-
chine and operating in a given capacity (stated by the set
of roles for which he/she presents certi�cates). Note that
no explicit mention of group is made in the de�nition of the
subject as the group membership cannot be discretionary
released and all the groups to which the user belongs will be
considered. Only roles need to be explicitely stated.
Authorizations stating permissions or denials can be spec-

i�ed for subjects with reference to any of the characteristics
with which they can be distinguished. In particular, a sub-
ject of an authorization can be either a user , a group, or
a role, possibly restricted with respect to the location from
which requests can originate. The location can be also spec-
i�ed with classical patterns identifying all the machines be-
longing to a given sub-network (e.g., 131.100.* or *.it).
We support also the de�nition of abstractions for roles, and
assume a role abstraction hierarchy is de�ned which can
group sets of roles and refer to them with a single name.
(Non-minimal elements of such a hierarchy are not roles that
can be enabled by invokers but simply abstractions de�ned
on them [1].)

4.2.1 Identifying Authorization Subjects via Custom
SOAP Headers

Our approach exploits the features of the SOAP protocol,
and represents all the information characterizing the subject

<!ELEMENT credential (user,role*) >
<!-- user element is mandatory, possibly followed by roles -->
<!ELEMENT user (userid,passwdhash,symname?,netaddr?)>
<!ELEMENT role (issuer?,subject,validity?)>
<!-- role element supports certi�cate handling -->
<!ELEMENT issuer ((public-key|hash-of-key),uri*)>
<!ELEMENT subject ((public-key|hash-of-key|object-hash?|

name|keyholder?|threshold?),uri*)>
<!ELEMENT validity (notbefore?,notafter?,online*,new-cert?)>
<!ELEMENT name ((public-key|hash-of-key)?,roleid)>
<!ELEMENT symname #PCDATA>
<!ELEMENT netaddress #PCDATA>
<!ELEMENT roleid #PCDATA>

Figure 6: DTD for a custom header entry for SOAP

subject credentials.

by means of a custom header included in each SOAP call. Of
course, the use of this feature is not mandatory: the system
may also rely on usual HTTP authentication techniques as
in [6]. Custom headers provide an elegant and model-neutral
way to specify security arrangements. The structure of our
header entry (written on a custom namespace SOAP-AC) is
closely related to the work currently in progress in XML
encoding for SPKI certi�cates (XML-SPKI [19]). For the
sake of conciseness, we shall not explain its structure and
operation in detail; rather, Figure 6 contains a simpli�ed,
commented DTD.
An example of a header entry for a SOAP subject cre-

dential is illustrated in Figure 7.1 With respect to the
work in progress for XML-SPKI certi�cate encoding, our
credential header includes one additional mandatory �eld
(user) carrying the user identity and the location from
which the connection originates, and zero or more role
elements. The main di�erence between our role element
and an XML-encoded certi�cate is the roleid subelement.
In order to foster compatibility with future standards for
XML-SPKI, we de�ned roleid to be a child of the name

element, where the XML-SPKI work in progress allows for
any #PCDATA content [19].2 The user tag identi�es the client
with respect to userid, symname and netaddr �elds [5]. Note
that systems supporting role-based authentication only may

1This �gure contains a slight abuse of notation as technically
the name space declaration should be given in an ancestor
element in order to allow credential to be part of its scope.
2Another di�erence is that, unlike XML-SPKI, our DTD
leaves both issuer and validity to be optional in the role
element. This choice ensures compatibility with standard
XML encoding of certi�cates while retaining
exibility, as
role-based security may not always require full certi�cate
handling.

508

<SOAP-AC:credential xmlns:SOAP-AC =
"http://www.xmlsec.org/AC">
<SOAP-AC:user>
<SOAP-AC:userid> Alice </SOAP-AC:userid>
<SOAP-AC:passwdhash SOAP-AC:hash-alg="none">

DUMMY
</SOAP-AC:passwdhash>

</SOAP-AC:user><!-- roles and certi�cates follow -->
<SOAP-AC:role>
<!-- certi�cate issuer info follows -->
<XMLSPKI:issuer xmlns XMLSPKI =
"http://www.xmlsec.org/SPKI">
<XMLSPKI:public-key>
<XMLSPKI:dsa-pubkey>
: : :

