

Effective Web Data Extraction with Standard
XML Technologies

Jussi Myllymaki
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120, USA

jussi@almaden.ibm.com

ABSTRACT
We discuss the problem of Web data extraction and describe an
XML-based methodology whose goal extends far beyond simple
“screen scraping.” An ideal data extraction process is able to
digest target Web databases that are visible only as HTML pages,
and create a local, identical replica of those databases as a result.
What is needed in this process is much more than a Web crawler
and set of Web site wrappers. A comprehensive data extraction
process needs to deal with such roadblocks such as session
identifiers, HTML forms, and client-side JavaScript, and data
integration problems such as incompatible datasets and
vocabularies, and missing and conflicting data. Proper data
extraction also requires a solid data validation and error recovery
service to handle data extraction failures, which are unavoidable.

In this paper we describe ANDES, a software framework that
makes significant advances in solving these problems and
provides a platform for building a production-quality Web data
extraction process. Key aspects of ANDES are that it uses XML
technologies for data extraction, including XHTML and XSLT,
and provides access to the “deep Web.”

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – methodologies.

General Terms
Algorithms, Design, Languages.

Keywords
Wrappers, Crawling, Data Extraction, Semistructured Data, Deep
Web.

1. INTRODUCTION
Given the rapid growth and success of public information sources
on the World Wide Web, it is increasingly attractive to extract
data from these sources and make it available for further
processing by end users and application programs. Data extracted
from Web sites can serve as the springboard for a variety of tasks,
including information retrieval (e.g. business intelligence), event

monitoring (news and stock market), and electronic commerce
(shopping comparison).

Extracting structured data from Web sites is not a trivial task.
Most of the information on the Web today is in the form of
Hypertext Markup Language (HTML) documents which are
viewed by humans with a browser. HTML documents are
sometimes written by hand, sometimes with the aid of HTML
tools. Given that the format of HTML documents is designed for
presentation purposes, not automated extraction, and the fact that
most of the HTML content on the Web is ill-formed (“broken”),
extracting data from such documents can be compared to the task
of extracting structure from unstructured documents.

In the future, some if not most Web content may be available in
formats more suitable for automated processing, in particular the
Extensible Markup Language (XML) [17]. Despite being a
relatively new development, XML has become absolutely
essential for enabling data interchange between otherwise
incompatible systems. However, the volume of XML content
available on the Web today is still miniscule compared to that of
HTML. It is therefore reasonable (and profitable) to study ways of
translating existing HTML content to XML, and thereby expose
more Web sites to automated processing by end users and
application programs. The tools and techniques that we
collectively know as Web data extraction are key to making this
possible.

In this paper we focus on systems-oriented issues in Web data
extraction and describe our approach for building a dependable
extraction process. Our ideas are manifested in ANDES, a
crawler-based Web data extraction framework and the backbone
of several Web data extraction systems in production use at IBM.

2. RELATED WORK
Several research groups have focused on the problem of
extracting structured data from HTML documents. Much of the
research is in the context of a database system, and the focus is on
wrappers that translate a database query to a Web request and
parse the resulting HTML page. Our focus is on batch-oriented
data extraction: crawling target Web sites, extracting structured
data, performing domain-specific feature extraction and resolution
of missing and conflicting data, and making the data available to
local database applications. Monitoring the quality of the
extracted data and providing alerts when failures occur is an
important issue, as is the capability to synthesize hyperlinks
dynamically in order to retrieve data from the “deep Web” [6].

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

689

Our ideas have been implemented in ANDES1, a software
framework that merges crawler technology with XML-based data
extraction technology to form a dependable, robust process.
ANDES is similar to other extraction systems in that it defines a
wrapper for each Web site. The precise mechanism how wrappers
are defined, implemented, and used is different in each system,
however. Below we compare the ANDES wrapper mechanism
with others proposed in the literature.

