
Experiences in Writing a WYSIWYG Editor for HTML

Nick Williams

Tim Wilkinson

Systems Architecture Research Centre

City University

April ��� ����

Abstract

It is well known that HTML is not the most intuitive of languages in which to write
textual documents� There are constant requests for a WYSIWYG editor which will ease
this task� Such an editor provides obvious bene�ts� ease of use and the guarantee of
correct HTML documents� Prospective Web authors are often deterred upon �nding they
need to learn a new language or editor before they can even start to author a document�

This paper describes a freely available editor� written at City University� for creating
HTML documents� The editor is implemented using a WYSIWYG system known as
the Andrew User Interface System� a multi�media object�oriented toolkit� of which an
overview is given with a description on why it makes a good basis for an HTML editor�
The editor provides a complete implementation of HTML and has been used extensively
within City University to produce Web documents�

A comparison between other editing systems such as tkWWW and using Microsoft
Word is given� highlighting the various bene�ts and drawbacks of the di�erent systems�
The di�erent approaches for providing semantic mark�up through a WYSIWYG interface
are described� many constructs 	for example� lists
 cannot be expressed intuitively in a
point and click interface� A description is given of the approaches taken in the imple�
mentation of our editor� describing some of the more unusual design ideas� Some of the
de�ciencies of the current implementation are shown and what features should be pro�
vided by other authors of WYSIWYG editors� as elicited by feedback from users of our
editor� are also presented�

A description is given of the facilities available within the Andrew Toolkit for imple�
menting such things as tables� �gures and more complex objects� thus showing how the
editor can be simply extended to provide a full implementation of the developing HTML�
standard�

� Introduction

Currently� an explosion of interest in the World Wide Web is taking place� with more and
more hopeful authors appearing every day� Usually however� the sort of people who provide
interesting information are not those comfortable with learning several new languages before
breakfast� but are rather more sane people who don�t like the idea of learning a new language
in which to write their documents�

Documents found within the World Wide Web are usually written in the language known
as HTML� the Hypertext Markup Language���� This language is a structural and semantic

�



markup language� which speci�es not how the document should appear� but rather allows the
author to annotate a document with comments on its structural content� These two di	erent
views are often referred to as physical and logical respectively� A physical style is� for example�
a directive to make a section of text bold� or italic� A logical style is an annotation marking a
section of text as a quotation� or emphasised
 it is a higher level description� The advantage
of logical styles is that the decision on how to render the text is taken at the last possible
moment when it is presented to the reader� taking into account the limitations of their display�
This allows web documents to be viewed on a variety of di	erent hardware capabilities with
the minimum of di	erences� Of course� HTML also provides physical styles as a fallback for
when a particular idea cannot be expressed logically in simple HTML�

Web documents do not have to be written in HTML� Documents may be made available
in plain textual format� imitated formatting �setext�� or indeed anything else that might be
acceptable to the end client� If necessary� a conversion can always be built into the server
which can provide clients with documents in whichever form desired� However� HTML is
guaranteed to be understood by all clients� Furthermore� HTML provides a mechanism for
specifying hypertext links to other points of the web�

While HTML has obvious bene�ts� it is also one of the major stumbling blocks to new authors

why should an author have to learn 
Yet Another Language��
� The language HTML is often
criticised for lack of features� although this has been somewhat �xed by the introduction of
the new version of HTML known as HTML�� Unfortunately� at this point in time there are
few browsers for that version of the language�

Within the Computer Science department of City University� we have developed a system
for editing HTML documents in a WYSIWYG manner� using as its foundation the Andrew
Toolkit �ATK�� a part of the Andrew User Interface System �AUIS�� ATK is a multi�media
toolkit which provides many features which are essential in providing a view onto HTML
documents� and is discussed in more detail later�

In this paper� we describe our editing system and some of the experiences gained from writing
it� re�ecting views on HTML and Web documents in general� We hope that this information
will be valuable to future developers of similar applications� We also present a brief review
of other existing packages for editing HTML� with a discussion of the various merits of each
and how the di	erent interfaces tackle the problems outlined in the next section�

� A discussion of HTML

HTML is a language for logical markup of documents� A major goal of HTML is to compel
authors to create documents using only logical markup rather than physical e	ects� This is
similar to the approach espoused by Lamport���� who suggests authors of documents should
only specify the structure of a document and then allow a typesetting system to present
the document structure in a manner most appropriate for the �nal output device� Lamport
quotes two reasons for this system�

�� leaving the �nal typographical details to the computer allows the document to be much
more portable to di	erent output devices� and

�� concentrating on the structure of a document rather than its appearance is of obvious
bene�t�

�



These reasons can equally be applied to Web documents and with even more force� The
document will be made available across the network to any number of client interfaces� Each
of those interfaces may be running with di	erent display mechanisms� for example� viewing
the Web via a line mode browser on a traditional terminal and viewing the Web through
NCSA Mosaic using more complex display features� Moreover� as a document may use hy�
pertext links to connect to other documents� the structure of documents becomes much more
important and care must be taken not to confuse the reader� 
losing� them within the Web�

The concept of providing a WYSIWYG editor seems� at �rst glance� to directly contradict
this argument for a logical view of a document� The mere use of a WYSIWYG editor will
demote the importance of logical styles as authors actually see how things look on the screen�
However� it is important to see how a document will appear as it is written� When editing
a document with raw HTML annotations� the content of the document may be harder to
determine� as the HTML directives are mixed in with the text of the document� Also� the
author should not need to know the exact syntax of this new language when describing
the document and a WYSIWYG system allows this syntactic bother to be handled by the
computer� It also provides the guarantee that documents are written in fully conformant
HTML code� There is constant debate as to the correctness of this approach within various
forums� however the authors believe that the logical approach is the correct one with regard
to Web documents� although it may not be the easiest model for an author to grasp�

� Current HTML Editing Systems

Several packages for editing HTML have already been written� based upon two approaches�

�� providing a conversion facility from some typesetting language �e�g� LaTeX or RTF�
into HTML� thus allowing authors to use their normal editing facilities�

�� giving a direct WYSIWYG view of the HTML� This method has the bene�t of not
having to 
compile� documents before viewing their �nal output� and so a document
may be viewed incrementally� rather than having to ensure a complete and consistent
document at all times� a requirement for any compilation process�

The danger in both of these systems is that there is an inherent loss of information per�
formed by the author as they writes their document if the editor provides only typographical
information rather than logical styles� Only heuristics can be used to determine what the
author meant when determining the HTML and� by de�nition� the heuristics will not always
be correct�

An important consideration in creating a WYSIWYG editor for the Web is the distinction
between editing documents and browsing documents� When browsing a document� hypertext
links should be 
live� and selecting them will attempt to retrieve a new document speci�ed
by the link� However when editing a document� selecting an anchor should not perform any
actions other than placing the edit cursor at that point� Ideally� browsers and editors should
be combined into a single system� but with a very obvious distinction between the di	erent
modes� This would allow users to collect documents via the Web and begin editing them� all
in a location transparent manner�

�



Following on from allowing the editor to be connected to the Web� there arises the problem
of creating new documents� When attempting to follow a hyperlink and the response 
Not
Found� is returned� should it be a browsing error� or a cue to create a new document�

��� TkWWW

This system is a fully functional Web browser which supports editing of retrieved documents�
The editor is written completely in the Tcl�Tk toolkit and so may be easily enhanced to
increase functionality� The editor supports all major HTML functions �character emphasis�
headings� paragraph breaks� lists� anchors� etc�� Generally� documents can be written as in
any editor� and the hypertext links either added in afterwards or placed as you go along� Links
and anchors �which are added in the same manner� may be added to any text� However� once
a hyperlink is placed in the document� it becomes tricky to edit the text referencing the link�
as documents edited in TkWWW are 
live� and connected to the Web� The newly placed
hyperlink will immediately become active�

Lists are handled in a simple fashion� A 
list item� may be inserted at any point making the
following text a list item� There is no facility to take a number of lines of text and turn them
into a list� nor is there the obvious provision to do lists�in�lists� Two list types are supported�
list items ��LI�� and glossary items ��DD��� Selecting a glossary item also generates a
term entry ��DT��� Lists are automatically enclosed in either UL or DLs� but if the types
are mixed� these inclusions are not nested�

Images can be inserted and marked as anchors� However� textual alternates �if the viewer
cannot display images� cannot be speci�ed and nor can attributes such as 
ismap� be set�

Overall appearance is good and editing simple� All general functions are available and the
ability to browse documents while editing is useful �but it would be better if it did not con�ict
with moving the cursor for editing��

��� Using Word for Windows �CU�HTML�

The Chinese University of Hong Kong has produced a template�based system for Word for
Windows which allows the author to use a commonly available editor to produce their docu�
ments� Providing a template for a standard word�processor means the author does not have
to learn a new editor and can almost immediately begin to create and edit documents� Most
of the additional features provided by HTML are implemented as either menu options �eg�
add URI� or as styles �eg� Normal� Heading�� etc���

The editor allows for all the standard HTML formatting� including lists within lists �although
the author is forced to specify which list is at which level as the template cannot compute
this�� It is also possible to include and display inline GIFs in Word� Inclusion of other
image formats is not possible� Creating hyperlinks around either text or images is supported�
However� such attributes as 
alt� and 
ismap� for images cannot be added� It also appears
impossible to place named anchors into a document�

By default� documents are saved in standard Word format� An option is available to save
html documents� The actual HTML is somewhat inaccurate� with head and body directives
missing�

�



� The Htmltext Editing Package

The system implemented at City University is a full implementation of an HTML editor� It is
written using the Andrew Toolkit �ATK�� which has excellent in�built facilities for writing a
WYSIWYG editor� allowing the programmer to concentrate on other� more important issues�

��� The Andrew Toolkit

ATK is a graphical user interface toolkit which provides an object oriented toolkit� written
in C� from which objects can easily be combined into complex multi�media applications���
��� Example applications distributed with ATK include a full text editor� a multi�media
�MIME� mail interface� a hypertextual help system and an editor for graphical �gures� All
objects within the ATK system are dynamically loadable� so an application built with ATK
can incorporate newly developed objects on the �y�

ATK provides� as a basic building block� a text object which allows full WYSIWYG editing�
using well�known emacs or vi bindings� It allows multiple physical styles of text to be freely
mixed and allows other ATK objects to be embedded within� Also� the styles which may
be placed over text are represented symbolically and the user can customise the appearance
of any style by using an editor provided for this purpose� or by simply editing the template
which is a non�complex textual �le� The ATK text object is used as the basis for the HTML
editing package described in this paper�

ATK is a stable system which provides many rich features desirable in a WYSIWYG editing
package� It has been extensively tested on a variety of platforms and so re�using the objects
from its toolkit should provide obvious bene�ts of robustness�

��� The Htmltext Object

The system we have implemented for editing HTML is an ATK object� called htmltext� which
can represent HTML tags as textual styles within the ATK text object� In theory� it is
possible to create a simple template for the standard ATK editor and then with the aid of
a converter� possibly bolted onto the editor itself� provide an HTML editing system with far
less complexity� We have already presented an argument as to why we believe converting� or
compiling� documents is not the best solution for HTML� However� we also believe that an
object dedicated to understanding HTML is of more use� especially as HTML grows more
complex �see the discussion of HTML� later� and as the object itself can then be used by
other applications� without having to know about HTML conversion� The htmltext object
can parse any HTML document to produce a WYSIWYG view with all of the correct logical
formatting� While the document is displayed� the user can freely edit any of the text and add
or delete any styles from any part of the document� By default� all of the logical styles are
con�gured to look similar to the NCSA Mosaic representation�

A example screen from the editor is shown in �gure �� from which there are a few immediate
observations�

� most obviously� both paragraph and line breaks are optionally visible within the text�
Paragraph markers are denoted by the normal symbol and line breaks are denoted by the

�



Figure �� Using the editor on our local webmaster page found at
http���web�cs�city�ac�uk�webmaster�html

double left angle bracket symbol� Initially� these were absent in the editor and it used
heuristics to determine the location of the paragraph breaks� However this could cause
a large discrepancy between the edited text and the �nal output� the editor itself uses
extra newlines to indicate extra paragraph spacing and similar e	ects� The compromise
we chose was to let the author place newlines in arbitrary places� but to only recognise
paragraph markers where explicitly stated� Also� as line breaks are now visible in the
editor� it forces authors to realise the common error of using many line breaks within a
paragraph� not realising that the editor or browser will perform line breaks for them�

� hypertext anchors are not distinct buttons within the text but are indicated by simple
physical styles placed over the text referencing the link� This allows the text to be edited
in a completely normal fashion� allowing it to �ow more easily with the surrounding
text� If the anchor were represented by a distinct button then the text of the link
would become separated from the body� allowing authors to create documents with
more stilted text�

� inline images are not currently displayed within the document as true images� Instead
markers are placed at their position in the text�

��� Features of the htmltext object

By creating the htmltext object as a subclass of the standard text object in ATK� many
features are automatically inherited�

� The document can be printed without having to create any special case code de�ning
how to print the object�

� A table of contents can be automatically generated� showing all headers and hence the
structure of the document� This is provided by a special object which can examine any
text object and determine the structure based on an ordered list of 
heading� styles�
As the htmltext object is derived from the text object� this table of contents operation
can be performed on the htmltext�

�



� Spell checking is provided by the editor object in a similar manner to the table of
contents generator� As the htmltext contains standard text data� the spell checker can
process a document as if it were a totally normal textual �le� while ignoring all of the
HTML directives�

� The display of the di	erent styles is entirely customisable on a per�user basis�

� More generally� any function which has been� or will be written to operate on the
standard text object will be able to work with the htmltext object�

��� Lists

One of the most complex features of HTML to implement in user�interface terms is creating
a list� The HTML annotation describing a list is at two levels�

�� a surrounding tag indicating the type of list� There are several types of list� itemised�
ordered�enumerated� glossaries�descriptions� menus and directories�

�� every item within the list must also be tagged to show its start� This item tag is not the
same for all lists� For glossary lists� this is further complicated by having to distinguish
the term which is being de�ned and the de�nition itself� The HTML for describing
these lists may appear simple� but is in fact di�cult to specify within a user interface�
while still providing an easy�to�use system for the authors�

The editor supports all of the various list types� The method of annotating a section of
text to be a list is to select a region and then to request a speci�c list to be placed over
that region� Each line in the selection will be made into an appropriate list item� and the
correct list environment wrapped around the whole� When no selection is present and a list
environment is requested� the current line is made into a list� If the current line is located
within or immediately adjacent to a list environment of the same type� it is merged with that
list� This allows you to incrementally add items to lists� and by using the selection method
it allows sub�lists to be created�

Figure �� An extract showing the appearance of a bulleted list within the htmltext ob�
ject� The document being viewed is the toplevel menu from CityWeb�s London Guide
�http���web�cs�city�ac�uk�london�guide�html��

Description� or glossary� lists are handled slightly di	erently� The system for creating lists is
identical� although each list item is marked as being a glossary de�nition and the glossary

�



term element ��DT�� is ignored at this point� The author can place the glossary term at
any point in the text at any time�

Cutting and pasting of text between di	erent HTML applications happens for free� This can
also be a bug since� as yet� there is no provision for pasting plain text into the editor� Any
text taken from the cut bu	er is assumed to be HTML formatting� complete with paragraph
breaks� If the text is not formatted and hence has no paragraph markers� it will be combined
into a single large paragraph�

��	 Implementation Details

����� HTML Attributes

As has been mentioned brie�y in previous sections� there are many attributes de�ned in
HTML which may be attached to a normal tag to change its behaviour� For example� there is
an attribute 
compact� which� when placed on a list� is supposed to cut down on the spacing
used� Attributes are advisory only� merely indicating a preference for how a tag should be
displayed within the client� Many editors ignore the attributes� or special�case them� For
example 
href�� the attribute which speci�es the destination of a hyperlink is implemented
in almost every HTML editing system� However� other attributes� such as 
compact�� are
completely ignored and cannot be placed onto a tag� even though there is no conceptual
di	erence between the two attributes� During the implementation of the htmltext object� this
became evident and a mechanism for placing generic attributes was sought and implemented�
using a feature provided by the standard objects within ATK�

The ATK text object keeps physical style information and the textual data separately� so the
text stream can be manipulated easily� ignoring how text should be formatted� The physical
styles are in a separate data structure� de�ning the areas for which the style is active� the
name of the style and any attributes the application may wish to attach to a style� The
style name is kept symbolic throughout the system� so that any changes to the appearance
of that style may take e	ect immediately� Styles may have arbitrary attributes attached to
them� where attributes are tuples of strings� This feature maps extremely well to the HTML
model of attributes and the htmltext object uses the feature for this� A dialog box system
is provided to place or edit the attributes in the document� This system does not require

Figure �� A screenshot showing the attribute editor

the editor to have any understanding of what the attributes mean� For example� although

�



images may be placed inline� there is currently no understanding of how they work within
the editor� This does not prevent the author from selecting the image and placing 
ismap��
or 
alt� attributes onto it�

����� Web Browsing Capability

Within this version of the system� only local documents can be edited
 retrieval of documents
using HTTP is not supported� This also prevents support for inline images� until the data
can be retrieved via HTTP� it is fairly useless to provide the facility for displaying an image�
even if it were possible� Up to this point� we have not provided HTTP support� as we believe
it is a completely separate issue to that of providing an object capable of editing the HTML
language� When the HTTP protocol is added into the ATK system� in whatever manner�
then the htmltext object will immediately be able to make use of this� It is worth stressing
that the htmltext object is not a complete application� It is merely an object which� even
in its rudimentary state� can be used to edit HTML with complete functionality� Because of
its object nature� it can be placed inside other applications� making them HTML aware� for
example when a document is received via e�mail which is recognised as HTML� the ATK mail
reader can detect this and automatically use the htmltext to view the document�

����� Using The Standard Library

The WWW people at CERN distribute a standard library which provides support for re�
trieving documents via HTTP and for providing HTML parsing within an application� This
library has not been used in the implementation of the htmltext object so far� The HTTP
retrieval mechanism would be desirable and at some point may well be placed into an applica�
tion which uses the htmltext object� The HTML parsing provided by the library was looked
at during the implementation but the decision was made not to use it� The major reason
for this was that the library provides parsing in one direction only� Indeed� it is not easy to
envisage how the library would provide functions for creating the HTML� as this is greatly
dependent on how the application handles the document internally� However� with this in
mind� the application will have to understand HTML at least in the direction of writing and
so using a separate library for reading the HTML seems to create more problems than it is
worth�

� Comments Based On The Htmltext Experience

From writing this implementation and seeing the other systems around� it is evident that
HTML is not a di�cult language to generate� assuming the logical styling information is at
least partially available� However� there are many small details of the system which make
either generating the language� or providing a simple interface with which to specify logical
information� awkward to implement� For example� attributes are used inconsistently� In
almost all cases� attributes are simple modi�cations of a basic tag to make its appearance
slightly di	erent
 the modi�cations may be ignored by browsers� However the 
href� attribute
used to indicate hyperlinks is an extreme exception� it changes the entire behaviour of the
text it surrounds� In a similar fashion� the 
ismap� attribute of an inline image is a clumsy

�



implementation� the ismap attribute should really be placed onto the hyperlink anchor itself�
This kind of inconsistency merely results in implementations of HTML editors which use
special cases to ease the job of creating the di	erent tags� without catering to the underlying
model�

Also annoying is the manner in which representing a tagged section of text is di	erent for
some environments� Most tagged text has very strict begin�end pairs of tags annotating the
speci�c text� but list items use a completely di	erent approach� that of marking the start of
the section and not using an end tag� And some items �images and paragraph breaks� are
not environments over text at all� but are singleton tags indicating 
magic�� None of these is
di�cult to overcome� however collectively they increase the complexity involved in making an
engine to both read and write correct code� knowing the di	erence between all the di	erent
types�

It is most desirable that an editor be 
attached� to the Web and have the ability to read
and write its documents using HTTP� This necessitates servers correctly implementing the
CHECKOUT and CHECKIN methods� as these seem the most appropriate for editing doc�
uments� Unfortunately few� if any� servers yet implement this feature� The authors know
of only one� deceit���� Further� it is vital that there should be a distinction between editing
and browsing the Web� When a user wishes to edit a document they have retrieved through
the web� the browser should CHECKOUT the document from the server before allowing any
editing� While editing� the document should not be live� allowing the user to freely select
any portion of text and edit it� without worrying about whether the application will attempt
to follow any hyperlinks� A multiple bu	er browser�editor is preferable� as this would allow
the user to continue browsing the Web in another bu	er� allowing the possibility of creat�
ing hyperlinks using the 
point�and�click� interface� instead of using URIs� These ideas are
intended to be added into the htmltext editor in the future�

The editor has been in use within City University for a number of months now� with almost
all of the CityWeb pages written with its aid� The feedback from users has been very good�
despite the many bugs and 
features� which have plagued the editor during its development�

� Implementing HTML� with ATK

The new emerging language to 
replace� HTML is the superset language HTML����� This
language has very similar structure to its predecessor� but with a few notable di	erences�

� Firstly� paragraphs within HTML are indicated by markers denoting the end of a para�
graph� This means that determining the exact extent of a paragraph involves remem�
bering where the previous paragraph ended �or a paragraph was implied by something
else��� In HTML�� paragraphs are tagged sections of text� marking the exact beginning
and end� This also allows attributes to be placed onto the paragraph tag� such as direc�
tives to place the paragraph into a footnote or margin note� or to mark the paragraph as
having particular relevance such as a warning note� In theory� these attributes could be
placed onto the HTML paragraph break tag� however because of the inability to work
out the exact extent of the paragraph� this would be awkward to implement�

� Rather than have multiple di	erent logical styles for types of emphasised text� HTML�
combines all of the logical and physical styles into one� �EM�� which should have an

��



attribute specifying the desired physical style of emphasis�

� HTML� contains a number of new features such as formatted multi�column tables and
more complex �gures and diagrams�

ATK has a fairly well established spreadsheet type object� which allows arbitrary tables to be
created� Like most ATK objects� the spreadsheet object �known as table� may be embedded
within a text object� and may itself have other objects �such as text� embedded in cells within
the spreadsheet� This could map easily to the HTML� table environment�

A fairly recent addition to the ATK library of objects is an image object capable of displaying
colour images from JPEG or GIF data� By embedding this within the htmltext object�
inline images could easily be shown� More complex images �and overlaying images� could
be represented by the structured drawing object� This has already been implemented in the
htmltext object but it will not be useful until HTTP is integrated into the system�

All of these ATK objects are well�established items which can easily be integrated within
the HTML editing package� More objects exist which have not been mentioned� a complex
equation editor could be provided� or a programming language object could be embedded�
providing features similar to those found in the new Viola interface�

� Conclusions

An editing package for HTML has been described which allows WYSIWYG editing of HTML
documents� By using the Andrew User Interface System to develop the package� the potential
of the editing package is large� allowing it to be extended to HTML� and to be integrated
into various applications such as a Web browser� a Web editor or even completely di	erent
applications such as a mail reader or a help system� Some problems have been pointed
out with the di�culties in combining Web editors and browsers� although the authors are
currently developing a further implementation of the htmltext package which will successfully
merge the two functions�

Feedback from users of the editor has so far been good� although more work needs to be done
in the area of the user interface of such an editor� where the dichotomy of semantic markup
and physical styles present a di�cult combination� Many other systems for producing HTML�
either by a special editor or by providing conversion tools� have been implemented� However
few real WYSIWYG� direct access systems have been produced so far� probably because of
the aforementioned di�culties of handling browsing and of providing a reasonable interface
onto logical markup�

The htmltext object is available both in source form and packaged up into a precompiled
binary for sun� systems� The ftp site is ftp�cs�city�ac�uk and the distributions are to be
found in the directory �pub�htmltext�

References

��� IETF� Hypertext Markup Language �HTML�� Working Draft�

��� Lamport� Leslie� LaTeX� A Document Preparation System� Addison�Wesley� �����

��



��� Borenstein� Nathaniel S�� Multimedia Applications Development with the Andrew Toolkit�
Prentice Hall� �����

��� Palay� A�� W� Hansen� M� Kazar� M� Sherman� M� Wadlow� T� Neueundor	er� Z� Stern�
M� Bader� T� Peters� The Andrew Toolkit� an Overview� Proceedings of the USENIX
Technical Conference� Dallas� February� �����

��� Whitcroft� A� and Wilkinson� T� A Tangled Web of Deceit� Proceedings of WWW����
Switzerland�

�	� Dave Ragget� Hewlett Packard� HTML� Discussion Document�

��


