
A Caching Relay for the World Wide Web

Steven Glassman

Systems Research Center

Digital Equipment Corportion

��� Lytton Ave�

Palo Alto� CA �����

steveg�src�dec�com

http���www�research�digital�com�SRC�people�Glassman Steve�bio�html

Abstract

We describe the design and performance of a
caching relay for the World Wide Web� We examine
how the behavior of users a�ects the performance of
the relay� From an analysis of the data from the
relay� we develop a model that describes some as�
pects of the Web as a whole� �A version of this pa�
per is available at http���www�research�digital�com��
SRC�people�Glassman Steve��
CachingTheWeb�html	

� Overview

In January ����� we set up a caching World Wide
Web ���� relay for Digital Equipment Corporation	s
facilities in Palo Alto� California
 We use a relay
to reach the Web because Digital has a security �re�
wall that restricts direct interaction between Digital
internal computers and machines outside of Digital

We added caching to the relay because we wanted
to improve the relay	s performance and reduce its
external network trac
 Clients use the relay for
accessing the Web outside of Digital� requests for in�
ternal Digital pages go directly to the servers
 When
the relay has a current version of a Web page in its
cache� it handles the request locally without ever
contacting the remote server


The relay handles about ���� requests from ��
users each day
 To date� it has served over �������
HTTP ��� and Gopher ��� requests from ��� users
for ������ di�erent pages
 FTP ��� ��le transfer�
requests are handled by an existing �non�caching�
FTP relay
 We don	t allow WAIS ��� �Wide Area
Information System� or NNTP ��� �network news
transfer protocol� requests through the relay


A caching relay has several potential advantages
over a non�caching relay� it�

� Reduces latency on requests for cached pages

� Reduces overall network load and remote server
load

� Provides availability when a remote server is
unavailable

And possible disadvantages are that it�

� Returns stale versions of a page when the re�
mote version has changed and the cache doesn	t
know

� Increases latency on requests for non�cached
pages

� Increases local administrative complexity and
cost for disk space

We found that ������ of all requests are satis�ed
from the cache �a cache hit�
 When there is a cache
hit� the relay supplies the page in ��� to ��� the
time of retrieving the page over the network
 The
reduction in network load is equivalent to the cache
hit rate
 As described below� we did not �nd any of
the disadvantages to be signi�cant


� Our cache design

We based our cache design on studies of the logs
from an existing DigitalWeb relay
 We ran a simula�
tion of our cache design using these logs to estimate
the cache size� the cache hit ratio� and the e�ective�
ness of various heuristics for estimating the validity
of pages in the cache


All cached Web pages are stored as Unix �les�
with the �le name formed from the URL ���
 We
plan for our cache to hold up to ������ Web
pages
 Since pages have an average size of ��K�
��K bytes� we expect our cache size to reach about



� GBytes
 Rather than use a single giant direc�
tory with ������ �les in it� we hash the �le name
into one of ����� sub�directories so that each direc�
tory holds about �� �les
 The sub�directories are
organized into a � level deep hierarchy where each
internal directory has �� sub�directories
 For ex�
ample� the URL http���www�
cern
ch�WWW����
Abstracts�GNA
html is cached under the �le
name www�
cern
ch��WWW����Abstracts���
GNA
html
 The hashed value of the URL is �C�
�hex� and so the �le is found in the directory
�www�cache���C��


In our original design� the cache was entirely
protocol�independent because this was simpler and
we weren	t yet sure how many di�erent protocols we
would have to handle
 Each page was cached under
a name based on a ����bit �ngerprint of the entire
request
 This meant that cache hits occurred on tex�
tually identical requests� but not on non�identical
but equivalent requests
 Therefore the cache was
not getting hits when it should
 This problem led
us to abandon being protocol�independent� since the
parsing of the requests to determine equivalency is
protocol�dependent


Our relay only handles two protocols � Gopher
and HTTP
 The Gopher protocol is very simple and
a simple approach suces
 HTTP requests are more
complex and must be parsed� but understanding the
additional �elds of the request and the response as�
sists in caching


The main problem in designing the cache is to
avoid returning a stale page from the cache when a
newer version of the page is available on the remote
server
 Neither HTTP nor Gopher has any provision
for a server notifying the cache when a page changes�
so the cache must estimate a time period during
which it believes the page will not change


A cached page is termed valid if the cache be�
lieves that it has the newest version �i
e
 it believes
the page hasn	t changed on the remote server�
 A
cached page expires when the page	s valid time pe�
riod ends �although expired pages remain in the
cache�
 A stale page is a valid page that has in
fact changed �i
e
 the cache	s estimate for the valid
period was wrong�


If a request comes in for a valid page� the cache
returns its version without contacting the remote
server
 If a request comes in for an expired page�
the cache refreshes it from the remote server
 De�
pending on the remote server� a page is refreshed
either by retrieving an entire new copy or by check�
ing whether the page has changed and retrieving a
new version if it has


The cache	s algorithm for estimating the valid pe�
riod of a page must balance two concerns
 If the es�
timate is too long� then the probability of returning
stale data increases
 If the cache	s estimate is too

short� then the cache will have fewer valid pages and
thus a lower cache hit rate


The HTTP protocol allows for an �Expires� time
in the response
 Ideally� the cache could use this
value to set the valid period for the page in the cache
and never risk returning a stale page
 Unfortunately�
we have found only � pages �out of ������� that have
an expiration time on them �and � are from the �n�
ger gateway�
 Therefore� we use the �Last modi�
�ed� time� which is provided in nearly all HTTP
responses� as a simple estimate of when the page
will change next
 For example� if a page has not
changed in a week� we assume it will not change in
the next week
 If there is no modi�cation time �the
Gopher protocol doesn	t give one�� we use a default
of � hours
 We limit every page to be valid for at
least one hour and no more than two weeks


When an expired page is requested� we refresh it
and calculate an expiration time as above
 However�
if there is no �Expires� or �Last modi�ed� time� we
compare the new version with the expired one that
is still in the cache
 If the page has not changed�
we use the time of the expired version as the �Last
modi�ed� time and increase the valid period
 If the
page has changed� we reduce its valid period


HTTP requests allow �Accepts� �elds that list
the acceptable MIME ��� �multimedia� formats of
the response
 �This is another reason why we must
parse HTTP requests
� A cached page that is not
in an acceptable MIME format cannot be returned

Fortunately� the HTTP speci�cation is very gener�
ous about when a format is acceptable
 The cache
returns a cached page if it matches any acceptable
format �and since most requests will accept any for�
mat� matching the �Accepts� is usually trivial�
 We
have yet to �nd a cached page that was not in a
format acceptable to a request


One of our original goals for the cache was to
minimize the external network load of the relay
 We
therefore did not implement any strategies such as
pre�fetching �retrieving pages from the server spec�
ulatively� or refreshing cache pages as they expire

Now that we have data from operating the cache�
we plan to examine these possibilities and compare
the costs of the extra network load with the bene�ts
of improved cache performance


� Satellite relays

Our caching relay can also be used as a satellite
relay
 A satellite relay is a secondary relay usually
located at a site with poor connectivity or band�
width to the net
 It helps by providing a cache near
the users� so they have access to cached pages at
local network speeds