The WysiWyg Web Wrapper Factory (W4F) is a toolkit for
generating Web wrappers [9]. It contains a language for
identifying and navigating Web sites (retrieval rules) and a
declarative language for extracting data from Web pages
(extraction rules). It also provides a mechanism for mapping
extracted data to a target structure. As its name suggests, W4F
provides a graphical user interface for generating retrieval,
extraction, and mapping rules. While W4F and ANDES are
similar in many respects, their main difference is that whereas
W4F uses a proprietary language for data extraction and mapping
rules, ANDES is based on XHTML [16] and XSLT [20] and can
exploit templates, (recursive) path expressions, and regular
expressions for more effective data extraction, mapping, and
aggregation. Hyperlink synthesis, which allows data to be
extracted from the “deep Web,” is also unique to ANDES.

The goal of WIDL is to define a programmatic interface to Web
sites [1][15]. As such, it focuses more on the mechanics of how to
issue a request to a Web site, retrieve the result, and bind the input
and output variables to a host programming language, than the
process of extracting data from the retrieved result page. WIDL
allows data to be extracted using absolute path expressions, but,
as we explain in Section 3.2, this falls short of building robust
data extractors. Feature extraction and structure synthesis would
be difficult to implement in WIDL and would be relegated to
some higher-level program.

The Web Language (formerly WebL) from Compaq is a
procedural language for writing Web wrappers [14]. While it
provides a powerful data extraction language (similar to recursive
path expressions combined with regular expressions), the
language is not tuned to XML inputs and outputs and lacks the
power of XSLT templates and XPath axes and operators.

The Ariadne [2][7], Garlic [13], and TSIMMIS [4] systems are
mediators that facilitate querying multiple heterogeneous sources.
While Garlic and TSIMMIS support a wide range of sources,
including Web sources, database systems, and file systems,
Ariadne focuses on Web sources exclusively. In each system, a
modeling process produces an integrated view of the data
contained in the sources and a query planning process
decomposes queries on the integrated view into a set of
subqueries on the sources.

In Garlic and TSIMMIS, wrappers are written in a procedural
programming language and are compiled into executable code,
whereas in Ariadne, an induction-based wrapper generation
mechanism is used. It uses regular expressions and includes
mapping tables to resolve vocabulary differences between Web
sources, but lacks path expressions. We note that path expressions
are important in extracting data from an HTML tree because
hierarchical navigation between nested HTML elements is

1 ANDES is short for A Nifty Data Extraction System.

frequently needed. In ANDES, a combination of XPath axes and
operators with regular expressions provides for more robust data
extraction rules than what is possible with regular expressions
alone.

XWRAP [8] is a semi-automatic wrapper-generator that builds on
the semantic meaning of specific HTML tags (e.g. headings and
tables) and how they are used for data layout. Heuristics are used
to determine the parent-child relationships between data items, for
instance table names, field names, and values. The resulting
wrappers depend on the nesting and orientation of table and other
elements, which works well with tabular Web sites but not with
sites that have less structure. For instance, some Web sites
concatenate several data items into a single plain text field, which
requires regular expressions or similar text analysis tools to
decompose the field back into the original data items.

Informia [3] is an information mediation system whose Common
Access Interface (CAI) is configured with retrieval and extraction
rules, like W4F. The retrieval component was designed primarily
to handle Web sites that contain repetitive data such as search
result lists. Informia provides a toolkit for automatically
producing extraction rules for pages that contain repetitive
elements. However, the language is proprietary and extractors that
are created manually for sites with no repetitive data (e.g. some
Yahoo! Finance pages) are difficult to maintain.

3. EXTRACTING STRUCTURED DATA
FROM WEB SITES
Extracting structured data from Web sites requires solving five
distinct problems: finding target HTML pages on a site by
following hyperlinks (navigation problem), extracting relevant
pieces of data from these pages (data extraction problem),
distilling the data and improving its structured-ness (structure
synthesis problem), ensuring data homogeneity (data mapping
problem), and merging data from separate HTML pages (data
integration problem). We discuss each problem in the following
sections.

3.1 Web Site Navigation
In the ANDES data extraction framework, we view Web sites as
consisting of two types of HTML pages: target HTML pages that
contain the data we want to extract and navigational HTML pages
that contain hyperlinks pointing to target pages or other
navigational pages. An automated crawler is used to retrieve
target pages from a Web site. The crawler is guided by a rule-
based configuration file that tells it where to start, which
hyperlinks to follow (and which ones not), and the desired
crawling depth. These instructions collectively define the
navigation rules of a given Web site.