</XMLSPKI:dsa-pubkey>
</XMLSPKI:public-key>

</XMLSPKI:issuer>
<!-- end of certi�cate issuer info, begins sbj info --!>
<XMLSPKI:subject>
<XMLSPKI:name>
<XMLSPKI:hash-of-key>
<XMLSPKI:hash XMLSPKI:hash-alg="sha1">
: : :

</XMLSPKI:hash>
</XMLSPKI:hash-of-key>
<SOAP-AC:roleid>
ACME FidelitySubscribers

</SOAP-AC:roleid>
</XMLSPKI:name>
<XMLSPKI:uri>
urn:spki:issuer

</XMLSPKI:uri>
</XMLSPKI:subject>

<!-- end of subject info (object hash and
threshold are omitted), begins validity info -->
<XMLSPKI:validity>
<XMLSPKI:notbefore>
2000-12-21 12:00:00

</XMLSPKI:notbefore>
<XMLSPKI:notafter>
2000-12-31 24:00:00

</XMLSPKI:notafter>
</XMLSPKI:validity>

</SOAP-AC:role>
</SOAP-AC:credential>

Figure 7: Sample Header Entry for SOAP subject

credential

still use this element (with a dummy Anonymous content, and
a dummy password hash) to identify the machine where the
client is running.
Client authentication by means of our XML credential

can be performed exactly as it is done for standard certi�-
cates, taking advantage of challenge-response [9] and secure
channel technology like SSL [8] when needed. Also, loca-
tion addresses stated in the header could be trusted only on
secure channels or checked using HTTP services. In the re-
mainder of the paper we shall focus on authorization rather
than on authentication issues.

4.3 Authorization Syntax and Semantics
The XML syntax of authorizations supported by our sys-

tem is illustrated in Figure 8. Basically, an authorization is
characterized by a triple (subject, object, sign) where:

� subject identi�es the requestors for which the autho-
rization is intended. It can be speci�ed with reference

<!DOCTYPE set of authorizations [
<!ELEMENT set of authorizations (authorization+)>
<!ELEMENT authorization (subject,object,sign)>
<!ELEMENT subject ((userid j groupid j roleid)?,

symname?,netaddr?)>
<!ELEMENT object (#PCDATA)>
<!ELEMENT sign EMPTY>
<!ELEMENT userid (#PCDATA)>
<!ELEMENT groupid (#PCDATA)>
<!ELEMENT roleid (#PCDATA)>
<!ELEMENT symname (#PCDATA)>
<!ELEMENT netaddr (#PCDATA)>
<!ATTLIST set of authorizations

about CDATA #REQUIRED>
<!ATTLIST sign value (+ j �) #REQUIRED>

] >

Figure 8: Authorization syntax

to their identity, group memberships, location, loca-
tion patterns, or roles (Section 4.2).

� object is the element of the SOAP message to which
the authorization refers, and is expressed by means of
an XPath (Section 4.1).

� sign can take values \+" or \�" and de�nes whether
the authorization states a permission or a denial.

Note that there is no explicit mention of the action within
authorizations, the action being always the submission of the
SOAP request to the SOAP Gateway.
If the object of an authorization is Envelope, the autho-

rization refers to the request as a whole; and if the authoriza-
tion is negative, its enforcement implies a complete rejection
of the request. As already discussed, the object can also
be any element of the SOAP request tree (e.g., to identify,
within the Body's tree, speci�c parameters that requestor
cannot specify).3

One might object that negative authorizations assigned to
roles are unreliable, as users may simply not present their
role certi�cate. However, this is not a problem in our context
where negative authorizations for a role will be primarily
used to specify exceptions to positive authorizations granted
to the role itself (which the user is obviously presenting).

