
1 of 8

World-Wide Web Proxies

Ari Luotonen, CERN
 Kevin Altis, Intel

April 1994

Abstract

A WWW proxy server, proxy for short, provides access to
the Web for people on closed subnets who can only access
the Internet through a firewall machine. The hypertext
server developed at CERN, cern_httpd, is capable of run-
ning as a proxy, providing seamless external access to
HTTP, Gopher, WAIS and FTP.

cern_httpd has had gateway features for a long time, but
only this spring they were extended to support all the
methods in the HTTP protocol used by WWW clients. Cli-
ents don’t lose any functionality by going through a proxy,
except special processing they may have done for non-
native Web protocols such as Gopher and FTP.

A brand new feature is caching performed by the proxy,
resulting in shorter response times after the first document
fetch. This makes proxies useful even to the people who do
have full Internet access and don’t really need the proxy
just to get out of their local subnet.

This paper gives an overview of proxies and reports their
current status.

1.0 Introduction

The primary use of proxies is to allow access to the Web
from within a firewall (Fig. 1). A proxy is a special HTTP
[HTTP] server that typically runs on a firewall machine.
The proxy waits for a request from inside the firewall, for-
wards the request to the remote server outside the firewall,
reads the response and then sends it back to the client.

In the usual case, the same proxy is used by all the clients
within a given subnet. This makes it possible for the proxy
to do efficient caching of documents that are requested by
a number of clients.

The ability to cache documents also makes proxies attrac-
tive to those not inside a firewall. Setting up a proxy server
is easy, and the most popular Web client programs already
have proxy support built in. So, it is simple to configure an
entire work group to use a caching proxy server. This cuts
down on network traffic costs since many of the docu-
ments are retrieved from a local cache once the initial
request has been made.

Current proxy methodology is based on the earlier gate-
way code written by Tim Berners-Lee as part of libwww,
the WWW Common Library [LIBWWW]. Kevin Altis,

Introduction

2 of 8 World-Wide Web Proxies

Ari Luotonen and Lou Montulli have been the principle
designers behind the proxy standard.

Lou Montulli, author of Lynx [LYNX], made the first
libwww changes to support proxying in collaboration
with Kevin Altis. Ari Luotonen maintains the CERN
httpd [CERN-HTTPD]. Ari has made the server side of
the proxy standard a reality and integrated caching into the
proxy server

1.1 Why an application level proxy?

An application-level proxy makes a firewall safely perme-
able for users in an organization, without creating a poten-
tial security hole through which “bad guys” can get into
the organizations’ net.

For Web clients, the modifications needed to support
application-level proxying are minor (as an example, it
took only five minutes to add proxy support for the Emacs
Web browser [EMACS-WWW]).

There is no need to compile special versions of Web cli-
ents with firewall libraries, the standard out-of-the-box cli-
ent can be configured to be a proxy client. In other words,
proxying is a standard method for getting through fire-
walls, rather than having each client get customized to
support a special firewall product or method. This is espe-

HTTP

HTTP

FTP

Gopher

WAIS

NTTP

Remote
HTTP

servers

Remote
FTP

servers

Remote
Gopher
servers

WAIS
servers

Network
News
server

Clients
inside

the
firewall

Proxy server
on the

Secure subnet inside firewall

 firewall
machine

Figure 1.
Overall setup of a proxy.
Proxy server is running
either on a firewall host or
other internal host which
has full internet access, or
on a machine inside the
firewall making connec-
tions to the outside world
through SOCKS or other
firewall software.

cially important for commercial Web clients, where the
source code is not available for modification.

Users don’t have to have separate, specially modified FTP,
Gopher and WAIS clients to get through a firewall — a
single Web client with a proxy server handles all of these
cases. The proxy also standardizes the appearance of FTP
and Gopher listings across clients rather than each client
having its own special handling.

A proxy allows client writers to forget about the tens of
thousands of lines of networking code necessary to sup-
port every protocol and concentrate on more important cli-
ent issues — it’s possible to have “lightweight” clients that
only understand HTTP (no native FTP [FTP], Gopher
[GOPHER], etc. protocol support) — other protocols are
transparently handled by the proxy. By using HTTP
between the client and proxy, no protocol functionality is
lost, since FTP, Gopher, and other Web protocols map well
into HTTP methods.

Clients without DNS (Domain Name Service) can still use
the Web. The proxy IP address is the only information they
need. Organizations using private network address spaces
such as the class A net 10.*.*.* can still use the Internet as
long as the proxy is visible to both the private internal net
and the Internet, most likely via two separate network
interfaces.

