
Communication Design for Electronic Negotiations
on the Basis of XML Schema

Michael Ströbel
IBM Research

Zurich Research Laboratory
8803 Rüschlikon, Switzerland

+41-1-724-8226

mis@zurich.ibm.com

ABSTRACT

Representation of negotiations in electronic markets and their
support are important issues in today’s e-commerce research.
Whereas most activities are focused on automation aspects, only
few efforts address the design of electronic negotiations – e.g. the
sequence of actions, or obligations and responsibilities of the
negotiating parties. However, an explicit negotiation design can
also address what is commonly referred to as the ontology prob-
lem of electronic negotiations: how can one ensure that the nego-
tiating parties have the same understanding regarding the issues
that are subject to the negotiation?
The solution this paper proposes is to perform a communication
design for electronic negotiations that explicitly specifies the
common syntax and semantics of the negotiating parties, the logi-
cal space of the electronic negotiation. Furthermore, XML
Schema is suggested as the mechanism for the runtime represen-
tation of the logical space and the validation of actual negotiations
from a syntactical and semantical perspective. On the basis of this
approach, organisations creating an electronic market or sellers
who intend to offer their buyers the ability to bargain can design
and generate support mechanisms for electronic negotiations in a
flexible and efficient way. The communication design action- and
meta-model presented are part of SILKROAD, a design and
application framework for electronic negotiations.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design
D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering, state diagrams.
H.2.11 [Information Systems]: Logical Design

General Terms
Design

Keywords
Application Framework, Electronic Negotiation, Ontology, XML

1. INTRODUCTION
Let us assume that a new electronic market for multiple sellers
and buyers is being created. Due to the nature of the goods traded,
price-focused coordination mechanisms such as auctions are not

applicable because an agreement between a seller and a buyer has
to consider multiple attributes of the good or item (e.g. price and
quality) as well as the terms and conditions of the transaction (e.g.
delivery time and return policy).

A critical factor for the efficiency of the future negotiation
processes on this market and the success of the potential settle-
ments is an a-priori agreement among the negotiating parties
about how the issues of a negotiation (item attributes, transaction
terms and conditions) are represented as abstract objects in the
negotiation and what this representation means to each of the
negotiating parties. If, for instance, party X offers a delivery date
of ‘12/10/2000’ for a workstation to party Y, one potential con-
flict arises if this syntax is misinterpreted by Y as ‘October 12’
whereas X intended to offer ‘December 10’. A semantical prob-
lem could occur if the meaning of this date to X is the point in
time where the product will leave the premises of X, whereas Y
assumes this is the date the workstation will arrive on the prem-
ises of Y. This problem is referred to as the ontology problem of
electronic negotiations [1].

Like any other information system, the creation of an electronic
market can be structured along the system development phases of
analysis, design and implementation. For an electronic market
intended to support electronic negotiations, the design activity has
to comprise the agreement scenario, which defines how potential
trading partners reach an agreement if conflicts arise regarding the
transaction or item configuration. Choice and further specification
of this scenario will vary depending on the market requirements
identified in the analysis phase. In the implementation phase, the
agreement scenario is mapped to a technical architecture and
application system.

However, if the agreement scenario is supposed to include some
kind of negotiations between buyers and sellers, there are no
common means by which the market creator and its stakeholders
can reason about the potential form of these negotiations. In 1991,
Holsapple et al. [10] have identified this need for general models
of negotiations, which could be used to characterise the nature
and process of the negotiation as well as to formalise its aspects,
and which have the flexibility to describe a wide range of possible
structures and interactions. But modelling aspects have been
largely neglected in related research, with the undesirable conse-
quence that it is difficult to discuss agreement scenarios on a con-
ceptual level, and that design efforts cannot be reused and refined
in the implementation phase in a formal way.

This lack of support for the design of agreement scenarios is the
underlying motivation for SILKROAD – a design and implemen-

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
Copyright 2001 ACM 1-58113-348-0/01/0005.

9

tation framework for electronic negotiations. The SILKROAD
framework can be used, for instance, by organisations creating
electronic markets, for the design and implementation of elec-
tronic negotiation support. Two deliverables of this project, the
design action- and meta-model for the specification of the com-
mon object syntax and semantics in an electronic negotiation, are
presented in this paper.

After referring to theoretical foundations of this work in the next
section, the approach chosen for SILKROAD will be illustrated in
more detail in Section 3. Details of the communication design
approach are presented in Section 4. Following the communica-
tion design in SILKROAD, the integrated design of agreement sce-
narios is outlined in Section 5. The consecutive generation of
XML schemata for the runtime representation of logical spaces is
then demonstrated in Section 6. Lastly, Section 7 discusses
conclusions, as well as related and future work.

2. NEGOTIATION MEDIA
In SILKROAD, the notion of media and the media reference model
[19] are used to conceptualise electronic negotiations. Media are
platforms where the exchange of tangible or intangible items by
means of transactions is coordinated through agent interaction.
These platforms can be described in terms of three main compo-
nents:

• Channels:
Agents access a medium via channels that can transport the
items to be exchanged.

• Logical space:
The syntax and semantics defined for representing the items,
which the agents exchange.

• Organisation:
Roles describing the types of agents and protocols specifying
their interactions.

An electronic medium in particular is a medium with electronic
(digital) channels that transport data. The agents, however, might
still be humans or organisational units and do not necessarily have
to be software agents.

The media reference model identifies several phases of agent
interaction (see Figure 1). Offers, expressions of will concerning
the configuration of a transaction or its associated item(s) commu-
nicated to other agents, are one possible means of representing
this interaction. Depending on the actual phase transition, offers
may assume different states of formality:

• Advertisement
In the knowledge phase, agents gather information concerning
the items offered or the profiles of other agents. An offer in
the form of an advertisement can be issued in the knowledge
phase. This advertisement might relate to a general class of
items (e.g. the types of products or services offered by this
agent) and is typically not related to another offer from a dif-
ferent agent, but targeted at a group of potential trading part-
ners. An advertised offer is also persistent in the sense that it
is valid for a certain period of time.

• Bid

In the intention phase, demand and supply are specified. An
offer in the form of a bid can be a response to an advertise-
ment in the intention phase of an electronic transaction, and is

therefore specific to the transaction and item configuration
proposed in the advertisement. Bids might also result from an
advertisement, which spawns bids specific to received
requests. This is, for instance, often the case if the item is
configurable or has certain options. In such an example, an
interested agent might bid to buy an advertised item with cer-
tain options and the advertisement ‘generates’ a complemen-
tary bid with a total price for this choice of item options. The
validity of a bid is limited by the validity of the associated
advertisement or complementary bid, but is usually even con-
strained further (e.g. ‘please respond to this bid by…’).

• Contract
As a result of a successful agreement phase, a final offer in the
form of a contract can seal mutually accepted bids with legally
binding signatures of the agents. A contract marks the transi-
tion to the settlement phase where the agreed-upon transaction
is executed and is therefore persistent beyond the duration of
the agreement phase.

A negotiation takes place in the agreement phase when, based on
the offers (bids) made in the intention phase, an agreement (a
contract) cannot be reached, or the initial agreement has a poten-
tial for optimisation and the agents are willing to discuss their
offer positions. From the perspective of one agent, negotiating is
characterised by the modification of its own bid or the efforts to
change another agent’s bid.