The crawler starts the navigation by retrieving the seed page (or
pages) from the Web site and, based on its URL, determines
whether the page is a target page or a navigational page. If it is a
target page, it is forwarded to the data extractor for subsequent
processing. Hyperlinks from both types of pages are analyzed and
a decision to follow them is made on a link-by-link basis. A
crawling depth parameter determines how many links away from
the seed page the crawler can move.

Besides handling static hyperlinks (<A>, <FRAME>, and
tags), our approach is designed with the “deep Web” [6] in mind.
The deep Web is crawled by analyzing HTML forms and

690

JavaScript code and producing “synthetic hyperlinks” that the
crawler can follow. This is described in more detail in Section 3.3.

Web site navigation rules are typically written by hand after a
careful analysis of the target Web site. Semiautomatic tools may
assist in the process, but largely due to the requirement to have
extremely fine-tuned navigation rules, the use of automation is
limited except in the simplest cases. We point out that it is
important to minimize the number of pages retrieved from a Web
site while maintaining a safeguard against potential changes
occurring on the Web site over time. This balancing act is a
difficult (but rewarding) challenge for which no practical,
automated procedures have been devised.

ANDES is independent of the specific crawler used, as crawlers in
general provide a very similar service and are configured using
the same general principles outlined above. The current
implementation of ANDES uses as its crawler the Grand Central
Station (GCS) system [10][11], a flexible and extensible crawler
framework developed at the IBM Almaden Research Center. In
GCS, navigation rules are expressed as XML, an example of
which is shown in Figure 1. The sample navigation rules direct
GCS to retrieve reviews of IBM’s laptop computers from
epinions.com.

3.2 Data Extraction
Target HTML pages are subjected to a sequence of data extraction
steps. As mentioned earlier, much of the HTML content on the
Web today is ill-formed because it does not conform to HTML
specifications. Therefore, the first step in data extraction is to
translate the content to a well-formed XML syntax because this
helps in subsequent data extraction steps. The specific approach
taken in the ANDES framework is to pass the original HTML
page through a filter that “repairs” the broken syntax and
produces well-formed HTML, or what is today known as
Extensible HTML (XHTML) [16]. Toolkits for this step exist
already, including the Tidy package [12].

Since XHTML is based on XML, any XML tool can be used to
further process target HTML pages. Given that the goal of

ANDES is to produce XML as output, we view the task of
converting XHTML to XML as an XML transformation problem.
The data transformation mechanism chosen for ANDES is
Extensible Stylesheet Language Transformations (XSLT) [20], a
language that provides powerful XML path expressions (XPath)
[19] combined with regular expressions through the XSLT
extension mechanism.

As shown in Figure 2, the URL of an XHTML document is used
to determine which set of XSLT files to apply to it. The XHMTL
document is passed through the first XSLT file and the output is
pipelined through other XSLT files defined for that URL. The
final output is an XML file whose structure and content is
determined by the last XSLT file. This is typically an XML
application2, for instance iCalendar XML or NewsML. The
pipeline approach fits well with the goals of domain-specific
ANDES applications; the first XSLT file merely extracts data
from an XHTML page, while subsequent XSLT files in the
pipeline can refine the data and fill in missing data from domain
knowledge (more on structure synthesis in Section 3.4).

The main criticism directed towards HTML data extraction
projects is that the approach essentially amounts to “screen
scraping” and fails miserably when the design (structure and
content) of a Web site changes. While total isolation from these
changes is difficult to achieve, we believe the ANDES approach is
solid and produces very robust wrappers. This is achieved by
relying less on HTML structure and more on content.

Some wrapper languages (e.g. HTML Extraction Language in
W4F) require the use of absolute HTML paths that point to the
data item to be extracted. An absolute path describes the
navigation down an HTML tree, starting from the top of the tree
(<HTML> tag) and proceeding towards child nodes that contain
the data to be extracted. The path is made absolute by the fact that

2 As is commonly done, we use the expression “XML application”

to refer to the use of XML syntax in a specific data domain and
not to an executable program.