4.4 Access control
Our access control �lter intercepts every SOAP request

(and its response) and evaluates it against the speci�ed au-
thorizations. Depending on the authorizations to be en-
forced, each request can: 1) be rejected completely (request
denied); 2) pass unaltered (request fully authorized); or 3)
pass modi�ed (a \�ltered" request authorized), where mod-
i�cations to a request usually involve the deletion of some
parameters. The semantics of authorization enforcement is
simple. All authorizations whose subject matches the sub-
ject headers of the SOAP request are applicable to the re-
quest. Intuitively, the application of an authorization to a
request imposes a permission (or denial) on each node of
the SOAP request tree identi�ed by the object term in the
authorization. It may happen that the access control policy

3Headers can also appear as objects of authorizations; in
particular a negative authorization can be applied on head-
ers corresponding to speci�c certi�cates. The enforcement
of such an authorization will remove the certi�cate from the
SOAP request before passing it to the SOAP gateway.

509

includes multiple authorizations referred to the same node of
the SOAP request tree (e.g., a positive authorization spec-
i�ed for a user's group and a negative authorization for a
speci�c individual belonging to the group). In this case,
the (unique) sign that it is considered to hold for the node
is determined according to priorities established on the au-
thorizations. In principle, di�erent priority policies can be
applied, and the system can be parametric with them (as
in [10] and [13]). In our system, we consider a speci�c prior-
ity, which we consider to be natural for the speci�c context
under consideration. The reason for focusing on a speci�c
policy is to make management simple and intuitive (addi-
tional policies could easily be added and the access control
made parametric with respect to them). The priority policy
we apply is as follows:

� If a request has multiple roles enabled, the union of
their privileges is taken; as it is customary in corre-
sponding paper-world situations. Consequently, in the
case where some roles hold contradicting authoriza-
tions, the positive authorization takes precedence.

� Authorizations speci�ed for a role take precedence over
authorizations speci�ed for role abstractions (speci-
�city in the role-abstraction hierarchy).

� Authorizations speci�ed for a user (or a sub-group)
take precedence over authorizations speci�ed for a
group (speci�city of the user-group hierarchy).

� Authorizations speci�ed for a user (either directly or
as a member of a group) take precedence over autho-
rizations speci�ed for any of the roles he has activated
(priority of the \individual" over the roles he is play-
ing).

The evaluation of a request against the authorizations
with respect to the priority policy described above produces
a labeling of the SOAP request tree where each node may
be assigned either \+" or a \�", stating the access con-
trol outcome with respect to the node (or more precisely to
the subtree rooted at it). The enforcement of such labels
produces a \�ltered" request obtained by eliminating, from
the original request, all the subtrees whose root is labeled
\�". Intuitively, this enforcement can be seen as the one ob-
tained by propagating the permissions stated by \+" down
the request tree until a node labeled \�" is found (note that
the \�" on a node applies to the whole subtree rooted at
the node, regardless of the presence of other labels in the
subtree). The reason for completely eliminating the whole
subtree rooted at an element to which a negation is applied
is that enforcing the negation would partition the element's
descendants (which independently taken would not make
sense), and preserving the element for the sake of linking its
descendants may not correctly re
ect the speci�cations to
be enforced.4

4.5 An Example
We now illustrate an application of our authorization

model to regulate access to the international courier service
introduced in Section 3.
4Note the di�erent approach with respect to the case where
authorization enforcement (and the consequent tree labeling
and pruning) [5] was executed for producing view of docu-
ments to be returned to speci�c requestors. In that case
an element labeled \�" could have been maintained for the
sake of preserving the document structure and reachability
of descendant nodes the requestor was entitled to see.

One service o�ered by the courier is the ability of get-
ting quotes. Let us assume that the company policy is
to allow quote querying only to requestors who are cus-
tomers, where customers can be either individual users regis-
tered at acme or corporations subscribing to a nation-wide
association of courier users, called acu, which acme sup-
ports. Individual users are registered with the system, and
therefore acme can recognize them by checking member-
ship in group Registered users. acu subscriber are not
maintained at acme, and therefore handled with creden-
tials. Namely, requests from them will include a creden-
tial stating the ability of the requestor to play the role of
ACU subscribers. The policy above is then stated by the
following two authorizations (here and in the following we
omit the <authorization> tag).