An electronic medium supporting negotiation processes in the
agreement phase, is denoted an Electronic NegotIation MEdiuM
(ENIMEM). An ENIMEM provides electronic negotiation support,
meaning the assistance or automation of certain tasks (e.g. deci-
sions) within the negotiation process. If a negotiation process is
conducted using an ENIMEM and no other media (e.g. letters), an
electronic negotiation takes place. Depending on the level of sup-
port provided by the medium, electronic negotiations can be com-
pletely, or partly automated – the latter case requires human inter-
vention in the negotiation process.

A magnitude of technologies can be used to build electronic
negotiation media. These technologies are core elements of
development efforts that have historically come to be known as
negotiation support systems (NSS, [11]). The notion of electronic
negotiation media comprises NSS as services on the transaction
layer of the media reference model (see Figure 1). In addition to
this service level, the goal of an ENIMEM is to support negotiations
in the agreement phase of electronic transactions also from a
community, process, and infrastructure point of view.

The ENIMEM definition used in this proposal does not refer to
negotiation media, which support agreements in electronic mar-
kets, but do not specifically provide assistance for negotiation
processes. A medium might, for instance, support agents in legally
accepting fixed offers with only one mechanism – signature vali-
dation. Hence, contractual obligation can be created and the
agreement phase can be completed without any actual negotiation
taking place. An ENIMEM might offer the same signature valida-
tion, but also has to include support for some form of negotiation
mechanisms, e.g. auctions.

Finally, negotiation support is not restricted to electronic media. If
a human mediator joins the negotiation process, for instance, to
suggest an agreement in a dispute, this constitutes as well a nego-
tiation support activity, but not a form of electronic negotiation
support.

10

Knowledge Intention Agreement Settlement

Community

Implementation

View

Transaction

View

Infrastructure

View
 ICT and Transaction Infrastructure

Offers
Demand

Settle-
ment

Processes

Business Community (Roles, Protocol)

Negotiate
Contract

Infor-
mation

Figure 1: Agreement phase in the media reference model [19].

3. SILKROAD APPROACH
The primary goal for the SILKROAD framework is to facilitate the
design and implementation of electronic negotiation media
according to the definition discussed in this section.

The two core elements of SILKROAD are the ROADMAP and the
SKELETON. The SKELETON provides several modular and configur-
able negotiation service components and can be classified as an
application framework [8] – the skeleton of an ENIMEM. Hence, an
ENIMEM is an instantiation of the SKELETON framework, which
supports one or multiple agreement scenarios. Following the reuse
and ‘inversion of control’ paradigm of frameworks, SILKROAD

developers can subclass framework components to implement
specific application logic. But the most common usage of the
framework will be the customisation and deployment of ENIMEM
instances of the SKELETON. The customisation affects the runtime
behaviour of the ENIMEM and is based on specifications generated
in the ENIMEM design.

Following the concept of media, the design of an ENIMEM has to
encompass three dimensions [20]:

• The communication design provides the structures of the logi-
cal spaces of the Enimem – syntactical and semantical repre-
sentations of the agents, attributes of the items, and the terms
and conditions of the transactions.

• The organisational design describes the roles (structure) and
protocols (behaviour) of agreement scenarios that will be sup-
ported by the Enimem.

• The IT design addresses the architecture of the Enimem, its
technical channels and interfaces.

SILKROAD assists all of the introduced design dimensions with the
ROADMAP design action-model, which prescribes how the design
of an agreement scenario is performed on the basis of the
SILKROAD design meta-model (SDMM). Hence, in the case where

one ENIMEM should support various agreement scenarios, the
ROADMAP design action model has to be applied several times,
each time complementing the design of one agreement scenario.

In SILKROAD the complexity of the final IT design and imple-
mentation of electronic negotiation media is reduced to a genera-
tion of executable agreement scenario representations, which
customise the behaviour of the SKELETON negotiation service
component instances at runtime.

Before the design action-model can be applied, it is essential to
perform an analysis of the preconditions of the agreement phase
of the electronic transaction. For the organisation design, charac-
teristics such as the transaction value (high, low, perishable etc.),
the risk for the agents involved in this transaction, or the custom-
isability of the item of the transaction have to be investigated in
order to select an appropriate design for the electronic negotiation
(see, for example, [3]). In addition to the characteristics of the
transaction, this analysis also has to cover aspects of the agents’
roles (their beliefs, desires, intentions…) as well as the relation-
ships between the agents (dependency, distribution of market
power, level of confidentiality, intensity of information exchange,
etc.). For the communication design (see below), this analysis
needs to identify typical and necessary elements of the logical
space, such as standard terms for transactions (delivery time,
return policy, etc.) or common representation formats for the
transaction items in a certain domain (e.g. computers are always
specified on the basis of CPU speed, RAM etc.).

SilkRoad Design
Meta-Model

Negotiation Service
Application Framework

Agreement Scenario
Organisation Design

Agreement Scenario
Communication Design

Agreement Scenario
Integrated Design

Negotiation Media
Runtime Specification

Analysis of
Preconditions

Figure 2: SILKROAD ROADMAP.

Figure 2 illustrates the sequence of actions in the design action
model and the input/output relations between these actions. The
first action to be performed in the ROADMAP is the agreement
scenario communication design, which is based on the findings of
the analysis of preconditions and the SDMM. Then the organisa-
tion design is performed, using the results of the communication
design, the precondition analysis and the constructs provided by
the SDMM for the organisation design. Finally, in the integrated
design activity, the results from the organisation and communica-

11

tion design are refined, merged, and verified – resulting in one
complete and consistent agreement scenario model, which can be
used to generate runtime specifications for the deployed
SKELETON instance.

Referring back to the layers of the media reference model,
SILKROAD specifically addresses the community, implementation
and transaction view. The roles and protocols of the community
layer are modelled within the SILKROAD design phase. Actual
processes on the implementation layer are then executed on the
basis of the generated runtime specifications and the negotiation
service component instances in the transaction layer.

The basis for all design activities in the ROADMAP is the
SILKROAD design meta-model (SDMM, see in Figure 3), which
introduces the principal entity types and the relations between
these types for the organisation design as well as the communica-
tion design.

State

Offer

Item

Guard

Action

Transition

Event

Concept

Transaction

(3,*)

(1,*)
(2,2)

(1,*)

(0,*)

(1,*)

(0,*)

(1,*)
(0,*)

Relation
(2,2)

(1,*)

(0,*)

(0,*)

Agent

is_part_of(1,1)is a

(3,*)

ServiceActor

interacts with (1,1)

Figure 3: SILKROAD design meta-model.

All entity types in the SDMM have associated properties except
the relation and transition types marked in lighter grey, which are
used to formalise relations between other entity types.

The SDMM captures both structural and behavioural aspects of
agreement scenarios. The semantics of the entity types can be
summarised as follows: An actor is a service or an agent. Items,
transactions and agents are represented as concepts in an offer.
An offer has three or more associated states. Actors create, delete
or modify offers and cause events, which can stimulate transitions
between the states of an offer. One event can be caused by multi-
ple actors and might be associated with a set of offers. A transi-
tion always transfers an offer from one state to another, and will
only occur if the guard condition is true. The ‘firing’ of a transi-
tion might also invoke an action.