<gcs-config>

 <group name="Reviews">
 <url-pattern-list>
 <url-pattern recursion-depth="2">
 <seed-list>
 http://www.epinions.com/cmhd_Notebooks-IBM
 </seed-list>
 <include-pattern-list>
 <url-obj-pattern host="www.epinions.com" file="/cmhd_Notebooks-IBM*"/>
 <url-obj-pattern host="www.epinions.com" file="/cmd-review*"/>
 </include-pattern-list>
 </url-pattern>
 </url-pattern-list>
 </group>

</gcs-config>

Figure 1. Sample GCS configuration file.

691

it lists tag names expected to be seen in the tree and their absolute
positions. For instance, an absolute path to the third table, first
row, and second column in an HTML document could be
expressed in XPath as /HTML/BODY/TABLE[3]/TR[1]/TD[2].

The absolute path approach is likely to fail when the target HTML
page changes. The most common change in HTML design is
changing the positioning of items on the page. Layout is typically
performed by using tags like <TABLE>, <TR>, and <TD>, as
seen in the example above. When new content (e.g. advertising) is
added to a page or when existing content is moved around, the
absolute location of tags changes. For this reason, it is important
to establish the location of data items independently of their
absolute paths.

Our approach involves finding anchors within the page that serve
as starting points for data extraction. Ideally, anchors are
established based on the content of a data item, not on its HTML
path. For instance, a page that contains the price of a book
probably has the word “Price” somewhere near the price value.
By looking for the word “Price,” we can establish an anchor for
the price value and be independent of its absolute location.

An example of XSLT code that extracts the last stock quote from
a Yahoo! Finance page is shown in Figure 3. Note that we look
for a table cell containing the words “Last Trade” and extract the
value contained in the B (bold) tag. The XSL processor starts
from the root of the XHTML tree and recursively looks for a
matching table cell. Once the table cell is found, the instructions

contained in the template are executed, in this case the production
of a PRICE element in the output XML document.

3.3 Hyperlink Synthesis
One shortcoming of today’s crawlers is that they can typically
only follow static hyperlinks (such as those contained in <A>,
<FRAME>, and tags) but not dynamic hyperlinks that are
a result of HTML forms and JavaScript code. Dynamic hyperlinks
are typically computed based on user input but may involve
arbitrary computation in JavaScript.

It has been argued that a large fraction of Web content is “hidden”
this way, whether the hiding is a side effect or an explicit goal of
the Web site owner. The notion of “deep Web” [6] has been used
to describe the hidden data on the Web. ANDES provides access
to the deep Web by analyzing HTML forms and JavaScript code
and extending the crawler’s reach with “synthetic hyperlinks,” or
static copies of dynamic hyperlinks.

This is accomplished by passing each Web page through one or
more XSLT filters that analyze HTML forms and JavaScript code
and produce a list of static hyperlinks that mimic the selections
made by an imaginary user. The links are then inserted back into
the page as regular <A> tags and the page is passed to the crawler.
The advantage of this approach is that the crawler itself is not
modified in any way. Figure 4 illustrates the HTML augmentation
process used in hyperlink synthesis.

XSL Processor

Extractor

X
S

L
T

 S
et

Output XMLXHTML

URL

Extractors

XSL Processor

XSLT n

XML XML

XSLT 1

Figure 2. Extractor identifies XSLT files to be used. A pipeline of XSLT processors extract and

refine data, yielding an XML application file as the ultimate output.

692

Special care is needed for handling HTML forms that require the
use of the POST method, as crawlers typically cannot handle links
other than those that use the GET method. A simple GET-to-
POST method conversion proxy solves this problem. The proxy
receives GET requests from the crawler and converts specially
marked hyperlinks to use the POST method instead. The target
Web site is accessed using the correct method and the resulting
page is returned to the crawler.

3.4 Structure Synthesis
It is fairly easy to extract simple data items such as the stock
quote shown in Figure 3. The extracted data is simple in structure
and its presentation on the HTML page maps directly to a
corresponding XML structure (essentially a flat database record).

Structure synthesis may be required in more complex situations.
Consider the task of aggregating product catalog data from several
Web sites. Here, it is essential to represent catalogs and the
products they contain in as much detail and fine granularity as
possible so that integration of the catalogs can be successfully
made. What makes this difficult is that a Web site may not
provide enough structure to make direct mapping to an XML
structure possible. For instance, on many online shopping sites
product features are embedded in plain text paragraphs, and some
data may be omitted because it is implicitly understood by the
user viewing the page or is available elsewhere (e.g. that a laptop
computer has an LCD display as opposed to a CRT display).