<subject><groupid>Registered users</groupid>
</subject>
<object>
/soap-env:Envelope/[soap-env:Body/acme:GetQuote]
</object>
<sign value = "+" />

<subject><roleid>ACU subscribers</roleid>
</subject>
<object>
/soap-env:Envelope/[soap-env:Body/acme:GetQuote]
</object>
<sign value = "+" />

Consider now the service of automatically placing delivery
orders via Internet. Here the policy is the following:

Individual users can only place order for 48-hour service
(quicker deliveries are not accepted through this interface)

<subject><groupid>Registered users</groupid>
</subject>
<object>
/soap-env:Envelope/[soap-env:Body/acme:PlaceOrder/
ServiceType=\48-hours"]
</object>
<sign value = "+" />

Individual users members of the Retailers group can place
any order if connected from subnetwork 131.175.*.

<subject><groupid>Retailers</groupid>
<netaddr>131.175.*</netaddr>
</subject>
<object>
/soap-env:Envelope/[soap-env:Body/acme:PlaceOrder]
</object>
<sign value = "+" />

acu subscribers can place any order but a corporate discount
code can be speci�ed only if a valid �delity card (e.g., a
credential) is attached to the request.

<subject><roleid>ACU subscribers</roleid>
</subject>
<object>
/soap-env:Envelope/[soap-env:Body/acme:PlaceOrder]
</object>
<sign value = "+" />

<subject><roleid>ACU subscribers</roleid>
</subject>
<object>

510

Envelope

Header

user

userid

passwdhash

role

subject

name

roleid

Body

PlaceOrder

CustomerAccount

Corp_DiscountCode

Envelope

Header

user

userid

passwdhash

role

subject

name

roleid

Body

PlaceOrder

CustomerAccount AB123

(b)

...

credential

Alice

ACU_subscribers

(a)

...

AB123

34781

ACU_subscribers

credential

Alice

Figure 9: An example of Request Filtering

Authorization Filter

XML parser Authorization Engine

Authorization Repository
Interface

Interface
Certification Engine

certification data

user data

authorization data

Interface
User Repository

Figure 10: Architecture of the Authorization Filter

/soap-env:Envelope/soap-env:Body/acme:PlaceOrder/
acme:Corp DiscountCode
</object>
<sign value = "�" />

<subject><roleid>acmeFidelitySubscribers</roleid>
</subject>
<object>
/soap-env:Envelope/soap-env:Body/acme:PlaceOrder/
acme:Corp DiscountCode
</object>
<sign value = "+" />

Note that the negative authorization speci�ed for
ACU subscribers will cause, for requests lacking the �delity
certi�cate, the pruning of the Corp DiscountCode element.
As an example, Figure 9 illustrates the original (a) and
pruned (b) XML trees of a SOAP request presented by a
acu subscribers not holding a valid �delity certi�cate (i.e.,
either the certi�cate is missing or could not be validated).

5. DESIGN AND IMPLEMENTATION
The authorization �lter discussed in this paper is currently

under development. In this section we discuss the main fea-
tures of our design. Overall, the architecture of a SOAP

system consists of a client, a SOAP gateway and a com-
munication channel. The client produces the SOAP request
and receives a SOAP response; the SOAP gateway trans-
lates the SOAP request to a call to a local or remote server;
the answer of the server is then translated back to the for-
mat of the SOAP response; the communication between the
client and the gateway uses the HTTP protocol. In this ar-
chitecture, shown in Figure 5, we introduce authorization
services with an Authorization Filter.

5.1 Architecture of the Authorization Filter
The Authorization Filter is the core of the system. It is

located on the communication channel between the client
and the SOAP gateway and analyzes all the requests. Its
internal architecture, illustrated in Figure 10, comprises a
User Repository that describes the users, groups and roles on
which authorizations are de�ned, an Authorization Reposi-
tory that describes all the privileges that are granted to
users/groups/roles, a Certi�cation Engine that evaluates
the correctness of the certi�cates provided with the request,
and an Authorization Engine that applies the model we pre-
sented to a given request instance to determine if the request
must be restricted by the �lter or can pass unaltered through
it. The conversion from the textual XML payload to an in-
ternal representation is the responsibility of an XML parser.
Depending on the degree of integration, the request can be
forwarded to the SOAP gateway after it has been again se-
rialized by the XML parser, or it can be directly passed in
an internal format.