Technical Details

World-Wide Web Proxies 3 of 8

Proxying allows for high level logging of client transac-
tions, including client IP address, date and time, URL
[URL], byte count, and success code. Any regular fields
and meta-information fields in an HTTP transaction are
candidates for logging. This is not possible with logging at
the IP or TCP level.

It is also possible to do filtering of client transactions at the
application protocol level. The proxy can control access to
services for individual methods, host and domain, etc.

Application-level proxy facilitates caching at the proxy.
Caching is more effective on the proxy server than on each
client. This saves disk space since only a single copy is
cached, and also allows for more efficient caching of doc-
uments that are often referenced by multiple clients as the
cache manager can predict which documents are worth
caching for a long time and which are not. A caching
server would be able to use “look ahead” and other predic-
tive algorithms more effectively because it has many cli-
ents and therefore a larger sample size to base its statistics
on.

Caching also makes it possible to browse the Web when
some WWW server somewhere, or even the external net-
work, is down, as long as one can connect to the cache
server. This adds a degree of quality of service to remote
network resources such as busy FTP sites and transient
Gopher servers which are often unavailable remotely, but
may be cached locally. Also, one might construct a cache
that can be used to give a demo somewhere with a slow or
non-existent Internet connection. Or one can just load a
mass of documents to the cache, unplug the machine, take
it to the cafeteria and read the documents there.

In general, Web clients’ authors have no reason to use fire-
wall versions of their code. In the case of the application
level proxy, they have an incentive, since the proxy pro-
vides caching. Developers should always use their own
products, which they often weren’t with firewall solutions
such as SOCKS. In addition, the proxy is simpler to con-
figure than SOCKS, and it works across all platforms, not
just Unix.

2.0 Technical Details

When a normal HTTP request is made by a client, the
HTTP server gets only the path and keyword portion of
the requested URL (Fig. 2); other parts, namely the proto-
col specifier “http:” and the hostname are obviously
clear to the remote HTTP server — it knows that it is an
HTTP server, and it knows the host machine that it is run-
ning on. The requested path specifies the document or a
CGI [CGI] script on the local filesystem of the server, or
some other resource available from that server.

When a client sends a request to a proxy server the situa-
tion is slightly different. The client always uses HTTP for
transactions with the proxy server, even when accessing a
resource served by a remote server using another protocol,
like Gopher or FTP.

However, instead of specifying only the pathname and
possibly search keywords to the proxy server, the full URL
is specified (Fig. 3 and 4). This way the proxy server has
all the information necessary to make the actual request to
the remote server specified in the request URL, using the
protocol specified in the URL.

HTTP

Web

Remote HTTP

GET /path/doc.html HTTP/1.0

HTTP/1.0 200 Document follows
...

doc.html

some.host

server’s filesystem

Client
HTTP

server

Figure 2.
A normal HTTP transaction.
Client makes a request to the HTTP server and
specifies the requested resource relative to that
server (no protocol or hostname specifier in the
URL).

Technical Details

4 of 8 World-Wide Web Proxies

From this point on the proxy server acts like a client to
retrieve the document; it calls the same protocol module of
libwww that the client would call to perform the retrieval.
However, the “presentation” on the proxy actually means
the creation of an HTTP reply containing the requested
document to the client. For example, a Gopher or FTP
directory listing is returned as an HTML document.

2.1 Client Side Issues

Most WWW clients are built on top of libwww, the
WWW Common Library, which handles the different
communication protocols used in the Web, namely HTTP,
FTP, Gopher, News [NTTP] and WAIS [WAIS].

The entire proxy support is handled automatically for cli-
ents using the libwww. Environment variables are used to
control the library. There is an individual environment
variable for each access protocol; e.g. http_proxy,
ftp_proxy, gopher_proxy and wais_proxy.
These variables are set to the URL pointing to the proxy
server that is supposed to serve requests of that protocol,
e.g.

ftp_proxy=http://www_proxy.domain:911/

export ftp_proxy

Usually the proxy server is the same for all the protocols,
but does not have to be.

When the environment variable for a given protocol is set,
the libwww code causes a connection to always be made

Web

doc.html

HTTP

GET /path/doc.html HTTP/1.0

HTTP/1.0 200 Document followsHTTP/1.0 200 Document follows

http_proxy=http://www_proxy.my.domain/
http://some.host/path/doc.html

HTTP
Client Proxy

server HTTP
server

www_proxy.my.domain
some.host

GET http://some.host/path/doc.html HTTP/1.0

... ...

