Converting Formatted Documents
to HTML

Jon Stephenson von Tetzchner
Norwegian Telecom Research

Abstract

The World Wide Web document language, HTML (HyperText Markup Language), is a
logical language. It uses tags (markups) to define the different parts of the document,
eg headers and bullets. How the different parts of the document are displayed on the
screen depends on the viewer’s software. This may be a problem when converting
documents to HTML as most document include formatting information. Some
document formats do not include any logical information, hence making the process of
converting them to HTML quite tedious.

The present paper describes the current version of the fm2html document converter.
The converter translates FrameMaker documents to HTML. FrameMaker documents
are logically structured and include formatting information. The FrameMaker
Interchange Format (MIF) is briefly described and the major differences between MIF
and HTML are discussed. The description of the conversion process focuses on the
problems related to converting various parts of a document: text, figures, tables and
hyper links. Some selected problems are discussed in greater detail, and changes that
would be desirable in HTML to solve these are indicated.

Introduction

Fm2html originated as an internal project at Norwegian Telecom Research. It was
intended to be used for converting research documents between FrameMaker and
HTML. There have been several upgrades. The current version of fm2html converts
text, figures, tables, character formats, etc., but MIF (FrameMaker Interchange
Format) still contains several features which are not converted. Normal FrameMaker
documents may also be converted; they are converted to MIF before being converted
to HTML.

The design of fm2html reflects many of the problems related to converting formatted
documents to HTML, and the solutions may therefore also be used for writing
converters for other document formats. However, some problems remain unsolved,
and may be solved only by extending HTML with more formatting options. Some of
the problems will be solved by the proposed HTML+ format.

Document formats

The FrameMaker document format includes a full specification of the document
contents and layout. A document in MIF can roughly be divided into four sections:

1. Specification of various document structures (style sheets), eg paragraphs,
tables, fonts and variables. This information is used to format actual structures
later in the document.

2. Definition of tables and frames (figures).
3. Page layout information.

4. Text paragraphs with references to other paragraphs and documents.

The various sections will make reference to the other sections: Pages include
paragraphs, paragraphs include references to tables and frames, and use style sheets,
tables use style sheets, etc.

Although HTML includes some character formatting, the HTML format may actually
be considered a logical description of the document, using logical tags to describe the
document contents. This logical description suggests a way of formatting the
document, but the actual formatting is decided by the writer of viewing software or by
the user of the software if the software is flexible. Since the two languages differ in
many aspects, some formatting information is bound to be lost on the way.

The conversion process

The current version will convert a FrameMaker document or book to HTML,
including automatic generation of a table of contents. The process for converting a
single file is shown in Figure 1, and the process for converting a book is shown in
Figure 2.

FIGURE 1. Conversion of a single file from FrameMaker to HTML.

GIF
figure 1
FrameMaker FrameMaker HTML GIF
file > MIF file file figure 2
GIF
figure N
FIGURE 2. Conversion of a FrameMaker book to HTML.
FrameMaker FrameMaker HTML table
book MIF book of contents
FrameMaker FrameMaker HTML GIF
file 1 I MIF file 1 file 1 figures
FrameMaker FrameMaker HTML GIF
file 2 MIF file 2 file 2 figures
FrameMaker FrameMaker HTML GIF
file N MIF file N file N figures

The first section of the MIF document is mostly ignored by the converter since it
includes information that cannot be converted to HTML. The information in this
section could have been used to guess the type of paragraph by looking at its
definition. Big fonts, for example, could indicate headings. This approach was not
considered viable because writing styles vary greatly. Some information may be taken

from this section at a later stage, though, to enable better formatting, with added
formatting options in HTML.

The second section of the MIF document is converted. This conversion process is
described further later in this paper.

Section three of the MIF document is mostly discarded since it includes information
about page layout; pages are not defined in HTML, and page layout with multiple
columns, etc., is not possible.

Section four of the MIF document contains the text of the document divided into
paragraphs. The paragraphs include references to tables and frames in section 2. Most
of this section is translated.

Converting a FrameMaker file

To convert a FrameMaker file, it must first be converted to the FrameMaker
Interchange Format (MIF). This is done by calling the FrameMaker program fmbatch.
Fm2html then converts the MIF file to HTML (Figure 1).

During the process of converting the MIF file, figures are extracted to separate files
included in the HTML document, and a table of contents is automatically generated.
This is described in more detail later in this paper.

Converting a FrameMaker book

The process of converting a FrameMaker book is very similar to that of converting a
single file. The FrameMaker book file is converted to MIF. The names of all the files in
the book are extracted and converted to MIF. A single table of contents file is
generated for all the files in the book, and figures are extracted in the same way as for
single files. Each MIF file becomes a single HTML file (Figure 2).