5.1.1 User Repository
The User Repository maintains the description of the

users, groups, and roles that have been de�ned on the sys-
tem. This information is stored persistently in XML using
a simple DTD. The User Repository o�ers an interface that
permits to access the properties of every component (like
the hashed password, required for user authentication), and
the service it most typically o�ers permits to determine if a
given authorization is applicable to a certain user instance,
characterized by a userid, an IP address, possibly a symbolic
name, and a list of certi�ed roles. This evaluation may need
to use service isSubjectMoreSpeci�c to enforce the priority
policy illustrated in Section 4.4.
There are two main implementation strategies for the User

Repository: 1) it can be designed as a system that requires
initialization, possibly running in a separate thread; 2) it
can be a stateless set of services available to the other com-
ponents. Our current implementation choice opted for the
�rst solution, which, although more diÆcult to manage and
requiring a relative expensive initialization, also o�ers bet-
ter performance. As a matter of fact, it analyzes the content
of the stored repository only at startup and it can also use
optimized data structures that permit to o�er a low service
time. The second solution instead would require to load the
content of the Repository every time a request arrives.

5.1.2 Authorization Repository
The Authorization Repository maintains the collection of

authorizations that describe the security policy. The au-
thorizations are persistently stored in XML format. The
services o�ered by the Authorization Repository permit the
retrieval of the authorizations applicable to a given request.
A problem to be considered in this context is the organiza-

511

tion to use for the data. A trivial solution consists in keeping
all the authorizations in a single document, as a
at list. We
selected a more sophisticated solution that stores the autho-
rizations of each interface (characterized by the URI of the
HTTP POST action) in separate documents. We also plan
to investigate authorization indexing techniques, organizing
the authorizations depending on their content, for example,
object (i.e., ACLs) or subject (i.e., capabilities).

5.1.3 Certification Engine
The goal of the Certi�cation Engine is to evaluate the

correctness of the certi�cates that a subject may present to
substantiate his ability to play a certain role. We assume
that this service can be realized by the integration into our
architecture of existing solutions [17] to the management of
certi�cates, some of which are currently available under the
Java 2 platform. Such components support the integration
of our service into a public-key infrastructure [16], realize
sophisticated protocols for the exchange of a set of messages,
and manage challenge-response authentications.

5.1.4 Authorization Engine
The Authorization Engine is the main component of the

Filter and it coordinates the use of the other subsystems.
It reacts to the receipt of a request and parses its <Header>
element to determine the subject. If the subject presents a
userid and a password, it asks to the User Repository the
hashed password of the user; if the comparison is successful,
the user is authenticated. If the subject presents credentials,
each one of them is veri�ed with the Certi�cation Engine.
For every veri�ed certi�cate, the corresponding role is as-
sociated with the subject. Then, the Authorization Engine
retrieves all the authorizations whose object is in the request
and for each of them asks the User Repository to verify if
its subject corresponds to the actual subject producing the
request. For all the applicable authorizations, the Autho-
rization Engine produces a labeling of the internal DOM
representation of the SOAP request. Finally, the request
that remains after the removal of the nodes with a negative
label is passed to the SOAP gateway.

5.1.5 XML parser
The XML parser is the component responsible for the con-

version from the textual representation of XML to its equiv-
alent memory description. A technical aspect that should
be considered is the type of parser to use. Building on our
previous experience,5 our design exploits the DOM repre-
sentation of the SOAP call. The reason for using the DOM
representation is that, in our model, authorization objects
are de�ned via generic expression of the XPath language,
and the evaluation of these expressions may require to nav-
igate the XML structure in arbitrary ways.
We note, however, that the construction of the DOM tree

involves building a complete memory representation of the
XML information and in some contexts (where the XML
data require a considerable area of memory) this may be-
come a bottleneck on the workload of the authorization sys-
tem.
The alternative to the construction of a DOM representa-

tion is the use of a SAX parser, which analyzes the textual

5We have already developed a related authoriza-
tion system for selective access to XML data
(http://131.175.16.43:8080/XML-AC).

