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Abstract

Administering large quantities of information will be an in-
creasing problem as the World Wide Web grows in size and pop-
ularity. The MORE system is a meta-data based repository
employing Mosaic and the Web as its sole user interface. We de-
scribe here our design and implementation experience in migrat-
ing a repository system onto the Web. A demonstration instance
of MORE is accessible at

http://rbse.jsc.nasa.gov:81/DEMO/

1 – Introduction
As increasing quantities of information are made part of the World Wide Web [4], it will

be increasingly difficult for Web administrators to provide effective access to that information.
Support for meta-information concerning web-accessible artifacts will be necessary, particular-
ly when there are large numbers of such artifacts. The Repository Based Software Engineering
(RBSE) project addresses just such a scenario, a public repository of thousands of software en-
gineering information and application source artifacts with over one thousand remote users.

The RBSE research and development group, seeking to free the project from a monolithic
architecture based upon X-Windows, has developed a new repository - MORE, the Multimedia
Oriented Repository Environment. MORE was designed as a set of application programs (more
specifically a set of CGI executables [10]) that operate in conjunction with a stock httpd server
[11] to provide access to a relational database of meta-data. The entire MORE interface, client
browsing and search, repository definition, data entry and other administrative functions, is
provided through stock Web clients. (We currently use X-Mosaic [15], WinMosaic [14] and
Lynx [13] for most of our interaction.) MORE provides separate hierarchies of meta-classes
and collections and support for controlled access to proprietary collections through the defini-
tion of user groups. With the single exception of the system front page, the entire user interface
is accomplished as dynamically generated Hypertext Markup Language (HTML) [1, 4].
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2 – The Repository Based Software Engineering Project
The Repository Based Software Engineering (RBSE) project is a research and development

program whose mission is to provide a technology transfer mechanism to improve NASA’s
software capability. RBSE is sponsored by the NASA Technology Utilization Division and is
administered by NASA’s Johnson Space Center and the Research Institute for Computing and
Information Systems (RICIS), a part of the University of Houston - Clear Lake. The purpose of
RBSE is the support and adoption of software reuse through repository-based software engi-
neering in targeted sectors of industry, government, and academia. The project consists of two
principal activities, research into repositories and related issues, and operation of a public fa-
cility. The RBSE research and development group is active in a number of areas:
• repository technology,
• internet discovery [8],
• collaboration packaging,
• reengineering process modeling [16],
• ION - the Intermediate Object Notation [9, 12],
• interface slicing [3],
• reusability metrics [6, 7], and
• automated classification of assets.

The RBSE projects contracts with MountainNet, Inc., a small technology firm, to operate
the AdaNET repository as its public facility. The AdaNET Repository contains a comprehen-
sive collection of information about all aspects of software engineering and the software devel-
opment life cycle, as well as an extensive collection of public domain software with related
documentation provided to support software development efforts. In addition to software and
related documentation contained in the reuse library, AdaNET contains information related to
conferences, tools and environments, publications, and references. The AdaNET Repository is
available to the general public, however user registration is required.

3 – Our Previous System
RBSE’s previous repository mechanism, known as ASV3, consisted of a monolithic X-

Windows application that interacted with a relational database, as shown in Figure 1. The data
model provided for an inheritance hierarchy of asset meta-classes with asset attributes chosen
by librarians as needed. A separate hierarchy of collections allowed for the clustering of heter-
ogeneous sets of assets, and support for related collections. Search mechanisms included bool-
ean expressions, pattern templates, and relevance-feedback natural language. Browsing of both
class and collection hierarchies was supported. The resulting client interface proved to be quite
powerful and adaptable to a broad variety of user expertise.

The RBSE public facility currently has more than a thousand subscribers spread broadly
across industry, academia and government. Access is gained by logging in to the repository host
and executing the repository software. Both ASCII and X-Windows interfaces are provided;
previous versions of the system were entirely ASCII-based and dominantly over dial-up con-
nections, but current user session counts run over 80% direct Internet connections, largely em-
ploying the X-Windows interface.

Performance in our local area network is quite adequate, but geographics have created prob-
lems for remote user interaction with ASV3. Many of our clients are quite distant from our serv-
er, and the ‘presence’ of ASV3 suffers from network delays.

Furthermore, while the representation and search mechanisms in the current system are



rich, there are definite limitations that we sought to overcome:
• Users must assess deposits with little support beyond group classification and text display

of the actual source code (and perhaps a user manual if the author went to the effort of cre-
ating one).

• Some assets have over 100 compilation units, and providing a sense of asset system struc-
ture was limited by the nature of the interface. Addition of new interfaces promised a mas-
sive retesting of system stability.