The concept of state charts is the underlying modelling paradigm
(for both the organisation and communication design). The
advantage of state charts is that they are commonly used in infor-
mation systems design and also part of UML [18]. Therefore it
can be assumed that most designers are familiar with this
approach.

For the remainder of this paper, the focus is set on the communi-
cation design aspects of SILKROAD. Organisation design issues are
only referenced if they are coupled to constructs in the communi-
cation design. For details regarding the organisation design, see
[22].

4. COMMUNICATION DESIGN
The goal of the communication design is to structure the logical
space of an electronic negotiation medium for a particular agree-
ment scenario. The central objects of the communication design
are the offers exchanged in a negotiation. Offer instances are the
primary means of communication in the agreement phase (see, for
example, [13]) and in the SILKROAD framework are the only sup-
ported type of structured interaction.

The SDMM distinguishes between two types of offers that can be
issued by agents: offers-to-buy (O2B) and offers-to-sell (O2S).
Depending on the agreement scenario chosen, a final contract
might require that two compatible offer instances be found that
are both signed by the originator with respect to the complemen-
tary offer (one-sided contracting), or that one offer instance of one
type is signed by both agents (double-sided contracting).

In the ROADMAP the design of offer types is separated into the
definition of offer ontologies for the semantical aspects, and the
specification of offer states for the syntactical aspects of offer
communication in a negotiation.

4.1 Offer Ontology Design
The goal of commercial negotiations is to conduct one or more
transactions between the agents involved in the negotiation. A
transaction transfers one or more items (e.g. a product, money
etc.) from one agent to another and vice versa. The transaction,
the item, and the agent(s) involved can be described with sets of
attributes such as the delivery date of the transaction, the colour
of the item or the location of the agent. An attribute has a value or
value domain such as ‘12-12-00’, ‘green’, or ‘Switzerland’.

Ontologies are formally specified models of knowledge, which
can be used to share semantics among a set of agents. An ontology
defines the concepts describing a certain domain and the relation-
ships that hold between them [5]. It can be represented as a hierar-
chy of concepts. For electronic negotiations in SILKROAD domains
have to be specified for the representation of and reasoning about
the transaction, its related items, and the agents involved.

Figure 4 illustrates an (incomplete) example of a hierarchy of
concepts in the domain of computer hardware items. A notebook,
for instance, is a sub-concept of a computer and accordingly
inherits the properties of computer, which are, in this example, the
CPU clock speed, the type of the media drive etc. Notebooks are
also sub-concepts of monitors, thus inheriting another set of prop-
erties (e.g. the display resolution). Properties in the ontology have
a certain type and can be constrained, thus allowing only certain
property values (in the example the CPU clock-speed is con-
strained to the range between 300 and 1200 MHz). Relations
between concepts complement the ontology. An example of such
a relation is that the CPU of notebooks has to have power
management functions. It is possible to infer new knowledge on
the basis of given facts. An agent could derive, for instance, that if
a certain CPU is offered with notebooks, it must have power
management functions.

12

= OnSite
= CallCenter
= Internet

= CD 24x
= CD RW
= DVD

m 300 MHZ
[1200 MHZ

Offer

Hardware

Guarantee Service

ComputerMonitor Peripherals

CPU

Media Drive

RAM

HD

Notebook Workstation Server

Mouse TypeBattery Type
Attribute Relation
Concept Hierarchy

Figure 4: Ontology example.

For a complete offer ontology design, this item domain has to be
complemented with a domain ontology for the transaction, which
defines possible attributes and attribute values for terms and con-
ditions and an agent ontology. Domain ontologies can be reused
for multiple agreement scenarios. Hence, the transaction and agent
domain ontology in the example could also be used for scenarios
designed for other items such as computer software or IT services.

In an offer instance, concepts from the item, transaction and agent
domain can or must be used as offer properties to describe the
proposed deal completely. The representation of concepts in an
offer follows the notation domain.property (e.g. transac-
tion.delivery_date, notebook.CPU, or seller.location).

The effort to design and establish an ontology for an electronic
negotiation medium can be significant, as agents have to agree (in
a social process) on this common terminology (see, for example,
[2]). In other words, before ontologies can be used in the agree-
ment phase, the agents have to negotiate on a meta-level the
structure, meaning, and content of these domains – their common
language. This meta-level negotiation is manifested in the ontolo-
gies developed or chosen for the latter electronic negotiation.

4.2 Offer State Design
In the offer state design, the dynamic structures of the offer-to-buy
and offer-to-sell types for a specific agreement scenario are
modelled. From a behavioural perspective, any offer instance in
SILKROAD has a certain type and, at least and initially, three dif-
ferent states of formality during the negotiation process: adver-
tised, bid and contracted. In the SDMM, an offer is associated
with these three or more states, with one or more actors, and
might be related to certain events. To associate a state with an
offer, the notation offer.state is used.

The basis for the offer state design is a generic offer syntax speci-
fication developed for SILKROAD. This syntax defines the notation
for structural offer elements such as property domains (e.g. price
< $1000) or evaluation criteria (e.g. utility[price,$800] = 0.4). On
the basis of the defined notation, offer instances are created and
edited. The notation for property value domains, for example, is
the syntax used to represent item, transaction, or agent ontology
concepts in an offer instance. In general, the defined notation is

not specific to one particular domain ontology but applies to all
concepts represented in an offer.

In the meta-model the following abstractions of common offer
notation elements with associated sets of notation options are
available to represent an offer state:

• Agents (one, n, unbounded)
• Signatures (none, single, all)
• Timestamps (none, start, end, both)
• Domains (properties, values, ranges, dynamic)
• Constraints (basic, negotiable, weighted)
• Counters (none, n, unbounded)
• Criteria (none, importance, utility, functions)

Details regarding the semantics of these notation elements can be
found in [23]. The notation options are ordered in the sense that a
‘higher’ option allows a richer notation. To give an example, the
value dynamic for the property Domains explicitly allows an
agent to define the range of values for any property in an offer-to-
sell, only if the agent knows more about the agent interested to
buy. A typical example can be found in the insurance industry,
where quotes are usually dependent on age, medical record, driv-
ing experience etc. A more restricted notation would disallow the
dynamic option and limit offer specifications to a definition of
domain ranges. Another example is the negotiable value for the
Constraints element. It allows an agent to express the intention to
concede this offer property if he/she is compensated with another
property, thus enabling tradeoffs between buyer and seller (see
[21] for further details).

The specification of the offer state notation is performed on two
levels: required and optional offer notation elements. Generic
offer templates for the three introduced states are provided by
SILKROAD. The offer.advertised state, for instance, is character-
ised by the offer state notation in Table 1.

Table 1: State offer.advertised template.