representation of the XML information and produces events
for every component of the structure which emerges from
the analysis. The SAX parser is indeed the mechanism upon
which the construction of the DOM representation is based,
and it is an eÆcient mechanism for the analysis of the XML
content. The Authorization Filter can use a SAX parser to
analyze an incoming stream of data, triggering events repre-
senting only the nodes that are authorized to be part of the
request. This mechanism stores in memory only the status
of the parser, consisting of the path connecting the current
node with the root. In order to be evaluable in this context,
the path expressions appearing as authorization object must
satisfy a set of restrictions. The main restriction is that the
path expression should be restricted to descending terms and
to conditions at the local level. This approach also bene�ts
from a careful preprocessing of the authorizations.
The use of a SAX parser is particularly relevant for future

management of authorizations on the response, which can
often require the retrieval of a large amount of XML infor-
mation; instead, it can be considered as less critical for the
management of SOAP requests, where typically the size of
the message is limited. Also, the SOAP gateway, for all the
open source prototypes that we analyzed, manages the re-
quests creating a DOM representation. If the Authorization
Filter is realized with a strict integration with the SOAP
gateway, passing to it directly the DOM representation of
the request, the cost of the DOM conversion can be factored
out.

5.2 Impact on current SOAP components
The realization of the authorization services has a lim-

ited impact on the current components of the SOAP infra-
structure. Indeed, the SOAP gateway does not have to be
modi�ed in a signi�cant way because of the presence of the
Authorization Filter. A solution, which strictly integrates
the Authorization Filter within the SOAP gateway, simply
delegates to the Authorization Filter the task of acquiring
the request, in place of the DOM parser. The Filter parses
the request and returns it to the gateway after the autho-
rizations have been applied. A solution with no modi�cation
to the SOAP gateway can also be realized, where the Au-
thorization Filter is separated from the SOAP gateway and
communicates with it using the HTTP protocol.
The client must be enriched to submit a SOAP request

with the identi�cation of the user and its certi�cates. The
addition of a header containing the userid and the hashed
password requires a trivial extension of the client. More-
over, clients unware of the access control facility can easily
be handled by adding a default header to their calls. The
management of certi�cates instead requires a more complex
service, for which it is convenient to reuse already available
solutions, for reasons analogous to those presented for the
implementation of the Certi�cation Engine.
Finally, the communication channel needs to be secured.

This is the only constraint that we set, but the satisfaction of
this requirement is also relatively easy, as there are available
many robust implementation of secure transport protocols,
like SSL, that can be easily integrated into the components
of the architecture.

6. CONCLUSIONS
SOAP is a solution to the problems raised by the Internet

use of RMC-based protocols. However, lack of standardiza-

512

tion could lead to application-dependent security holes in
the enforcement of access control policies for SOAP. In this
paper we have presented a general �ne-grained authoriza-
tion model for controlling SOAP requests and sketched the
architecture of the system implementing this approach. The
approach provides
exibility as it is able to support a variety
of protection requirements concisely. We are currently ad-
dressing some speci�c features of the SOAP standard, such
as the exception responses that may be generated by the
SOAP gateway. We plan to exploit this characteristic in
order to produce a <FAULT> header with a description of
the security violation detected by the Authorization Filter,
o�ering to the client an explanation of the reason why a re-
quest was not ful�lled as it was expected. In our design, this
mechanism to notify authorization violations is a con�gura-
tion parameter of the system.

7. ACKNOWLEDGMENTS
This work was supported in part by the European Com-

munity within the FASTER Project in the Fifth (EC)
Framework Programme under contract IST-1999-11791 and
by the Italian MURST within the DATA-X project.

8. REFERENCES
[1] P. Bonatti and P. Samarati. Regulating Service Access

and Information Release on the Web. In Proc. of the
7th ACM Conference on Computer and
Communication Security, Athens, Greece, November
2000.

[2] D. Box. Simple Object Access Protocol (SOAP) 1.1.
World Wide Web Consortium (W3C), May 2000.
http://www.w3.org/TR/SOAP.

[3] N. Brown and C. Kindel. Distributed Component
Object Model Protocol { DCOM/1.0, January 1998.
http://www.globecom.net/ietf/draft/draft-brown-
dcom-v1-spec-03.html.

[4] D. Burdett. Internet Open Trading Protocol - IOTP,
Version 1.0, April 2000.
http://www.land�eld.com/rfcs/rfc2801.html.

[5] E. Damiani, S. De Capitani di Vimercati,
S. Paraboschi, and P. Samarati. Securing XML
Documents. In Proc. of the 2000 International
Conference on Extending Database Technology
(EDBT2000), Konstanz, Germany, March 2000.