In ANDES, a knowledge engineer familiar with the target domain
can provide regular expressions that extract structured data from
snippets of unstructured text. For instance, the string “Mon Oct
30” is easy to convert to a timestamp structure with regular
expressions. This analysis is potentially less accurate than a deep
linguistic analysis but is still very powerful and quick to master.

Missing data can be filled in by XSLT code that encapsulates
domain knowledge. For instance, an XSLT file that is specific to
computer products can inspect the description of a computer and
determine if it refers to one of the known laptop brands (e.g. IBM
ThinkPad). If so, a new product feature can be added to the output
XML structure, specifying that the computer has a worldwide
three-year warranty, even if this fact is not listed in the product
description.

3.5 Data Mapping
Aggregating data from several Web sites requires that the data be
homogenized. Web sites may follow different conventions for
naming things or for expressing measured units. Mapping discrete
values (e.g. company names) into a standard format improves the
quality of the extracted data. Web sites are prone to have
misspelled names, leading to data pollution if not corrected during

the extraction process. The unit of measured values (e.g. corporate
earnings) needs to be indicated in the XML output, or the values
need to be converted to a common unit (e.g. billions of US
dollars).

Homogenization of discrete values and measured values is
performed in ANDES with a combination of conditional
statements, regular expressions, and domain-specific knowledge
encapsulated in the XSLT code. Arbitrary Java methods can also
be invoked, for instance looking up a company name in a JDBC-
compatible database.

3.6 Data Integration
The final task in Web data extraction is to integrate data from
multiple, related Web pages. There are two reasons why this is
necessary. First, some Web sites use HTML frames for layout,
which breaks up a logical data unit into separate HTML
documents. Second, some Web sites break up the data across
multiple “sibling pages” so as not to overload a single page with
too much information. For instance, Yahoo! Finance contains
comprehensive financial information on each company in its
database, but each of their Web pages contains only a fraction of
the data (e.g. company background information, stock quotes,
opinions of financial analysts, etc.).

Data integration in ANDES is performed in two steps. First, the
original HTML documents are crawled normally and data is
extracted from them individually. The output XML from each
extractor is a piece of the ultimate output XML. For instance, if
the output is in the NewsML format, one piece could contain a
news article body, while another piece contains the publisher’s
contact information. Both pieces conform to NewsML but each
piece has only part of the data.

The second step involves concatenating these partial outputs into
one output and passing the resulting file through an XSLT filter
that merges related data. Continuing the example above, the filter
could identify related NewsML fractions based on the URL of the
original HTML documents and “join” the data. The ultimate
output has the data merged in an application-specific manner.

4. ANDES ARCHITECTURE
In this section we describe some operational features of the
ANDES framework. All features described in Section 3 have been
implemented in the framework and are in production use within
IBM.

4.1 Overview
ANDES has been written in pure Java and consists of five
components: data retriever, extractor, checker, exporter, and
scheduler/manager interface (Figure 5). As mentioned earlier, the

<xsl:template match="td[contains(.,'Last Trade')]">

 <PRICE><xsl:value-of select="b"/></PRICE>

</xsl:template>

Figure 3. Sample XSLT extraction rule.

693

default data retriever is the Grand Central Station (GCS) crawler.
Crawls are scheduled to occur on certain days and times that
depend on the target sites. When the scheduled time arrives, GCS
is invoked and target HTML pages are retrieved from the Web
sites. The pages are delivered to the extractor, which performs
data extraction, structure synthesis, and data mapping and
integration functions.

The output XML documents produced by the extractor are
forwarded to a data checker and finally to an exporter. Different
exporters may be written; the default exporter inserts the XML
data into a relational database, thereby making the extracted data
available to database applications and tools (e.g. for data mining).

A Web-based management interface allows the administrator to
control ANDES, making changes to the scheduled crawls,
inspecting the status of a running crawl, and viewing statistics of
completed crawls. ANDES has been designed to run with little
operator intervention, and it is configured to alert the
administrator by email if problems are encountered. Several
ANDES installations can co-exist on the same host computer, all
managed through one Web interface.