Notation element Level Option Modifiable
Required One + Agents
Optional One +
Required None + Signatures
Optional Single -
Required Start No Timestamps
Optional Both -
Required Attributes + Domains
Optional Dynamic -
Required Basic No Constraints
Optional Negotiable -
Required None No Counters
Optional None No
Required None + Criteria
Optional Functions -

These initial offer-state templates are the starting point of the
communication design. Depending on the analysis of precondi-
tions, further refinements and adaptations of the notation can be
applied. Some scenarios might, for example, require property
domain specifications with explicit values or ranges, whereas
other scenarios may disallow dynamic property domains. To
ensure compliance with the framework, templates cannot be
changed arbitrarily; modifiable offer structure properties are
explicitly marked (see Table 1 where ‘+’ indicates that a richer

13

notation might be used and ‘-’ indicates that a more restricted
notation is possible).

Additional states might be necessary to model the agreement sce-
nario. These states are added in the organisation and integrated
design (see Section 5). For each additional offer state the respec-
tive level of formality is also represented by enabling or disabling
notation elements for the construction of offer instances.

The final step of the communication design is to assign the offer
type with its related state design to domains specified in the offer
ontology design. An offer type needs to be associated with at least
one item domain, one transaction domain, and one agent domain.
Multiple agent domains, for instance, might make sense if certain
typical agent types such as distributors or outsourcers participate
in a market and their properties might be referenced in an offer. If
a concept (e.g. in the item domain a computer) has sub-concepts
(workstation, notebook, etc.), the offer can be issued for any of
the sub-concepts as well (this functionality is especially useful for
advertisements where often general classes of products or services
are offered, see Section 2).

This ontology association guarantees that the content of offer
instances can be validated not only syntactically, on the basis of
the offer state design, but also semantically against the domain
specifications in the ontology. Hence, only properties related to
the concepts and the concept relations defined can be used in the
offer description. If an offer were assigned to the notebook con-
cept in Figure 4, it is only possible for the construction of an offer
instance to use constraints for item properties related to notebook,
such as display resolution or CPU clock-speed.

5. INTEGRATED DESIGN
In the integrated design of an agreement scenario, the deliverables
from the organisation and communication design are integrated,
refined, and verified – resulting in one complete and consistent
agreement scenario model. On the basis of this agreement sce-
nario model, runtime specifications are generated, which are used
to customise the behaviour of an ENIMEM and to validate actual
negotiation processes executed through the ENIMEM.

5.1 Integration and Refinement
The basis for the integrated design is the set of offer states defined
for an agreement scenario in the precedent design activities. These
offer states are the mandatory (and optionally customised) tem-
plate states (advertised, bid, and contracted) specified in the
communication design, complemented by additional states dis-
covered within the organisation design.

The task of the organisation design is to model all necessary states
of offer types within an agreement scenario and thereby to dis-
cover the associated actor roles, events, transitions, guards, and
actions. One agreement scenario completed in the organisation
design represents all necessary roles and the protocol for the com-
plete agreement phase specification of a transaction in an ENIMEM.
Roles are defined as the total of all possible events an agent can or
must raise. The protocol constitutes all the rules in one scenario,
represented by valid states and transitions, which define how
agents come to an agreement.

Figure 5 illustrates an example of an organisation design. The
graphical notation follows the UML conventions for state-chart
diagrams. States are represented by rounded rectangles. The offer
type related to a state is indicated with capital letters preceding the

state identifier. Transitions are arrows connecting states. Events
(‘E:’), guards (‘G:’), actions (‘A:’), and properties (‘P:’) are
specified as textual information complementing the transition
arrows.

O2B.matching

O2B.advertised

O2B.contracting

O2B.matched

O2B.scoring

O2B.scored

E: buyer.match
E: seller.match
A: match

E: match.completed
G: o.n = 1

E: match.completed
G: o.n = 0

E: match.completed
G: o.n > 1
A: score P: score.max = 3

E: score.completed

E: buyer.accept
A: contract

E: buyer.decline

Figure 5: Organisation design example.

For the organisation design additional state templates, so-called
service-states, are pre-defined (shown in a lighter grey). One of
the state templates from the communication design
(O2B.advertised) is also represented in Figure 5.

The task of the integrated design is to add syntactical structure to
the additional states stemming from the organisation design, and
potentially to identify supplementary states necessary to represent
the organisation design. Depending on the organisation design of
the agreement scenario, agents can or can not, for instance,
counter the offer of another agent by deriving a new bid that dis-
putes some of the constraints of the original advertisement or bid.
In the integrated design this additional offer state has to be
reflected with a corresponding offer state representation where the
notation element counters is set to the bound or unbound notation
option.

The integrated design may result in additional offer states in order
to reflect necessary changes to the offer structure. These changes
might also require additional agent interaction. In the example in
Figure 5, the score service can be invoked after an offer instance
was matched. This requires the initiating offer to feature evalua-
tion criteria such as utility functions. Therefore, an additional
state O2B.updated is necessary if an offer in O2B.matched does
not necessarily contain evaluation criteria. The event activating a
transition from O2B.matched to O2B.updated is buyer.submitted.
The guard for this transition specifies a successful validation of
the modified offer according to the offer structure properties
defined for the state O2B.updated.

The result of this design activity is an agreement scenario model
with offer state specifications, which is complete from a commu-
nication and organisation design perspective, thus comprising the
logical space (syntactical and semantical representation of items,
transactions and agents) as well as the roles and protocols of the
agreement scenario.

14

5.2 Consistency Checking
Merging the organisation and communication design in the inte-
grated design phase enables one to check the resulting agreement
scenario model for consistency and accuracy from a structural and
behavioural point of view.

To be a valid agreement scenario model, the model has to comply
with the following types of conditions:
• Offer template states are modified only within the defined

restrictions.
• Events with actions activate only transitions to service-states.
• Only service-states and actions available in the application

framework are used.
• Guard conditions evaluate only those offer properties and

notation elements that are available at the preceding offer
state(s).

• Offer notation options required for subsequent service execu-
tions are specified.

• Negotiation service component interrelationships are reflected
(e.g. match is a necessary predecessor of mediate).

If the agreement scenario model passes the consistency check, the
next step in SILKROAD is the generation of executable representa-
tions for this design1.

6. Generation of XML Schemata
This section describes how the communication design is trans-
ferred to XML schemata, which are used for the runtime valida-
tion of offer instances.

On the basis of the completed agreement scenario model, runtime
representations for the ENIMEM can be generated. These runtime
representations are persisted in communication and organisation
design repositories as agreement scenario policies (see Figure 6).
One ENIMEM can support multiple agreement scenarios, depend-
ing on the policies available in its repositories.

Agent
Agent Agent

Manager

Match ScoreBid MediateBundle Contract

Agent

Communication
Repository

Policy
Manager

Organisation
Repository

Figure 6: Runtime architecture overview.

Electronic negotiation media are instances of the SKELETON. The
facility in the ENIMEM responsible for controlling the execution of

1 Once graphical tools are available to support the design process in

SILKROAD, the consistency check can already be performed at design-
time, when new states or transitions are added.

actual agreement scenarios is the policy manager. It checks,
depending on the current state of the agreement scenario, offer
instances for correctness as well as events and actions of agents
for compatibility with the protocol and role specification in the
organisation design. Depending on the underlying agreement
scenario model the policy manager will also invoke services, if,
for instance, a transition fires with an associated action for a
negotiation service component. The current set of negotiation
service components available within the SKELETON is outlined as
well in Figure 6.