[6] E. Damiani, S. De Capitani di Vimercati,
S. Paraboschi, and P. Samarati. XML Access Control
Systems: A Component-Based Approach. In
Fourteenth Annual IFIP WG 11.3 Working
Conference on Database Security, Schoorl, The
Netherlands, August 2000.

[7] S. Feldman. The Changing Face of E-Commerce.
IEEE Internet Computing, 4(3):82{84, 2000.

[8] A.O. Freier, P. Karlton, and P.C. Kocher. The SSL
Protocol - Version 3.0, March 1996.
http://ftp.nectec.or.th/CIE/Topics/ssl-
draft/INDEX.HTM.

[9] B. Gladman, C. Ellison, and N. Bohm. Digital
Signatures, Certi�cates and Electronic Commerce.
http://jya.com/bg/digsig.pdf, 1999.

[10] S. Jajodia, P. Samarati, V.S. Subramanian, and
E. Bertino. A Uni�ed Framework for Enforcing
Multiple Access Control Policies. In Proc. of the 1997

ACM Internationa SIGMOD Conference on
Management of Data, Tucson, AZ, May 1997.

[11] Java Remote Method Invocation (RMI).
http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html.

[12] J. Kahan. WDAI: A Simple World-Wide Web
Distributed Authorization Infrastructure. Computer
Networks, 33(1-6), 2000.

[13] M. Kudo and S. Hada. XML Document Security and
e-Business applications. In Proc. of the 7th ACM
Conference on Computer and Communication
Security, Athens, Greece, November 2000.

[14] M. Levy. COM Internet Services, April 1999.
http://msdn.microsoft.com/library/backgrnd/html/
CIS.htm.

[15] S. Lewontin and M.E. Zurko. The DCE Project:
Providing Authorizations and other Distributed
Services to the World-Wide Web. In Proc. of the 2nd
World Wide Web Conference, October 1994.
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/
Security/lewontin/Web DCE Conf 94.html.

[16] U. Maurer. Modeling a Public Key Infrastructure. In
Proc. of the Fourth European Symposium on Research
in Security and Privacy, volume LNCS 1146, pages
325{350, Rome, Italy, September 1996.

[17] P. Nikander and A. Karila. A Java Beans Component
Architecture for Cryptographic Protocols. In Proc. of
the 7th Usenix Security Symposium, San Antonio,
Texas, January 1998.
http://www.tml.hut.�/Research/TeSSA/Papers/Nikander-
Karila/nikander-karila-98.html.

[18] Object Management Group. The CORBA Security
Service Speci�cation. ftp://ftp.omg.org/pub/docs/ptc.

[19] J. Paajarvi. XML Encoding of SPKI Certi�cates.
Internet Draft.

[20] Remote Data Service: A Web Data Access Feature,
2000. http://www.microsoft.com/data/ado/rds.

[21] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST
Model for Role-Based Access Control: Towards A
Uni�ed Standard. In Proc. of 5th ACM Workshop on
Role-Based Access Control, Technical University of
Berlin, Berlin, Germany, July 2000.

[22] R. Sandhu and P. Samarati. Authentication, Access
Control and Intrusion Detection. In A. Tucker, editor,
Database Security VII: Status and Prospects, pages
1929{1948. CRC Press Inc., 1997.

[23] The Common Object Request Broker: Architecture
and Speci�cation, Revision 2.1, August 1997.
ftp://ftp.omg.org/pub/docs/formal/97-09-01.pdf.

[24] The Information Content Exchange Protocol, W3C
Note. http://www.w3.org/TR/note-ICE.

[25] E.J. Whitehead. World Wide Web Distributed
Authoring and Versioning (WebDAV): An
Introduction. ACM StandardView, 5(1):3{8, 1997.

[26] World Wide Web Consortium (W3C). XML Path
Language (XPath) Version 1.0, November 1999.
http://www.w3.org/TR/xpath.

[27] XML Metadata Interchange (XMI) speci�cation.
http://www.omg.org/cgi-bin/doc?ad/98-10-05.

[28] XML-RPC Home Page. http://www.xmlrpc.com/.

513