Converting from MIF to HTML

As already mentioned, MIF is very rich. It includes as lot of data that is useless in the
context of an HTML document. It was therefore decided to extract only the needed
information from the document and discard the rest. The extent of the information that
is needed has grown since the first version of fm2html was written, but the principle is
the same: A lot of information is discarded.

This does have some effect on the parsing. The converter is quite tolerant regarding
different versions of FrameMaker. It will not break when a new line of information is
introduced; it will just ignore it. However, this also means that fm2html is dependent
on comments after the end of structure marker “>", otherwise it will not be able to tell
what type of end marker it is. This means that MIF files generated by hand or by other
word processors are likely to fail. Since it is very unlikely that anybody will write MIF
files by hand and the number of sources of MIF files is small, this has not been
considered a problem.

Converting text

Fm2html makes use of the paragraph styles in the FrameMaker document. It discards
information about the paragraph format (except local character formatting) and uses
the name of the paragraph style to decide how to format the paragraph in HTML. This
procedure is logical since the resulting HTML document may be displayed in a
number of ways, and it will often be quite impossible to get the HTML document
formatted the same way as the original FrameMaker document.

Figure 3 shows two paragraphs in MIF format. The paragraphs have paragraph styles
1Heading and Body respectively. The layout of these paragraphs is defined earlier in
the document. The paragraph styles are bound to internal tags HEADING1 and
BODY, which in turn are bound to the formatting shown in Figure 4.

FIGURE 3. MIF paragraphs.

<Para
<PgfTag ‘1Heading’>
<Paraline
<String ‘A look at the document formats™>
>
> # end of Para
<Para
<PgfTag ‘Body’>
<Paral.ine

<String ‘The aim of the converter is to convert documents in the
FrameMaker Interchange ’>

>
<Paraline

<String ‘Format (MIF) to HTML. These two languages differ quite a lot, and
therefore some ’>

>
<ParaLine
<String ‘formatting information is bound to be lost on the way. ">
>
> # end of Para

FIGURE 4. HTML paragraphs corresponding to the MIF paragraphs in Figure 3.

<H2>A look at the document formats</H2>

The aim of the converter is to convert documents in the FrameMaker
Interchange Format (MIF) to HTML. These two languages differ quite a lot,
and therefore some formatting information is bound to be lost on the way. <p>

The reason why the internal format is used instead of converting directly to HTML is
that the internal format can combine several HTML tags and thus make a much richer
language.

The formatting of the paragraph in HTML is chosen by the user. By editing a tag file,
the user chooses between different internal tags. Each paragraph type in FrameMaker
can be bound to any of the internal tags.

This method of converting documents makes the conversion process simple since
there is no need for the converter to deduce the type of text from font types and similar
sources of less exact information. However, this also means that if the user decides not
to make use of paragraph styles in FrameMaker, the conversion process is likely to
have all the text formatted as simple text.

One of the problems of converting to HTML is that HTML does not have any notion
of tabulators and tab stops. FrameMaker can have tabulators at any location, but it
would be very difficult to get the same effect in HTML. Tabulators are therefore
removed, except in the case of paragraphs bound to the special HTML construct
<PRE>. This means that the text will be displayed with a non-proportional character
type and that tabulators are placed at even intervals. Tabulators may also be used when
the paragraph format is bound to an internal format, which makes use of the tabs
explicit. Fm2html uses constructs in HTML, which in some cases can simulate the use
of tabulators.

Generating a table of contents

The table of contents is generated on the basis of certain internal converter tags. The
FrameMaker generated table of contents is discarded because it is based on page
numbers. Page numbers do not have meaning in HTML as the whole text is in one
flow.

By editing the tag file, the user of the converter may decide which headings that are
included in the table of contents.

Handling and generation of HyperText links

FrameMaker uses HyperText links. Some of these links are page based and are
therefore of little interest when creating a HTML document. Others are more generic
and they are therefore converted. These include links to named anchors, start and end
of a document, as well as links to other documents.

Footnotes in FrameMaker are also converted to HyperText links. The footnotes are
moved to the end of the HTML document that is generated. References in
FrameMaker are also converted to HyperText links. References are used in
FrameMaker to automatically update parts of the text, which reference other parts of
the text. As most of these references point to figures, tables and headings (eg the text
“see chapter 57, where “chapter 5” is the reference), it was considered useful to
convert them to links.