6.1 XML Schema
XML Schema is a W3C working draft, which was published in
April 2000 for review by the public and by the members of the
World Wide Web Consortium [7]. In November 2000 it was con-
sidered to be stable and promoted to a candidate recommendation.

Schemata are used to specify classes of XML instance documents
by describing the document structure in a much richer way than is
possible on the basis of document type definitions (DTD) [6].
With the basic vocabulary and predefined structuring mechanisms
of XML Schema, fine-grained constraints on XML documents can
be defined, thus enabling rich automated validation. The primary
advantages of using XML schemata compared to DTDs are that it
is possible to express hierarchies of data types, and that schemata
themselves are XML documents. Hierarchies of types are critical
for the schema generation process in SILKROAD as model-specific
types are derived from a set of generic types. Owing to their XML
nature, schemata can be created in the same way (with the same
tools) as traditional XML documents. Accordingly, it is not
necessary to build an automated schema generation process from
scratch.

In SILKROAD, schemata represent the logical space design of
agreement scenarios at runtime. For each offer state definition in
the integrated design a customised schema is generated. If differ-
ent offer ontology assignments are used for the same offer states,
additional schemata have to be generated. At runtime, agents use
these schemata to construct or modify offers for the various offer
states.

6.2 SILKROAD Base Schema
The foundation for the customisation and generation process is
the basic SILKROAD syntax. A snippet of the syntax representation
in XML Schema, the base schema, is illustrated in Figure 7.

The base schema defines fundamental constraints such as ‘an offer
needs to have one or more specified item domains’. Overall, the
base-schema defines all possible offer notations supported from a
structural point of view by the underlying framework. All types in
the base schema are declared to be abstract (using the attribute
setting abstract=“true” in the type declaration). Abstract types
cannot be used in conforming XML document instances. Hence,
all generic types need to be re-defined in the subsequently cus-
tomised scenario-specific schemata.

15

. . .
<element name="CONTAINER" type="xsr:CONTAINER">
<complexType name="CONTAINER" abstract="true" mixed="false">
 <sequence>
 <element name="AGENT" type="xsr:AGENT"
 maxOccurs="unbounded"/>
 <element name="OFFER" type="xsr:OFFER"/>
 <element ref="xsr:ITEM_DOMAIN" maxOccurs="unbounded"/>
 <element ref="xsr:TRANSACTION_DOMAIN" minOccurs="0"
 maxOccurs="unbounded"/>
 <element ref="xsr:AGENT_DOMAIN" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
</complexType>
<element name="ITEM_DOMAIN" type="xsr:CONTEXT"/>
<element name="TRANSACTION_DOMAIN" type="xsr:CONTEXT"/>
<element name="AGENT_DOMAIN" type="xsr:CONTEXT"/>
<complexType name="CONTEXT" abstract="true" mixed="false">
 <element name="NAME" type="string"/>
 <sequence>
 <element ref="xsr:OFFER_CONSTRAINT" maxOccurs="unbounded"/>
 <element ref="xsr:COUNTER_CONSTRAINT" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="NUMBER" type="integer" use="required"/>
</complexType>
<element name="OFFER_CONSTRAINT" type="xsr:CONSTRAINT"/>
<element name="COUNTER_CONSTRAINT" type="xsr:CONSTRAINT"/>
<complexType name="CONSTRAINT" abstract="true" mixed="false">
 <choice>
 <element ref="xsr:ATTRIBUTE_DOMAIN"/>
 <sequence>
 <element ref="xsr:ATTRIBUTE_DOMAIN"/>
 <element ref="xsr:ATTRIBUTE_DOMAIN"/>
 </sequence>
 <sequence>
 <element ref="xsr:ATTRIBUTE_DOMAIN"/>
 <element name="CONSTRAINT_OPERATOR"
 type="xsr:OPERATOR"/>
 <element ref="xsr:ATTRIBUTE_DOMAIN"/>
 </sequence>
 </choice>
 <attribute name="NEGOTIABLE" type="boolean" use="optional"
value="false"/>
</complexType>
<element name="ATTRIBUTE_DOMAIN" type="xsr:ATTRIBUTE_DOMAIN"/>
<complexType name="ATTRIBUTE_DOMAIN" abstract="true"
mixed="false">
 <sequence>
 <element name="PROPERTY" type="string"/>
 <element ref="xsr:OPERATOR" minOccurs="0"/>
 </sequence>
</complexType>
. . .

Figure 7: Base schema.

To generate a state- and ontology-dependent schema, additional
constraints are derived from the design specification, which lead
to restrictions of the base schema. To restrict a schema, the fol-
lowing generic XML Schema mechanisms are used in the genera-
tion process:
• Redefining types.
• Deriving types by extension or restriction.
• Changing attribute use from optional to required.
• Forbidding the use of attributes with prohibited.
• Assigning fixed values to attributes or elements.
• Setting elements to be required (minOccurs = 1).
• Limiting the number of elements (maxOccurs = x).
• Deleting enumeration elements in simple types.

In the next sections, the subsequent scenario-specific derivation
and customisation mechanism, which underlies the automated
schema generation process in SILKROAD, is outlined.

6.3 State-dependent Customisation
Whereas the base schema defines a generic namespace
www.silkroads.ch, a new unique namespace is created for each
agreement scenario. Hence, the first step in the derivation and
customisation mechanism is to define this agreement scenario
namespace.

For all states defined in the agreement scenario model for an offer
type, a corresponding state-dependent schema has to be generated
that adds the state-specific offer notation to the agreement sce-
nario namespace. This is done by importing all types defined in
the generic SILKROAD namespace, and redefining state-specific
types according to the notation elements assigned to this state in
the offer state design. The process can be illustrated using the
example of the state offer.advertised as defined in the template
(see Section 4.2), which results in the following snippet of an
offer.advertised schema for a sample namespace
www.silkroads.ch/example:
<schema
 targetNamespace="http://www.silkroads.ch/example"
 xmlns=http://www.w3.org/2000/10/XMLSchema
 xmlns:xsr=http://www.silkroads.ch
 xmlns:example="http://www.silkroads.ch/example"
 elementFormDefault="unqualified">
 <import namespace="http://www.silkroads.ch"
 schemaLocation="silkroad.xsd"/>
 <complexType name="OFFER" mixed="false">
 <complexContent>
 <restriction base="xsr:OFFER">
 <attribute name="START" type="string" use="required"/>
 </restriction>
 </complexContent>
 </complexType>
. . .

Figure 8: State-dependent schema example.

In the example in Figure 8, the use of the START attribute of the
OFFER type is required, corresponding to the notation element
definition in the offer.advertised template. Deriving by extension
or restriction in XML Schema is comparable to the inheritance
mechanism in object-oriented programming languages in the
sense that elements and attributes can be added or omitted, and
specifications of the super-type can be overwritten. The state-
dependent schema redefines only those types, where the offer
design for this state manifests specific notation elements. For all
other types, the definition in the base schema remains valid.

As outlined in Section 4.2, modifications to the templates can be
performed within certain restrictions. If a specific agreement sce-
nario requires, for example, an agent to define an expiration date
for the advertisement, the OFFER type definition in Figure 8
would also set the use of END to required. To restrict, for
instance, the domain structure to allow no value ranges, all ele-
ments of the OPERATOR enumeration for a domain (‘>’, ‘<’ etc.)
except the ‘=’ operator are deleted.