Figure 3.
A proxied HTTP transac-
tion.
Client makes a request to
the proxy server using
HTTP, but specifying the
full URL; the proxy server
connects to the remote
server and requests the
resource relative to that
server (no protocol or
hostname specifier in the
URL).

to the proxy rather than directly to the remote server. Some
clients also provide additional means of configuring the
client to use a proxy server (e.g. Mosaic for X [MOSAIC-
X] can use X resources and Mosaic for Windows
[MOSAIC-WIN] uses settings in its initialization file).

The latest (as of April 1994) libwww (version 2.15) also
supports an exception list so clients don’t have to always
go through the proxy. This is useful for avoiding the proxy
for local servers where the clients can make a direct con-
nection.

Another difference in the protocol between the client and
the proxy is that the requested URL has to be a full URL
when it is requested from the proxy server. These are the
only differences between a normal and proxied HTTP
transaction. The simplicity of proxy support in a Web cli-
ent means that even clients not based on libwww can eas-
ily support the proxy.

Proxy support is implemented only for HTTP/1.0 on the
server side so clients must use that protocol. This is not a
problem because libwww does this automatically, and
most clients (if not all) have already been upgraded to use
HTTP/1.0.

Technical Details

World-Wide Web Proxies 5 of 8

2.2 Server Side Issues

The proxy server has to be able to act as both a server and
a client. It is a server when accepting HTTP requests from
clients connecting to it, but it acts like a client to the
remote servers that it connects to in order to actually
retrieve the documents for its own clients. The header
fields passed to the proxy from the client are used without
modification when the proxy connects to the remote server
so that the client does not lose any functionality when
going through a proxy.

A complete proxy server should speak all the Web proto-
cols, the most important ones being HTTP, FTP, Gopher,
WAIS and NNTP. Proxies that only handle a single Inter-
net protocol such as HTTP are also a possibility, but a Web
client would then require access to other proxy servers to
handle the remaining protocols.

CERN httpd, which is one of the HTTP server pro-
grams, has a unique architecture in that it is currently the
only HTTP server that is built on top of the WWW Com-
mon Library, which is otherwise just used by Web clients.
Unlike other HTTP servers which only understand the
HTTP protocol, CERN httpd is able to speak all of the
Web protocols just like Web clients can as all the protocols
are implemented by libwww.
CERN httpd has been able to run as a protocol gateway
since version 2.00, released in March 1993, but additional
features were required so the CERN httpd could act as a
full proxy. With version 2.15, the server was enhanced to

GET ftp://some.host/path/doc.html HTTP/1.0

HTTP/1.0 200 Document follows.

ftp_proxy=http://www_proxy.my.domain/
ftp://some.host/path/doc.html

HTTP

www_proxy.my.domain

FTP
FTP request

FTP response

Client
some.host

FTP
server

Proxy
server

...

Figure 4.
A proxied FTP transac-
tion.
Client makes a request to
the proxy server, using
HTTP, even though the
actual resource is served
by an FTP server. The
proxy server sees from the
full URL that an FTP con-
nection should be made,
and retrieves the file from
the remote FTP server.
Result is sent back to the
client using HTTP.

accept full URLs. The same server can now act as a proxy
server for multiple protocols since the client always passes
a full URL, thus allowing the proxy to understand which
protocol to use to interact with the destination server. The
CERN httpd can even act simultaneously as a normal
HTTP server, serving local files in addition to proxying.

 The server has been greatly improved during the spring of
1994. The original implementation didn’t pass the access
authorization information to the remote server which is
essential in accessing protected documents. The body part
of the message which is present with POST and PUT
methods was not forwarded prior to version 2.15, which
prevented HTML forms from working with the POST
method.

Caching of documents has been introduced, giving notice-
able speed-ups in retrieve times. Caching is a wide subject
on its own and will not be studied in great detail in this
paper.

It is also possible to compile a special SOCKS version of
CERN httpd — this means that the proxy server does
not have to run on the firewall machine, but rather it
speaks to the outside world through SOCKS. Note, that
this means “SOCKSifying” only the httpd, not the client
programs.

In FTP the passive mode (PASV) is supported, in case a
firewall administrator wants to deny incoming connections
above port 1023. However, not all the FTP servers support

Technical Details

6 of 8 World-Wide Web Proxies

PASV which causes a fall-back to normal (PORT) mode.
This fails if incoming connections are refused, but this is
what would happen in any case, even if a separate FTP
tool was used.