Converting figures

Different versions of FrameMaker (FrameMaker for Unix, FrameMaker for Windows,
etc.) may include figures in several different formats. The figures can be drawn using
FrameMaker tools or be included. Most WWW viewers can display GIF figures, but
other formats may only be displayed by a few of the viewers. This means that all the
different figure formats should be translated to GIF, which normally would mean a lot
of work finding suitable converter programs. Instead it was decided to use a unified
procedure for converting figures. This does not give the best result, but it means that
most figures may be converted. As a bonus, the same method may be used to convert
mathematical formulas.
Figure 5 shows the process of converting a figure. The process has seven stages:

1. Extract the figure from the document into a separate MIF file.

2. Convert the figure to PostScript format.

3. Convert the figure to the ppm format.

4. Remove excess space from the figure.

5. Add a small border to the figure.

6 . Convert the figure to GIF.

7 . Include the figure in the resulting HTML document.

FIGURE 5. Conversion of a figure.

Figure in a Figure Figure Figure in
FrameMaker extracted toa printed to a ppm format
MIF separate MIF PostScript
document document file

=
:

22 +-5

0
T

B2

Figure in a Figure in Figure in Figure in
HTML GIF format ppm format ppm format
document with a little with excess
border added space

removed

The first two steps extract the figure from the document and print it to a PostScript file.
This means that all figures are handled in the same manner, without regard to the
original format.

In step 3, the figure is converted to ppm format using GhostScript and pstoppm.ps, a
script that comes with GhostScript. Having the figure in ppm format is useful as
several programs exist to manipulate figures in this format (PbmPlus and NetPbm
packages). One of these programs is used to remove excess space from the figure. This
is necessary because excess space was introduced in the conversion to PostScript
format. Another program is used to add a little border to the figure. Otherwise, the
figure may look strange, given that the background colour of the figure is different
from the background colour used in the client software. The resulting figure is
converted to GIF and included in the HTML document.

There are some problems related to the use of this method. The main one is that
GhostScript does not seem to be able to handle all figures well, and may change some
figures. However, this does not seem to be a major problem. Most figures are
translated correctly. It is a more serious problem that figures which have small parts
(for example text in a small font) are not translated well. In some cases, the text may
not be readable. This is a consequence of the lower resolution of computer screens
compared to that of paper. One solution may be to use more screen space, but that may
not always be acceptable. This problem still has to be solved.

The above conversion process will function well as long as the figures can be easily
extracted. This is easy for figures in anchored frames since fm2html only needs to
recognise the start and end of the frame, and physically remove it from the document.
Figures which are not in anchored frames and consequently not located in the text flow
are more difficult to handle and they are currently not converted.

As mentioned above, mathematical formulas are handled in the same way as figures. It
is easy to extract the contents of a mathematical formula into a separate document. The
process of Figure 5 may then be used to convert the formula to a GIF file, which in
turn is included in the HTML document. However, this also means that the same
problem applies to mathematical formulas as for figures. If the formula has small text,
it will not be easily readable.

Converting tables

HTML has no explicit structure for including tables. This is added in the current draft
for HTML+. For the time of being, other methods need to be used. Two solutions are
possible:

1. Converting the table into a figure.

2. Using the preformatted text option in HTML (mono-spaced text).

The first solution would give an exact representation of the table, but would also
include the current limitations of figure conversion. In the worst case, this may lead to
the contents of the table not being readable.

The second solution would display the contents of the table in a format that is not
optimal, but the contents would be readable. However, figures may not be shown
directly since character counting is used to format the table. A link to the figure may be
used instead. The second solution is more in the spirit of WWW, as the user of the
viewer may choose the font type and size. If the first solution is applied, the user of the
viewer has no control. In order to ensure readability, the second solution was chosen.

Unsolved problems

In the current version of fm2html, a number of problems remain unsolved. Some of
them may only be solved by extending the HTML language. This includes the problem
of special characters. Characters which are available in FrameMaker but not in
HTML, include mathematical characters and hence Greek characters. This is
considered a major problem since many potential users of fm2html write technical
papers that include such characters. Although a solution was found for full
mathematical formulas, this solution may not be optimal for single characters since the
size of these characters may differ from the size of the main text. HTML+ will include
an extended character set that will solve this problem. The converter currently
generates HTML+ compatible output, and mathematical characters will therefore be
available in HTML+ compatible viewers (provided that HTML+ is not changed).

Another character formatting option that is not available in HTML is super- and
subscript. This is likely to be a major problem with technical papers since they tend to
use these formatting options extensively. The current solution is replace them with
italics, but since HTML+ currently includes both superscript and subscript, this
problem should soon be history.

Paragraph formatting, indents, tabulators, multiple columns, etc., are not available in
HTML and as long as this is the case, all such information is removed. The only
present solution to this problem is to upgrade HTML

The future

Upgrading of the converter will continue in order to extend its value to the users.
HTML+ will be supported and the conversion process improved. At present, new
features are being added every month. This will continue, at least in the foreseeable
future.

10