• Most error reports against ASV3 trace back to the intricacies of X-Windows, not to the par-
ticular semantics of the application or to database interaction.

• The system used a single table, made up of fifty attributes, each an eighty-character string,
into which all asset metadata was placed. These limits were hard-coded into the system.

• All users, regardless of their local environment, were presented with the same repository
model, the schema definition did not support the capability of defining access limitations.
Users either were either not allowed access the system, or could access all production arti-
facts.

• The monolithic architecture required substantial installation effort, and was dependant upon
a single DBMS (Oracle). Interaction with the database was spread throughout the applica-
tion. Installing multiple instances of the repository on the same server required substantial
replication of system resources.

4 – The MORE Architecture
Building MORE involved a complete redesign of the repository to support the following

goals:
• an adaptable group definition mechanism for managing access to proprietary sub-collec-

tions of assets;
• optimization in the storage of metadata concerning assets – each class definition now has a

corresponding relation, with each class attribute directly mapping to a relation attribute of
the same name and type;

• the World Wide Web, and Mosaic in particular, as our sole user interface (including all ad-
ministrative access);

• visualization mechanisms using HTTP ISMAP protocols [2]; and

User Interface
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Figure 1: Previous RBSE Repository Architecture



• integration of other Internet resources into our user interface through the use of URLs in
repository data.

The resulting architecture, shown in Figure 2, supports repository semantics without the over-
head of a low-level X session across the Internet. The redesign has substantially reduced and
simplified the overall system structure as well.

The Mosaic / World Wide Web architecture has altered our perception of user interaction.
Our means of measuring user activity previously involved session connect hours. Now users
connect to the system through sequences of distinct transactions, forced by the stateless inter-
action with the server. This results not only in a change in how we report user activity, but also
in an acceptance that adding URL references as our primary semantic threading of the system
result in us not knowing whether a user actually takes advantage of that URL unless it points
back at us. URLs followed from a client result in direct interaction with that other server
(which, of course, also frees us from having to play intermediary). Heterogeneity supports ac-
cess to WAIS, WWW, Gopher and other servers without having to concern ourselves with any-
thing other than the composition of a correct anchor. This promises to have great impact on the
current efforts in standardization of repository interoperation [17].

Users can access the system at arbitrary entry points by storing URLs through their client
software. The repository system is now modular, with execution split between the client (e.g.,
Mosaic or Lynx) and the server referenced by the current URL. With the exception of the home
page, all HTML presented to the client software is generated dynamically by the glue routines.
The modular architecture also easily supports a variety of interface models for customization
of the appearance of the system, since a typical glue routine execution thread is a couple of pag-
es of code. We have created a compilation dependency graph browser as an example of the type
of visual interfaces that we plan incorporating.

MORE is now much more adaptable to multiple platforms. Mosaic currently runs on PCs,
Macs and a number of UNIX platforms, and our only requirement for Web client programs is
that they support HTML for client access (HTML+ for the search mechanisms) and HTML+
for librarian access. The HTML+ requirement is more specifically support for forms. HTTP de-
mons are available for numerous platforms. Our only requirement here is that the demon sup-
port execution of programs and user authentication (this allows us to avoid prompting for
authentication with every repository interaction during a transaction sequence).

Database Interface

MOSAIC

http demon

WWW, WAIS, etc.

glue glue glue… …

Figure 2: The MORE Architecture



We also have a modular DBMS interface as a secondary effect of the redesign. We are using
Oracle v.6 for MORE 1.0 and plan Oracle v.7 and Postgres [18] support in MORE 1.1; other
SQL-compliant engines are easily added through the separation provided by the database inter-
face layer. Reporting mechanisms are now discrete from the repository itself. The default in-
formation provided by the http log files is sufficient for the majority of our needs and have freed
us from the need track user activity within the repository itself, as was necessary in ASV3.

MORE is substantially smaller than ASV3, as shown in Table 1. The dramatic reduction in
the size of the application code is due primarily to the replacement of complex X-Windows
code with printf C calls to mark up data into HTML, and in small part to migration of database
specific code into the library. The remaining growth in the library is due to the additional data-
base activity to support group definition and manipulation.

4.1 – Metadata and Classification in MORE

MORE is a meta-data based repository – the information stored in its underlying database
is not the artifacts themselves, but rather information concerning the artifact, which is stored
using other mechanisms (the file system, another database, or another software package such
as a configuration management or CASE tool). MORE supports two distinct representation
mechanisms, a class definition hierarchy, allowing homogeneous organization of information
and a collection hierarchy, allowing a mix of homogeneous and heterogeneous information.