The result of this first customisation step is the generation of a set
of schemata, one for each offer-state, defining an agreement sce-
nario namespace and constraining XML instance documents from
a syntactical perspective. In the next step, semantical constraints
are added.

6.4 Ontology-dependent Customisation
In this step, the ontology domain assignment for the offer type,
performed in the conceptual communication design, is manifested
in all generated state-dependent offer schemata. Ontology-
dependent offer schemata are constructed using the syntactical
notation from a state-dependent schema and the semantical con-
cept specification from the ontology.

For each state-dependent offer schema, this ontology-dependent
customisation has to be performed. The state-dependent offer
schema is included (using the include schemaLocation directive
in XML Schema) in a new ontology-dependent schema specifica-
tion (which shares the namespace with the state-dependent

16

schema). The base schema is also imported. A designer has two
options for the ontology-dependent customisation:

• Domain typing
This option defines for each property in the chosen ontology
domain a new type as extension to the
ATTRIBUTE_DOMAIN type.

• Context typing

This second option adds more semantics through additional
extensions of the CONTEXT and the CONSTRAINT type and
the definition of corresponding element substitution groups.

The trade-off between these two options is that domain typing
does not guarantee structural integrity – it cannot be validated, for
instance, whether an agent used all necessary properties in the
specification of an offer for a certain item domain represented as a
CONTEXT. Context typing, on the other hand, does provide con-
text structure, but the elements used in the specification are not
standardised, thus making parsing much more complicated,
because every property is represented with a specific domain and
constraint element2.

The first example shown in Figure 9 demonstrates domain typing
for the WORKSTATION.CPU property, which is restricted to
values between 300 and 1200 GHz (see the definition of the
Computer concept in Section 4.1).
<schema
 targetNamespace="http://www.silkroads.ch/example"
 xmlns:example="http://www.silkroads.ch/example"
 xmlns:xsr="http://www.silkroads.ch"
 xmlns=http://www.w3.org/2000/10/XMLSchema
 elementFormDefault="unqualified">
 <import namespace="http://www.silkroads.ch"
 schemaLocation="silkroad.xsd"/>
 <include schemaLocation="silkroad_advertisement_example.xsd"/>
 <complexType name="WORKSTATION.CPU" mixed="false"
 final="restriction">
 <complexContent mixed="false">
 <extension base="xsr:ATTRIBUTE_DOMAIN">
 <sequence>
 <element name="VALUE">
 <simpleType>
 <restriction base="integer">
 <minInclusive value="300"/>
 <maxInclusive value="1200"/>
 </restriction>
 </simpleType>
 </element>
 <element name="UNIT">
 <simpleType>
 <restriction base="string">
 <enumeration value="MHz"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
. . .

Figure 9: Ontology-dependent schema with domain typing.

Similarly all other concepts and (inherited or native) attributes
from the chosen domain ontology are defined as extensions to
ATTRIBUTE_DOMAIN types in the state-dependent schema. As
the ATTRIBUTE_DOMAIN type is declared to be abstract in state

2 The distinction between domain and context typing is already reflected

in the state-dependent customisation. For context typing, additional
types from the base schema such as CONTEXT and
ATTRIBUTE_DOMAIN are restricted. The <NAME> and
<PROPERTY> elements in these types are not needed, because specific
named types such as WORKSTATION.CPU are created in the process
of context typing (see below).

schemata, only these new semantic domain types can be used for
the actual offer specification.

In addition, the ontology-dependent schema declares new types
with final="restriction", which prevents further restrictions of this
type in new schemata, whereas extensions are still possible (e.g. if
an agent needs to extend the MHz range or add GHz as another
unit enumeration).
. . .
<complexType name="WORKSTATION" final="restriction" mixed="false">
 <complexContent mixed="false">
 <extension base="example:CONTEXT">
 <sequence>
 <element ref="example:CPU_CONSTRAINT"/>
 <element ref="example:HD_CONSTRAINT"/>
 . . .
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <element name="CPU_CONSTRAINT"
 type="example:CPU_CONSTRAINT"
 substitutionGroup="xsr:OFFER_CONSTRAINT"/>
 <complexType name="CPU_CONSTRAINT" mixed="false">
 <complexContent mixed="false">
 <restriction base="xsr:CONSTRAINT">
 <sequence>
 <element ref="example:WORKSTATION.CPU"/>
 </sequence>
 <attribute name="NEGOTIABLE" type="boolean"
 use="optional" value="false"/>
 </restriction>
 </complexContent>
 </complexType>
 <element name="WORKSTATION.CPU"
 type="example:WORKSTATION.CPU"
 substitutionGroup="xsr:ATTRIBUTE_DOMAIN"/>
 </complexType>
. . .

Figure 10: Ontology-dependent schema with context typing.

The second example shown in Figure 10 illustrates context typing,
where additionally the CONTEXT and CONSTRAINT type are
extended and complemented with corresponding element defini-
tions.

Figure 10 demonstrates a customisation example for CONTEXT
with the type WORKSTATION, and for CONSTRAINT with the
type CPU_CONSTRAINT. The semantics of this example is as
follows: the WORKSTATION type requires that a mandatory con-
straint be defined for the CPU property of a workstation. This
CPU_CONSTRAINT can substitute any valid occurrence of an
offer constraint in an offer instance document. Furthermore, the
WORKSTATION.CPU domain has to be used in this constraint.
The example also demonstrates how types from the base schema
(denoted with the xsr: namespace reference) and types from the
state schema (such as example:Context) are combined to construct
the ontology-dependent schema.

6.5 XML Instance Document Examples
With the completion of the final customisation step in the
previous section, the set of ontology- and state-dependent sche-
mata for an offer type is complete and can be used to construct
and validate XML offers at runtime. To demonstrate the result of
the generation process, Figure 11 features an XML instance
document compliant with the ontology schema in Figure 9.

In this example, the property types are specified with the xsi:type
assignment for the ATTRIBUTE_DOMAIN element. It can be seen
that only standardised elements such as ITEM_DOMAIN or
OFFER_CONSTRAINT are used, thus simplifying the parsing of
instance documents. However, there is no constraint that the
WORKSTATION.CPU type is required in the offer.

17

<CONTAINER
 xmlns=http://www.silkroads.ch/example
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:schemaLocation="http://www.silkroads.ch/example
 silkroad_advertisement_ontology.xsd">
 <OFFER ID="OF_007" TYPE="O2B" SCENARIO="SC_001"
 STATE="ADVERTISED" START="10.01.2001"/>
 <ITEM_DOMAIN NAME="WORKSTATION" NUMBER="1">
 <OFFER_CONSTRAINT>
 <ATTRIBUTE_DOMAIN xsi:type="WORKSTATION.CPU">
 <PROPERTY>"WORKSTATION.CPU"</PROPERTY>
 <OPERATOR>GREATER_THAN</OPERATOR>
 <VALUE>700</VALUE> <UNIT>MHZ</UNIT>
 </ATTRIBUTE_DOMAIN>
 </OFFER_CONSTRAINT>
. . .