2.3 Caching
The basic idea in caching is simple: store the retrieved
document into a local file for further use so it won’t be
necessary to connect to the remote server the next time
that document is requested (Fig. 5 and 6).

However, there are many problems that need to be coped
with once caching is introduced. How long is it possible to
keep a document in the cache and still be sure that it is up-
to-date? How to decide which documents are worth cach-
ing and for how long?

Document expiry has been foreseen in the HTTP protocol
which contains an object header specifying the expiry date
of an object. However, currently there are very few servers

Client

GET full-URL HTTP/1.0

HTTP

www_proxy.my.domain

Any supported protocol

Request

Response

HTTP/1.0 200 Document follows

some.host

Remote
server

Proxy
server

Cache

Figure 5.
A caching proxy.
The requested document is
retrieved from the remote
server and stored locally
on the proxy server for
later use.

...

GET full-URL HTTP/1.0

HTTP

www_proxy.my.domain

Cache

HTTP/1.0 200 Document follows...

Proxy
server

some.host

Remote
server

Client

Figure 6.
Cache hit on the proxy.
If an up-to-date version of
the requested document is
found in the cache of the
proxy server no connec-
tion to the remote server is
necessary.

that actually give the expiry information, and until servers
start sending it more commonly we will have to rely on
other, more heuristic approaches, like only making a rough
estimate of the time to live for an object.

More importantly, since many of the documents in the
Web are “living” documents, specifying an expiry date for
them is generally a difficult task. A given document may
remain unchanged for a relatively long time, then suddenly
change. This change may have been unforeseen by the
document author and so wouldn’t be accurately reflected
in the expiry information.

2.4 Protocol Additions

When it is essential that the retrieved document is up-to-
date, it is necessary to contact the remote server for each
GET request. The HTTP protocol already contains the
HEAD method for retrieving a documents’ header infor-

The Future

World-Wide Web Proxies 7 of 8

mation, but not the document itself. This is useful for
checking if the document has been modified since the last
access.

However, in cases where the document has changed, it
would be very inefficient to make a second connection to
the remote server to do the actual GET request to retrieve
the document. The overhead of making a connection is
often considerable.

The HTTP protocol was therefore extended to contain an
If-Modified-Since request header, making it possi-
ble to do a conditional GET request. The GET request is
otherwise the same except that this header contains the
date and time that the object currently in the client (proxy
cache) was last modified.

If the document has not been modified since the date and
time specified it will not be sent back, instead only the rel-
evant object meta-information headers, such as a new
expiry date will be returned, along with a special result
code. If the document has been modified it will be sent
back as if the request was just a normal GET request.

The conditional GET makes several types of utilities more
efficient. It can be used by mirroring software that has to
refresh a large number of files on a regular basis. The
caching proxy server could refresh its cache regularly dur-
ing periods of client inactivity, not just at times when a
document is explicitly requested.

It’s worth noting that the conditional GET header is back-
ward compatible. HTTP is defined so that unknown header
fields are ignored. If the remote HTTP server does not sup-
port the conditional GET request no harm will be done, the
server will just send the document in full. Fortunately all
the major HTTP servers already support the conditional
GET header.

The caching mechanism is disk based and persistent,
which means it survives restarts of the proxy process as
well as the server machine itself. Because of this feature,
caching opens up new possibilities when the caching
proxy server and a Web client are on the same machine.
The proxy can be configured to use only the local cache,
making it possible to give demos without an internet con-
nection. You can even unplug a portable machine and take
it to the cafeteria.

3.0 The Future
As the public enthusiasm for proxies has arisen just
recently, there are many features that are still in their early
stages, though the basic functionality is already there.
Caching is clearly a wide and complicated area, and it is
one of the parts of the proxy server that needs to be greatly
enhanced. The proxy could be enhanced to do lookahead,
retrieving all documents that are likely to be accessed
soon. For example, all the documents referenced by a doc-
ument that was requested recently, including all the inlined
images.

The HTTP protocol should be further enhanced to allow
multipart requests and responses; this would allow both
caching and mirroring software to refresh large amounts of
files in a single connection, rather than re-connecting to
the remote server once for each file. Multipart messages
are also needed by Web clients for retrieving all the inlined
images with one connection.