The class definition hierarchy is single inheritance, with a base class that is customizable at
installation time through the database definition scripts (no software changes are required). The
semantics of the system require that the base class contain at least an asset id, title, keywords,
and abstract – with additional fields added as required. Further definition of the class hierarchy
is then carried out completely through the librarian interface, with the database interface gen-
erating the calls to the DBMS to dynamically create and destroy classes and their corresponding
relations as necessary.

The collection hierarchy supports the aggregation of assets without respect to their defining
class. Any given collection can contain a set of assets drawn from any number of classes, as
well as sets of subcollections and related collections. Any asset will always be a member of at
least one collection in the hierarchy, but can be a member of as many collections as is appro-
priate, at any level in the hierarchy. Furthermore, each collection can have associated with it

Table 1: A Comparison of System Sizes

System Subsystem Source Lines
of Code

ASV3 application 38,468

library 10,315

other 13,578

total 62,361

MORE application 12,640

library 16,184

other 1,264

total 30,088



one or more groups which are authorized to access the assets and subcollections making up the
collection. Groups in turn are made up of sets of users and other groups – all defined through
the librarian interface. Users not transitively a member of a designated group for a given col-
lection will never see the collection (or its contents) through any of the browser or search mech-
anisms.

The related collection mechanism is unary, a given collection can refer to another collection
without the referenced collection being required to reciprocate. This was a conscious design
choice, as we wish to support work groups referencing more public collections without reveal-
ing the contents (or existence) of their own collections to the organization or public at large.

Assets, as mentioned earlier, are characterized by their metadata, which normally includes
an address, comprised of a hypertext anchor (a URL and a label) that provides a clickable path
to the asset. A special case involves assets that are composites – made up of a number of distinct
artifacts. We organize these into directories in a server file space (usually the same server as
MORE is using), one asset per directory and one artifact per file. The URL is then a path from
the server root directory to the asset’s directory. This results in a list of files marked up as links.

4.2 – The Database Schema

Figure 3 show the schema for MORE. As mentioned earlier, much of the structure defined
for asset metadata is not static, but rather generated dynamically by librarians through the
MORE interface. The two clouds in the E-R diagram denote where this occurs: the asset tables
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Figure 3: The MORE Schema



and the associated list item tables that hold repeating field data (such as keyword lists and ab-
stract text lines). Each asset class has a tuple in the asset class table, tuples in the class fields
table corresponding to each field that field declares beyond its parent in the inheritance hierar-
chy and a table that stores the tuples containing the asset metadata. Class fields of type enumer-
ation also have entries in the enumeration values table corresponding to the values making up
the enumeration. Enumerations are defined through the existence of one or more pairs of enu-
merations and values in the enumeration values table, allowing multiple class fields to be de-
fined that share a common enumeration type.

The collection, group and user mechanisms described in the previous section are represent-
ed through corresponding tables, with the usual implementation of many-to-many relationships
as pairs of database keys. Note that both users and groups can be members of groups, allowing
for shorthand inclusion and removal of collection access for entire communities of users.

Librarians are presumed to be users, with access privileges defined as bit masks. Privileges
operate at a very fine grain, supporting for instance, specific allowance/disallowance of asset
creation, modification and deletion. The administrative interface program matches the librari-
an’s identity against the defined list of capabilities and presents hypertext links to only those
administrative functions that their mask permits.

The two decoupled tables, unique words and synonyms, are used for natural language
search against the metadata. When an asset is added to a collection, the text of its various fields
is merged into a list of unique words, mapped against a stop list to remove common words and
then added to the unique words table. (Note that we currently only include terms that appear in
the metadata, and not in the asset itself. We plan a separate mechanism to support full-text in-
dexing of assets [8]). When a natural language search is run, the query executes against this ta-
ble and results, ordered by relevance, are presented as hyperlinks back to the asset’s metadata.
The natural language search page contains a check box for indication that the unique words
should be augmented with any synonyms that appear for them in the synonyms table.

5 – Lessons Learned in Reengineering a Repository for the Web
The architecture of the ASV3 system was split between the X/Motif interface, the semantics

layer and the database interface layer. The X/Motif interface and semantics layers of the design
composed the ASV3 user interface. The database layer provided an Application Programming
Interface (API) to the ASV3 repository. The two interfaces utilized the same API and were de-
pendent on state information for each interaction with the user. The design of the database API
was driven in large part by the data requirements of the X/Motif interface.

We became aware of the World Wide Web and the NCSA Mosaic viewer in mid 1993. Over
the next few months we discussed the feasibility of using Mosaic as a display mechanism for
the new RBSE library system. It was decided in November of 1993 to develop a proof of con-
cept program which would interface with the ASV3 repository through the database API and
to attempt to display the information via Mosaic. The learning curve for developing script pro-
grams for the generation of dynamic HTML pages was short. The first program generated an
HTML page which contained a form with a scrolled list of collections retrieved from the repos-
itory through the database API, proving it could be done at least at the user level. One week
later a fully functional interface to the ASV3 repository had been constructed which allowed
browsing, searching and viewing of assets in the repository. We then held a lessons-learned ses-
sion and concluded that:
1. We needed to be able to do parameter passing between the dynamically allocated HTML

forms and the programs written to access the database. There was key field information
needed by the database API which could not be stored anywhere else but the form action
anchor.



2. Changing from a state environment to the stateless environment of HTML would require a
new architectural design for the system. The system would change from one monolithic
program which required users to maintain a sustained session on the server to a series of
short disjunct sessions lasting only long enough to generate the next HTML page. Devel-
oping complex interface code would no longer be necessary.

3. Asset files were no longer required to be on the server, but could be anywhere on the Inter-
net that was accessible through a hypertext link.

4. Support for download and viewing capabilities would be handled by WWW client applica-
tions rather than by the repository software.

5. There would no longer be a single entry point into the system. The user would have the ca-
pability to drive the system to information of interest and save the URL allowing entry back
into the system at the same point later.
It was clear that the project should change direction and pursue development of the new sys-

tem using WWW client applications as its interface. The MORE database API was designed
and built using an object-oriented approach. Each table in the repository has a set of operations
which support data manipulation. The API was developed using C and Oracle Pro*C. The API
supports data manipulation at the tuple level and above. The API was greatly influenced by the
architecture of the system. The kinds of state information available in ASV3 were not available
in the new design. API functions were written to support the retrieval of information previously
available as state data from the interface.

The redesign and development of the new database API was also driven by the move to a
stateless environment. Previous assumptions about available state information were invalid and
a new interface was required. The semantic design of the repository was also changed as fea-
tures which were previously supported by the system would now be handled by the WWW cli-
ent applications.

One of the temptations of working in a stateless environment is to create one executable for
every page which needs to be created. In the case of the MORE system this approach would
have resulted in producing almost 150 programs each of which was 500K bytes in size. (The
large size is due in large part to linking with the Oracle interface libraries.) The design of the
system is organized around functional systems and sub-systems, with most of the programs are
in support of repository administration. Only one-third of all the programs in the system support
browsing, searching and viewing. The other two-thirds support repository administration.

An interesting side effects of moving from a state environment to the stateless environment
of HTML is that the user interface became more simplistic. The user interface transformed from
complex multi-function windows to single function single action HTML pages.

6 – Conclusions and Future Work
Our experience with MORE has been an unqualified success. We have been able to develop

and deploy a complete revision of our repository in dramatically less time and with substantial-
ly fewer (and simpler to fix!) error reports submitted during testing than our previous system.
MORE is comparatively lightweight, currently comprising approximately 12mb of executables
(in debug mode, with no sharing of Oracle libraries) and a database requirement one-quarter of
that for ASV3. The complexity of the executables is also substantially reduced, implying that
maintenance should be relatively easy.

The system is capable of administering an effectively unlimited number of assets (con-
strained only by the amount of disk space the database engine can manipulate for the metadata)
distributed on an arbitrary number of Web servers scattered about the Internet. This leads to an
interesting ability for independent repositories to point at one another without requiring sub-
stantial alteration to either system. For example, our demonstration system contains an asset



with a hyperlink to COSMIC’s front page, an asset with a hyperlink directly at COSMIC’s au-
thor list, and an asset with a hyperlink directly at the description to a particular software system
in COSMIC’s catalog. Repositories can share assets and support separate organizations and
classification schemes in their local systems.

Our development path for MORE includes:
• MORE 1.0: Core Functionality (completing user testing)

— MORE 1.1: Multiple data engine support [mid ‘94]
— MORE 1.2: Asset versioning [mid-to-late ‘94]

• MORE 2.0: Distributed Servers [late ‘94]
— Subcollections spanning servers
— Related collections spanning servers
— Searches spanning servers

The planned releases of 1.x will result in a rich, flexible and portable repository mechanism
where metadata for a single environment resides on a single server. MORE 2.0 will extend this
capability with the ability to have the repository environment seamlessly span an arbitrary num-
ber of Web servers. Users only awareness of this distribution will be the URLs that their client
might display.
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