Figure 11: XML instance document with domain typing.

This additional validation can be achieved with context typing
and is illustrated in the instance document example in Figure 12.
<CONTAINER
 xmlns=http://www.silkroads.ch/example
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:schemaLocation="http://www.silkroads.ch/example
 silkroad_advertisement_ontology.xsd">
 <OFFER ID="OF_007" TYPE="O2B" SCENARIO="SC_001"
 STATE="ADVERTISED" START="10.01.2001"/>
 <ITEM_DOMAIN NUMBER="1" xsi:type="WORKSTATION">
 <CPU_CONSTRAINT>
 <WORKSTATION.CPU>
 <OPERATOR>GREATER_THAN</OPERATOR>
 <VALUE>700</VALUE> <UNIT>MHZ</UNIT>
 </WORKSTATION.CPU>
 </CPU_CONSTRAINT>
 <OFFER_CONSTRAINT>
 <WORKSTATION.HD>
. . .

Figure 12: XML instance document with context typing.

In the example in Figure 12 the type specification is used to
assign the restricted WORKSTATION type for the
ITEM_DOMAIN element, which requires that
CPU_CONSTRAINT be used. The disadvantage of this added
semantic is that an item specification may contain different con-
straint types: customised constraints (e.g. CPU_CONSTRAINT)
and generic OFFER_CONSTRAINT elements, which are used, for
instance, to define additional binary constraints.

7. CONCLUSIONS
This paper demonstrates how the communication design of elec-
tronic negotiations is performed within the SILKROAD framework.
The goal of the communication design is to define agreement
scenario models for the logical space of an electronic negotiation
medium. This logical space comprises the syntax and semantics of
offer representations shared by agents, which negotiate item
attributes and/or terms and conditions of an electronic transaction.
The proposed solution is intended to avoid misunderstandings
during the negotiation process, before an agreement is made and
the settlement is enacted.

In this final section, the proposed solution is evaluated and com-
pared with related research efforts.

7.1 Evaluation
Referring back to the initial claims, an evaluation of the presented
communication design approach has to discuss two interrelated
questions:

• Can the ontology problem of electronic negotiations be
addressed by the proposed solution?

• Are XML Schema mechanisms useful for expressing and
validating the communication design at runtime?

The result of the explicit communication design of electronic
negotiation media within the SILKROAD framework is an ontology

for the item, transaction, and agent domain, and state specifica-
tions for offer instances associated to these domains. To achieve a
common understanding of the issues that are subject to the nego-
tiation, these design deliverables can be specified in a joint
process with all agents involved in the later usage of the ENIMEM.
The constructs introduced in the SDMM (ontology definitions
and state diagrams) support this meta-level agreement process, as
they can be used for communication and discussion on a
conceptual level. The resulting formal agreement about the
semantics of offer representations is a necessary prerequisite for
the latter negotiation support implementation.

Once the communication design has been mutually accepted, it
can be transferred to a runtime representation, thus enabling the
checking of a negotiation process for semantical and syntactical
correctness towards the original design. Hence, assuming that
both the communication design and the generation of the runtime
representation are complete and correct, the ontology problem
cannot occur during actual negotiation processes as violations of
the agreed-upon logical space are detected. This is at least true for
the agents originally involved in the design process. Accordingly,
the admission of new agents to participate in the ENIMEM requires
an acknowledgement of the logical space defined.

Whether the runtime representation is complete and correct
depends largely on the mechanisms provided by XML Schema in
association with the defined generation process. Various sugges-
tions (see, for example, [5]) have been made to move from specific
ontology formalisms (KL-ONE, KIF, frame logic…) towards
more standardised and widely used representation mechanisms
such as UML or XML document type definitions (DTD). The
latter approach was chosen by Erdmann and Studer [6]. They
point out that transforming ontologies into XML Schema appears
to be more appropriate than into DTDs, mainly because of the
ability to define type hierarchies. In [15], a process for the step-
wise translation of an ontology to XML Schema is proposed.
SILKROAD uses a similar abstraction-based approach, but in com-
parison, the communication models do not represent a complete
ontology in a schema but only the selected set of concepts.

Regarding completeness, the status of the current representation is
still insufficient. On the basis of domain typing, the relation of
properties to concepts is lost if multiple concepts are represented
in one ontology-state schema. This might be the case if an agent
intends to issue a combinatorial offer for several types of goods
(e.g. notebooks and servers). Related to this problem is also the
fact that multiple inheritance cannot be represented in XML
Schema. This is one of the shortcomings of the current frame-
work, which has to be tackled in future work.

Beyond the completeness and correctness necessary to address the
ontology problem, the usage of XML Schema provides additional
advantages. As a forthcoming W3C standard, a number of
powerful and widely accepted tools such as the Xerces parser [26]
can be used to create or validate XML documents adhering to this
standard. Hence, agents can easily interface with an ENIMEM by
submitting XML documents. These documents can be edited,
administered, and validated decentrally according to the internal
processes of the agent’s organisation. Though this creates a dis-
tributed and decentralised system of negotiating agents, common
integrity constraints are defined centrally using schemata.

XML Schema by means of the control options for the derivation
process also offers the ability to extend the ontology in a decen-

18

tralised way. Let us assume that a seller agent can offer computers
with new features not reflected in the current ontology in Figure
4, e.g. a DVD writer. The domain schema specification could then
be extended by the agent with a derived media drive type, which
also includes an enumeration for the DVD write option. Using this
extension functionality enables the ontology to be maintained in a
distributed way. To guarantee the integrity of the overall
ontology, the other agents certainly would have to approve such
extensions.

Finally, from a technical perspective, the light-weight XML
access interface to the ENIMEM, which allows for decentralised
schema validation and extension, can be further extended across
all functionalities (raising events to execute services etc.) if, for
instance, SOAP (Simple Object Access Protocol, see [26]) is used
as a general means of service invocation. This option is currently
being investigated.

7.2 Related Work
This approach relates to work in the areas of negotiation support
and semi-structured data models. From a negotiation support
view, this work is an effort situated in the area of generalised
models of negotiations, which is undertaken from an information
systems perspective. Most approaches to modelling negotiations
to date stem from an artificial intelligence (e.g. [16]) or decision
science (e.g. [14]) background. In addition, the media concept
with its explicit distinction in communication and organisation
design aspects adds a different perspective on negotiation support.
This distinction provides an additional level of abstraction and
reduces the complexity of negotiation design significantly.

Approaches to the ontology problem of electronic negotiations
that aim at a common understanding of the negotiating parties
regarding the question ‘what is to be negotiated’, can be found in
the ContractBot project and in the work of Kang and Lee.

For ContractBot, Reeves et al. [17] developed a declarative con-
tract language that allows one to specify offers and eventually
contracts with terms and conditions, constraints, dependencies, as
rules and to represent them as XML documents. The expressive
power of this contract language certainly exceeds the capabilities
of the notation and XML Schema offer representation in
SILKROAD: first, because rules have higher semantics than con-
straints, and second, because these contracts are executable logic
programs. SILKROAD, however, does not only provide an offer
language, but also a design framework with offer templates and
means to model and represent the various states of an offer within
a negotiation process. Furthermore, this design framework allows
linking the question of ‘what is to be negotiated’ with the com-
plementary organisation design question ‘how is the negotiation
executed’ through the integrated design activity.