4.2 Scheduling
The scheduler is responsible for triggering the data extraction
from different Web sites at prespecified times and repeating the
extraction periodically. The periodicity depends largely on the

frequency of data change, but also on domain-specific and
corporate requirements. Data extraction is usually run during
periods of low network activity, for instance at night.

4.3 Web-Based Management Interface
We have designed a comprehensive, Web-based management
interface that a system administrator can use for monitoring and
controlling ANDES. It is also essential that ANDES be capable of
monitoring itself and alerting the administrator when problems are
encountered. Given that Web sites are autonomous and can
change at any time, ANDES monitors the coverage of each crawl
and issues an alert when significant changes in the coverage are
noticed. For instance, if the navigation rules of a Web site change,
ANDES may get only half the number of target HTML pages
compared to a previous crawl. When this happens, the
administrator is notified, who will then take appropriate action.

4.4 Data Validation
As Web sites change, an XSLT file may fail to correctly extract
data from the pages that changed. ANDES continuously monitors
the quality of data extraction and alerts the administrator when
adjustments to XSLT files are required. Data validation is
performed on the XML output of XSLT filters, not on the HTML
source files. This means that if a Web site changes but the XSLT
filter continues to correctly extract data from the changed pages,

Crawler

XHTML Filter

URL Pool

HTML

X
S

L
T

HTML Filters

URLs

HTML with
JavaScript and
HTML Forms

HTML with
Synthetic

Hyperlinks

Figure 4. Hyperlink synthesis via HTML augmentation.

694

the new pages pass the data validation check and no alerts are
generated.

Data validation is performed on several levels of abstraction.
Syntactic checks are performed first: they verify that each XML
element is present in the output and that values match their
expected types (numeric vs. string). This is followed by semantic
checks which spot incorrect values. This is domain-specific but
very powerful. For instance, if it is known that stock prices are
usually less than $1000 (Berkshire-Hathaway shares being the
notable exception), this can be described to the data validator
which then separates the “bad” data from “good.” The bad data is
moved to a staging area and the administrator is asked to decide
what to do with it. The administrator can accept the data as-is, the
boundary conditions can be automatically modified, the data can
be ignored as a one-time error, or the data can be manually
corrected.

4.5 Data Export
The default data exporter in ANDES converts XML data to
relational tuples and inserts them into a JDBC database. The
normalization into tabular data is performed using XSLT and the
resulting Comma Separated Values (CSV) files are loaded into the
database. Alternative approaches are currently being studied,
including the use of an XML extension to relational databases,
such as the DB2 XML Extender product [5].

5. CONCLUSIONS AND FUTURE WORK
In this paper we have discussed the problem of data extraction
from Web sites and suggested an XML-based approach for

solving it. We view the task of data extraction as a multi-step
process where the goal extends far beyond simple “screen
scraping.” Our ultimate goal is to be able to extract semistructured
data from given Web sites and transform the data into a well-
structured, feature-rich representation. Managing the hetero-
geneity of data retrieved from different Web sites is an integral
part of this process, as is domain-specific processing of missing
and conflicting data.

Since many Web sites are driven by a set of HTML templates and
a database backend, an ideal Web data extractor would be able to
“see through the templates” and create an identical copy of such
databases even though it only has a limited view of the data. Our
experience with the ANDES framework has shown that
production-quality Web data extraction is quite feasible, and that
incorporating domain knowledge into the data extraction process
can be effective in ensuring the high quality of extracted data.

Our work continues in several areas. Navigation rules and
extraction rules are currently optimized by hand, a burden that
automatic or semiautomatic tools may ease. Likewise, automatic
tools will help in building and managing domain-specific rules for
handling missing or conflicting data. It is not uncommon to see
incorrect data in Web sites (misspelled names and incorrect
quantities or units). Our current, manually written data validation
rules will be replaced by rules generated by semiautomatic tools;
data classification and machine learning techniques appear to be
promising solutions. In the future, we also expect to use the XML
Schema syntax [18] for expressing data validation rules.