Several aspects of the proxy architecture need to standard-
ized. A proxy server port number should be assigned by
the Internet authority. On the client side there is a need for
a fallback mechanism for proxies so that a client can con-
nect to a second or third proxy server if the primary proxy
failed (like DNS). Also a dynamic lookup method for find-
ing the closest proxy server is necessary; this might be
achieved by using a standard DNS name, for example
www_proxy.my.domain. This kind of dynamic host
lookup is not just proxy-centric — Web clients should
have the same kind of mechanism for finding a local home
page, and the closest functional server in a set of servers
mirroring each other.

4.0 Conclusions

Thanks to standard proxy support in the clients, and the
wide availability of the cern_httpd proxy server, any-
one behind a firewall can now have full Web access
through the firewall host with minimum effort and without
compromising security. Corporate users don’t have to be
denied access to the Web any longer.

Considering the extremely fast growth of the Web, its abil-
ity to replace FTP, and the fact that by the time this paper
is published the Web usage has already passed Gopher
usage metered by the packet statistics in the network, the

Authors

8 of 8 World-Wide Web Proxies

use of caching proxy servers becomes essential to allow
the growth to continue in case the total Internet capacity
doesn’t keep up with the Web growth rate. The proxy
caching makes it possible to gain “virtual bandwidth” as
documents often get returned from a nearby cache rather
than from some far away server.

5.0 Authors

Ari Luotonen is writing his Master’s Thesis at CERN until
the summer 1994 on the architecture of generic hypertext
servers. He is studying software engineering and mathe-
matics in Tampere University of Technology, Finland, and
will graduate in May 1995. His electronic mail address is
luotonen@www.cern.ch.

Kevin Altis is an Internet Program Architect at Intel Cor-
porations’ Media Delivery Laboratory in Hillsboro, Ore-
gon. He is interested in PC oriented usage of multi-media
information via the Internet. His electronic mail address is
altis@ibeam.intel.com.

6.0 References

[HTTP] HyperText Transfer Protocol, <URL:http://info.-
cern.ch/hypertext/WWW/Protocols/HTTP/HTTP2.html>

[FTP] File Transfer Protocol. J.Postel and J.Reynolds, File
Transfer Protocol, Internet RFC 959, October 1985.
<URL: ftp://ds.internic.net/rfc/rfc959.txt>

[GOPHER The Internet Gopher. F.Anklesaria et.al., The
Internet Gopher Protocol, Internet RFC 1436, March
1993. <URL: ftp://ds.internic.net/rfc/rfc1436.txt>

[WAIS] Wide-Area Information System. <URL: http://
www.wais.com/z3950.html>

[NNTP] Network News Transfer Protocol, B.Kantor and
Phil Lapsley, Network News Transfer Protocol, Internet
RFC 977, February 1986. <URL: http://info.cern.ch/
hypertext/WWW/Protocols/rfc977/rfc977.html>

[CGI] The Common Gateway Interface, Rob McCool,
1993-1994. <URL: http://hoohoo.ncsa.uiuc.edu/cgi/>

[URL] Uniform Resource Locators. <URL: http://info.cer-
n.ch/hypertext/WWW/Addressing/Addressing.html>

[LIBWWW] The WWW Common Library. <URL: http://
info.cern.ch/hypertext/WWW/Library/Status.html>

[CERN-HTTPD] CERN hypertext daemon, <URL: http://
info.cern.ch/hypertext/WWW/Daemon/Status.html>

[LYNX] Lynx, a full-featured WWW client for character
terminals.<URL: http://www.cc.ukans.edu/lynx_help/
Lynx_users_guide.html>

[MOSAIC-X] NCSA Mosaic for X Window System.
<URL: http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/
Docs/mosaic-docs.html>.

[MOSAIC-WIN] NCSA Mosaic for Microsoft Windows.
<URL: http://www.ncsa.uiuc.edu/SDG/Software/WinMo-
saic/HomePage.html>.

[EMACS-WWW] The Emacs WWW Browser by William
Perry. <URL: http://moose.cs.indiana.edu/usr/local/www/
elisp/w3/docs.html>

CERN httpd as a proxy server: <URL: http://info.cern.ch/
hypertext/WWW/Daemon/Proxies/Proxies.html>

Proxy support in Mosaic for X: <URL: http://www.nc-
sa.uiuc.edu/SDG/Software/Mosaic/Docs/proxy-gateway-
s.html>

Proxy support in WinMosaic: <URL: http://www.nc-
sa.uiuc.edu/SDG/Software/WinMosaic/ProxyInfo.html>