Kang and Lee developed a negotiation support system that relies
on a shared ontology mechanism to structure negotiations. Based
on the description in [12] buyers and sellers can edit the ontology
– but the documentation does not disclose how this ontology is
constructed and validated.

Regarding syntax formalisms, related work can be found in the
area of XML-based trading protocols such as IOTP [4] or OBI
[25]. The difference to SILKROAD is that these protocols are
focussed on the settlement phase of electronic transactions (see
Figure 1) by providing reference expressions for payment
conditions etc. whereas the base-schema in SILKROAD defines

generic syntactical structures for the agreement phase, abstracting
from the actual message content.

7.3 Outlook
Regarding future work, an interesting opportunity arises once the
design approach is actually in use and applied to a multitude of
real agreement scenarios. Whereas the SDMM specifies ‘how’ to
model electronic negotiation media, a reference model can specify
‘what’ to model. This reference model could evolve from a set of
basic agreement scenarios, which, comparable to proved idioms in
object-oriented software engineering [9], represent reusable best
practices for electronic negotiations. A communication pattern
might suggest, for example, that offers for the domain of internet
services usually comprise certain mandatory attributes such as the
definition of a support contract (e.g. 24x7) or the pricing scheme
(fixed rate, traffic dependent etc.).

Another promising foundation for the definition of communi-
cation patterns could be the INCOTERMS and ETERMS reposi-
tories (see for example [24]). These collections of standard com-
mercial terms aim at avoiding the friction resulting from the diver-
sity of semantic and legal interpretation of terms in international
commerce. For usage in SILKROAD these terms could be repre-
sented in generic transaction domain ontologies, defining, for
instance, standard concept terms for packaging, delivery points,
transits etc.

If this abstraction is feasible, SILKROAD could provide not only a
design and implementation framework, but also a reference model
for electronic negotiations.

8. ACKNOWLEDGEMENTS
The author thanks his colleagues at IBM’s Zurich Research Labo-
ratory for supporting this work – Heiko Ludwig and Markus
Stolze for valuable feedback on the ideas presented in this paper,
and Achille Fokoue Nkoutche for XML Schema troubleshooting.

9. REFERENCES
[1] Beam, C., Segev, A., Bichler, M., and Krishnan, R. On

Negotiations and Deal Making in Electronic Markets. Infor-
mation Systems Frontier, Vol. 1, No. 3, 1999, 241-258.

[2] Benjamins, R., Fensel, D., Decker, S., and Perez, A. Building
Ontologies for the Internet: A Mid Term Report. Interna-
tional Journal of Human Computer Studies, Vol. 51, 1999,
687-712.

[3] Bichler, M. A Roadmap to Auction-based Negotiation Proto-
cols for Electronic Commerce. Proceedings of the 33rd
Annual Hawaii Int’l. Conference on Systems Science
HICCS, Hawaii, 2000.

[4] Burdett, D. Internet Open Trading Protocol - IOTP Version
1.0. IETF TRADE Working Group, Internet Draft, 1999.

[5] Cranefield, S., and Purvis, M. UML as an Ontology Model-
ling Language. Proceedings of the IJCAI-99 Workshop on
Intelligent Information Integration, 1999.

[6] Erdmann, M., and Studer, R. Ontologies as Conceptual
Models for XML Documents. Proceedings of the 12th Work-
shop for Knowledge Acquisition, Modeling and Management
(KAW '99), Banff, Canada, October 1999.

[7] Fallside, D. XML Schema Part 0: Primer. W3C Working
Draft, April 7 2000.

19

[8] Fayad. M., Schmidt, D., and Johnson, R. Building Application
Frameworks - Object Oriented Foundations of Framework
Design, Wiley Computer Publishing, New York, 1999.

[9] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns – Elements of Reusable Object Oriented Software.
Addison-Wesley, Reading, England, 1995.

[10] Holsapple, C., Lai, H., and Whinston, A. Negotiation
Support Systems: Roots, Progress and Needs. Journal of
Information Systems, Vol. 1, 1991, 233-247.

[11] Jelassi, T., and Foroughi, A. Negotiation Support Systems:
An Overview of Design Issues and Existing Software. Deci-
sion Support Systems, Vol. 5, 1989, 167-181.

[12] Kang, J., and Lee, E. A Negotiation Model In Electronic
Commerce to Reflect Multiple Transaction Factors and
Learning. Proceedings 12th International Conference on
Information Networking, Tokyo, Japan, 1998.

[13] Kersten, G., and Noronha, S. Negotiations in Electronic
Commerce: Methodological Misconceptions and a
Resolution. InterNeg Research Report INR02/99, 1999.

[14] Kersten, G., and Szpakowicz, S. Modelling Business
Negotiations for Electronic Commerce. InterNeg Research
Report INR98/015, 1998.

[15] Klein, M., Fensel, D., Harmelen, F., and Horrocks, I. The
Relation between Ontologies and Schema-Languages:
Translating OIL-Specifications to XML-Schema. Proceed-
ings of the Workshop on Applications of Ontologies and
Problem-solving Methods, 14th European Conference on
Artificial Intelligence ECAI’00, Berlin, Germany, August
20-25, 2000.

[16] Parsons, S., Sierra, C., and Jennings, N. Agents that Reason
and Negotiate by Arguing. Journal of Logic Computation,
Vol. 8, No. 3, 1998, 261-292.

[17] Reeves, D., Grosof, B., Wellman, M., and Chan, H. Automated
Negotiations from Declarative Contract Descriptions. Pro-
ceedings AAAI-2000 Workshop on Knowledge-Based Elec-
tronic Markets, Austin, USA, July 2000.

[18] Rumbaugh, J., Jacobson, I., and Booch, G. The UML Refer-
ence Manual. Addison-Wesley, Reading, England, 1999.

[19] Schmid, B. Elektronische Märkte - Merkmale, Organisation
und Potentiale, in: Sauter M. (ed.), Hermanns A. (ed.):
Handbuch Electronic Commerce. Universität der
Bundeswehr München, July 1998.

[20] Schmid, B. Was ist neu an der digitalen Ökonomie? in:
Dienstleistungskompetenz und innovative Geschäftsmodelle,
eds. Belz, Bieger, Thexis Verlag Universität St. Gallen,
2000, 178-196.

[21] Ströbel, M. A Framework for Electronic Negotiations Based
on Adjusted-Winner Mediation. Proceedings of the DEXA
Workshop on e-Negotiations, London, UK, 2000, 1020-1028.

[22] Ströbel, M. Design of Roles and Protocols for Electronic
Negotiations, to appear: Electronic Commerce Research
Journal, Special Issue on Market Design, 2001.

[23] Ströbel, M. Intention and Agreement Spaces – A Formalism.
IBM Research Report No. 3279, 2000.

[24] Tan, Y., and Thoen, W. INCAS: A Legal Expert System for
Contract Terms in Electronic Commerce. Decision Support
Systems, Vol. 29, 2000, 389-411.

[25] www.openbuy.org – visited August 28, 2000.

[26] xml.apache.org – visited August 28, 2000.

20