Data Retriever

Scheduler

Data Extractor Data Checker Data Exporter

Web Server

JDBC DatabaseRetrieved XHTML Extracted XML

HTML

X
H

TM
L X

H
TM

L

X
M

L X
M

L S
Q

L
C

on
fig

 X
M

L

E
xtractor X

S
LT

Export XSLT

Status
HTML

XML

Notifier
Email

Status

Configuration

Figure 5. Overview of ANDES architecture.

695

6. ACKNOWLEDGMENTS
The author would like to thank Jared Jackson and Stephen Dill of
IBM Almaden Research Center, Yan Zhou of IBM China
Development Laboratory, and Dorine Yelton, John Rees, and
Douglas Griswold of IBM Global Services, for their contributions
to the ideas and software presented in this paper.

7. REFERENCES
[1] Charles Allen. WIDL: Application Integration with XML.

World Wide Web Journal 2(4), November 1997.

[2] Naveen Ashish and Craig Knoblock. Wrapper Generation for
Semi-structured Internet Sources. In Proc. ACM SIGMOD
Workshop on Management of Semistructured Data, Tucson,
Arizona, May 1997.

[3] Maria Luisa Barja, Tore Bratvold, Jussi Myllymaki, and
Gabriele Sonnenberger. Informia: a Mediator for Integrated
Access to Heterogeneous Information Sources. Proc. ACM
Conference on Information and Knowledge Management
(CIKM), Washington, DC, November 1998.

[4] Sudarshan Chawathe, Hector Garcia-Molina, Joachim
Hammer, Kelly Ireland, Yannis Papakonstantinou, Jeffrey
Ullman, and Jennifer Widom. The TSIMMIS Project:
Integration of Heterogeneous Information Sources. Proc.
IPSJ Conference, 1994.

[5] DB2 XML Extender. http://www.ibm.com/software/data/
db2/extenders/xmlext/index.html.

[6] BrightPlanet.com DeepWeb White Paper. http://www.
completeplanet.com/Tutorials/DeepWeb/index.asp.

[7] Craig Knoblock, Steven Minton, Jose Luis Ambite, Naveen
Ashish, Pragnesh Modi, Ion Muslea, Andrew Philpot, and
Sheila Tejada. Modeling Web Sources for Information
Integration. In Proc. National Conference on Artificial
Intelligence (AAAI), July 1998.

[8] Ling Liu, Calton Pu, and Wei Han. XWRAP: An XML-
Enabled Wrapper Construction System for Web Information

Sources. Proc. International Conference on Data Engineering
(ICDE), San Diego, California, February 2000.

[9] Arnaud Sahuguet and Fabien Azavant. Building Light-
Weight Wrappers for Legacy Web Data-Sources Using W4F.
In Proc. International Conference on Very Large Data Bases
(VLDB), Edinburgh, Scotland, September 1999.

[10] Bruce Schechter. Information on the Fast Track, IBM
Research Magazine, 35(3): 18–21, 1997.

[11] Marc Songini. IBM: All Searches Start at Grand Central,
Network World, November 11, 1997.

[12] HTML Tidy. http://www.w3.org/People/Raggett/tidy/.

[13] Mary Tork Roth and Peter Schwartz. Don't Scrap It, Wrap It!
A Wrapper Architecture for Legacy Data Sources. Proc.
International Conference on Very Large Data Bases
(VLDB), Athens, Greece, August 1997.

[14] Compaq’s Web Language, Compaq Computer, http://www.
research.digital.com/SRC/WebL/index.html.

[15] Web Interface Definition Language, W3C Note. September
1997. http://www.w3.org/TR/NOTE-widl.

[16] XHTML: The Extensible HyperText Markup Language,
W3C Recommendation, January 2000. http://www.w3.org/
TR/xhtml1.

[17] Extensible Markup Language (XML), W3C
Recommendation, February 1998. http://www.w3.org/TR/
REC-xml.

[18] XML Schema Part 0: Primer, W3C Working Draft, April
2000. http://www.w3.org/TR/xmlschema-0/.

[19] XML Path Language (XPath), W3C Recommendation,
November 1999. http://www.w3.org/TR/xpath.html.

[20] XSL Transformations (XSLT), W3C Recommendation,
November 1999. http://www.w3.org/TR/xslt.html.

696

