A Caching Relay for the World Wide Web

Steven Glassman

Systems Research Center
Digital Equipment Corportion
130 Lytton Ave.

Palo Alto, CA 94301
steveg@src.dec.com

http://www.research.digital.com/SRC/people/Glassman_Steve/bio.html

Abstract

We describe the design and performance of a
caching relay for the World Wide Web. We ezamine
how the behavior of users affects the performance of
the relay. From an analysis of the data from the
relay, we develop a model that describes some as-
pects of the Web as a whole. (A version of this pa-
per is available at hitp://www.research.digital.com/-
SRC/people/Glassman_Steve/-

CachingThe Web.html)

1 Overview

In January 1994, we set up a caching World Wide
Web [10] relay for Digital Equipment Corporation’s
facilities in Palo Alto, California. We use a relay
to reach the Web because Digital has a security fire-
wall that restricts direct interaction between Digital
internal computers and machines outside of Digital.
We added caching to the relay because we wanted
to improve the relay’s performance and reduce its
external network traffic. Clients use the relay for
accessing the Web outside of Digital; requests for in-
ternal Digital pages go directly to the servers. When
the relay has a current version of a Web page in its
cache, it handles the request locally without ever
contacting the remote server.

The relay handles about 2000 requests from 60
users each day. To date, it has served over 100,000
HTTP [3] and Gopher [2] requests from 300 users
for 40,000 different pages. FTP [1] (file transfer)
requests are handled by an existing (non-caching)
FTP relay. We don’t allow WAIS [9] (Wide Area
Information System) or NNTP [6] (network news
transfer protocol) requests through the relay.

A caching relay has several potential advantages
over a non-caching relay; it:

e Reduces latency on requests for cached pages

e Reduces overall network load and remote server

load

e Provides availability when a remote server is
unavailable

And possible disadvantages are that it:

e Returns stale versions of a page when the re-
mote version has changed and the cache doesn’t
know

e Increases latency on requests for non-cached
pages

e Increases local administrative complexity and
cost for disk space

We found that 30-50% of all requests are satisfied
from the cache (a cache hit). When there is a cache
hit, the relay supplies the page in 1/4 to 1/6 the
time of retrieving the page over the network. The
reduction in network load is equivalent to the cache
hit rate. As described below, we did not find any of
the disadvantages to be significant.

2 Our cache design

We based our cache design on studies of the logs
from an existing Digital Web relay. We ran a simula-
tion of our cache design using these logs to estimate
the cache size, the cache hit ratio, and the effective-
ness of various heuristics for estimating the validity
of pages in the cache.

All cached Web pages are stored as Unix files,
with the file name formed from the URL [8]. We
plan for our cache to hold up to 80,000 Web
pages. Since pages have an average size of 20K-
25K bytes, we expect our cache size to reach about



2 GBytes. Rather than use a single giant direc-
tory with 80,000 files in it, we hash the file name
into one of 4,096 sub-directories so that each direc-
tory holds about 20 files. The sub-directories are
organized into a 3 level deep hierarchy where each
internal directory has 16 sub-directories. For ex-
ample, the URL http://wwwl.cern.ch/WWW94/-
Abstracts/GNA.html is cached under the file
name wwwl.cern.ch%%WWW94%%Abstracts%%-
GNA.html. The hashed value of the URL is 5C7
(hex) and so the file is found in the directory
/www/cache/5/C/T.

In our original design, the cache was entirely
protocol-independent because this was simpler and
we weren’t yet sure how many different protocols we
would have to handle. Each page was cached under
a name based on a 128-bit fingerprint of the entire
request. This meant that cache hits occurred on tex-
tually identical requests, but not on non-identical
but equivalent requests. Therefore the cache was
not getting hits when it should. This problem led
us to abandon being protocol-independent, since the
parsing of the requests to determine equivalency is
protocol-dependent.

Our relay only handles two protocols - Gopher
and HTTP. The Gopher protocol is very simple and
a simple approach suffices. HTTP requests are more
complex and must be parsed, but understanding the
additional fields of the request and the response as-
sists in caching.

The main problem in designing the cache is to
avoid returning a stale page from the cache when a
newer version of the page is available on the remote
server. Neither HTTP nor Gopher has any provision
for a server notifying the cache when a page changes,
so the cache must estimate a time period during
which it believes the page will not change.

A cached page is termed wvalid if the cache be-
lieves that it has the newest version (i.e. it believes
the page hasn’t changed on the remote server). A
cached page ezpires when the page’s valid time pe-
riod ends (although expired pages remain in the
cache). A stale page is a valid page that has in
fact changed (i.e. the cache’s estimate for the valid
period was wrong).

If a request comes in for a valid page, the cache
returns its version without contacting the remote
server. If a request comes in for an expired page,
the cache refreshes it from the remote server. De-
pending on the remote server, a page is refreshed
either by retrieving an entire new copy or by check-
ing whether the page has changed and retrieving a
new version if it has.

The cache’s algorithm for estimating the valid pe-
riod of a page must balance two concerns. If the es-
timate is too long, then the probability of returning
stale data increases. If the cache’s estimate is too

short, then the cache will have fewer valid pages and
thus a lower cache hit rate.

The HTTP protocol allows for an “Expires” time
in the response. Ideally, the cache could use this
value to set the valid period for the page in the cache
and never risk returning a stale page. Unfortunately,
we have found only 6 pages (out of 28,000) that have
an expiration time on them (and 5 are from the fin-
ger gateway). Therefore, we use the “Last modi-
fied” time, which is provided in nearly all HTTP
responses, as a simple estimate of when the page
will change next. For example, if a page has not
changed in a week, we assume 1t will not change in
the next week. If there is no modification time (the
Gopher protocol doesn’t give one), we use a default
of 6 hours. We limit every page to be valid for at
least one hour and no more than two weeks.

When an expired page is requested, we refresh it
and calculate an expiration time as above. However,
if there is no “Expires” or “Last modified” time, we
compare the new version with the expired one that
is still in the cache. If the page has not changed,
we use the time of the expired version as the “Last
modified” time and increase the valid period. If the
page has changed, we reduce its valid period.

HTTP requests allow “Accepts” fields that list
the acceptable MIME [4] (multimedia) formats of
the response. (This is another reason why we must
parse HTTP requests.) A cached page that is not
in an acceptable MIME format cannot be returned.
Fortunately, the HTTP specification is very gener-
ous about when a format is acceptable. The cache
returns a cached page if it matches any acceptable
format (and since most requests will accept any for-
mat, matching the “Accepts” is usually trivial). We
have yet to find a cached page that was not in a
format acceptable to a request.

One of our original goals for the cache was to
minimize the external network load of the relay. We
therefore did not implement any strategies such as
pre-fetching (retrieving pages from the server spec-
ulatively) or refreshing cache pages as they expire.
Now that we have data from operating the cache,
we plan to examine these possibilities and compare
the costs of the extra network load with the benefits
of improved cache performance.

3 Satellite relays

Our caching relay can also be used as a satellite
relay. A satellite relay is a secondary relay usually
located at a site with poor connectivity or band-
width to the net. It helps by providing a cache near
the users, so they have access to cached pages at
local network speeds.



1000

Satellite relay (Cumulative) nurrber of times n'th most popular file recue stect




