
The Phoenix Project: Distributed Hypermedia Authoring
M. G. Lavenant & J. A. Kruper

Biological Sciences Division Academic Computing
The University of Chicago

924 E. 57th. Street
Chicago, IL 60637-5415 USA

ABSTRACT

The Biological Sciences Division Office of Academic
Computing (BSDAC) at the University of Chicago is
the primary resource for support and development of
instructional and research computing applications in
the biomedical sciences. Driven by the goal to unify
traditionally isolated teaching, research and clinical
computing resources, the group has initiated a broad
scale development effort known as the Phoenix
Project.

The aim of the Phoenix Project is to develop an
integrated academic information system providing full
Internet connectivity and wide-area distributed
hypermedia authoring services to the students,
teachers, researchers, clinicians, and administrators
who comprise BSDAC's user base. While the World-
Wide-Web and its underlying data standards, HTML+
and HTTP, provide a flexible and yet powerful
foundation for such a computing environment, they
also present, in their current implementations, two
significant limitations with respect to distributed
hypermedia authoring: the lack of a user-friendly
cross-platform HTML authoring tool, and
rudimentary wide-area authentication/ authorization
service integration. Our development effort over the
past nine months has thus been twofold: to develop
an effective X-windows based WYSIWYG HTML
browser/editor, and to construct a prototype for
integrated wide-area authentication and authorization
support for HTTP service.

In this paper, we outline the design principles and
application features present in the Phoenix software
environment. We also suggest improvements to
current WWW-based standards, and describe future
directions for Phoenix development efforts. Finally,
we present selected examples of how our user base is
applying Phoenix utilities to further the Division's
tripartite mission of advancing research, education,
and patient care.

INTRODUCTION & BACKGROUND

The University of Chicago has a long and
distinguished history of excellence and innovation in
the areas of biological research and education.
Beginning with the efforts of Robert Maynard
Hutchins, and continuing with John Dewey, Joseph
Schwaub, and today's current faculty, Chicago has
maintained a high commitment to leadership in
education. The University remains the only
institution in the United States in which the basic
science and medical faculties share responsibility for
teaching in the biological sciences on every level,
from undergraduate to postdoctoral, and Chicago is
one of only a few Universities that maintains a
biology core requirement for all students regardless of
major.

The roughly 700 faculty members in the Division of
the Biological Sciences form eleven clinical
departments, six basic science departments, ten
multidisciplinary academic committees, and twelve
auxiliary and administrative departments. Over 200
academic courses serve a student population that
includes 1,000 undergraduates, nearly 300 graduate
students (affiliated with sixteen degree-granting
departments and committees that comprise the
Division's basic science programs), and over 435
medical students. The Division is responsible for
education across the spectrum of the biological
sciences -- from outreach programs for high school
students and high school teachers, to the
undergraduate college, to doctoral research, to medical
education, to postdoctoral, residency, and continuing
medical education.

It is in direct support of this community's tripartite
mission of advancing research, education, and patient
care that BSDAC has initiated a pioneering
computing effort called the Phoenix Project.

The Phoenix Project

Computing at the University of Chicago, like many
other institutions, has been "balkanized" through the
creation of separate, non-overlapping computing
resources for hospital administration, clinical practice,

teaching, and research. As a result, individuals are
unable to operate from a common desktop platform.
Instead, they must master multiple operating systems
running on computers that are physically separate.
Thus, individuals who, for example, use personal
computers extensively for analysis and presentation of
research results fail to incorporate computing into
other professional activities such as teaching and
patient care. The goals of the Phoenix Project are to
improve our ability to deliver high quality patient
care, to provide instruction and training in the
biomedical sciences, and to advance clinical and basic
science research by integrating these disparate data
sources through a common, readily accessible
interface: the Phoenix Workstation.

The first tangible expression of these ambitious
goals is an integrated academic information system
providing full Internet connectivity and wide-area
distributed hypermedia authoring services. As the
next two sections detail, this system has been built
upon the World Wide Web architecture, and includes
two significant areas of enhancements within this
framework: an effective X-Windows based
WYSIWYG HTML browser/editor, and a prototype
for integrated wide-area authentication and
authorization support for HTTP service

THE PHOENIX HTML EDITOR

Our adoption of HTML as the defining data format for
the Phoenix workstation was motivated by the
format's power and flexibility -- qualities that have
been amply demonstrated by the growth of the Web
over the past year. While this growth is remarkable in
and of itself, it is all the more so in light of the
absence of a user-friendly HTML editor. Indeed, the
Web author's toolbox, which currently contains
conversion utilities (rtf2html, LaTeXtoHTML,
ps2html) and rudimentary HTML editors (tkWWW,
NextStep editor, the WYSIWYG Hypercard Stack,
EMACS HTML-mode), still lacks an effective
authoring tool that we can deliver to the members of
our user community.

Like most providers of information and computing
services, we cater to a heterogeneous group of users,
both in terms of their comfort and familiarity with
computers, and with respect to their installed base of
hardware. Our foremost concern in defining a
development strategy for the Phoenix Project has
been to address this heterogeneity among our users by
providing them with an editor that would be intuitive
and yet full-featured, and in addition would be
accessible from the three preferred operating systems
on campus: Macintosh, MS DOS/WINDOWS, and
UNIX.

Of the existing HTML authoring tools, Joseph
Wang's tkWWW nearly satisfied our design
specification. Written in the Tool Command
Language (TCL) and its associated X-Windows based
Tool Kit (Tk), it can be delivered to all three of our
target platforms via the X-Windows service.
Furthermore, it is one of the few existing editors
(along with the Next editor) to support a near
WYSIWYG editor interface. While it suffers from a
number of significant shortcomings with respect to
our particular needs (a relatively awkward user-
interface, error-prone performance, difficult
installation, and incomplete support of the HTML+
specification including in-line images, forms, and
various text-format types), we judged it could serve as
an effective springboard from which we could develop
an editor tailored to our particular design objectives.

We thus built the Phoenix editor around tkWWW
(version 0.9), and owe a great deal to Joseph Wang
and to the considerable work he has invested in his
original editor. While we have remedied many of the
shortcomings we perceived in the original tkWWW
design, Phoenix is still in beta release undergoing
beta-testing by our Divisional community. This beta
release, enhanced with the features described below, is
currently running both locally on Unix machines
(System V) and remotely, served to Macintosh or PC
platforms running X-server software. More
importantly, it is proving to be an effective Web
authoring tool in the hands of our initial beta testers.

Phoenix Features

Interface enhancements

Much of our development effort has been devoted to
enhancing the Phoenix editor's interface. We have
pursued this objective by adhering to the general
interface format of the Macintosh, which as the most
popular hardware platform on campus, is also the
most familiar to our users. Wherever there exists a
correspondence between a Phoenix feature or function
and a similar one on the Macintosh, we have defined
the Phoenix behavior to mimic that of the
Macintosh. For instance, Cut, Copy and Paste in
Phoenix have key-bindings and behaviors
corresponding to those on the Macintosh. Moreover,
we have enabled Macintoshes running remote
Phoenix clients through their X-server to share the
contents of their clipboard with the Phoenix client
both to reinforce this common interface and to
facilitate the integration of the editor within the user's
local (Macintosh) application environment.

However, this general approach cannot be adopted for
Phoenix features that lack a Macintosh counterpart.
In these cases we have attempted to maintain the

general spirit of the Macintosh interface and suggest
what their eventual behaviors should become. For
example, clipboard commands treat a link as an object
and operate on the HREF markup element and its
enclosed anchor as a whole, rather than simply
treating it as text. Correspondingly, double-clicking
on a link invokes a dialog window through which to
edit the properties of the link.

The Web's greatest departure from the standard
Macintosh or PC interface lies in its transparent
integration of distributed documents and file services.
While interface paradigms exist for conventionally
distributed file systems (Appleshare, NFS, etc.), they
typically represent file systems that support
standalone documents lacking a comparable degree of
integration. We have therefore chosen to depart from
the standard file system interface and instead
transparently provide file services to our Phoenix
users. While allowing direct access to HTML and
HTTP for the cognoscenti, we also provide a user-
friendly interface in which URLs, HTTP servers, and
comparably intimidating creatures are hidden behind
aliases. Thus, all basic file operations can be
performed via indirect references to the underlying
URLs, user and group names that use existing URL
aliases (such as Hotlist, and History items), as well
as novel aliases corresponding to users and groups.

Additional HTML+ Support

We intend to support currently implemented
provisions of the HTML+ specification and to
maintain our Phoenix HTML+ support apace with
the evolution of the specification itself (including
forms and tables). Toward this end, we have extended
tkWWW's support of HTML+ by providing in-line
image support (GIF format) in our beta-release
Phoenix editor in both browse and edit modes.
Phoenix supports the markup
both within and outside ...
markup elements. The Phoenix clipboard supports
the IMG markup either as a link to the image file
specified in the IMG-URL, or as the image itself.
The distinction between these two modes is made by
providing two paste commands: Paste, and Paste
Image. Cut and Copy remain unique.

DISTRIBUTED HTTP FILE SERVICES

The Web infrastructure we are deploying for the
Phoenix Workstation environment will consist of a
dozen or so Web servers and hundreds of Web clients
distributed around campus. Existing servers provide a
variety of information services, including personal
'desktop' file service, course information (class notes,
curricula, homework drop-off, quizzes), and dedicated

content-based information archives (bio-medical
images, Health Information Resources, Medline,
etc.). Users enjoy read-write access to these resources
according to the authoring/browsing permissions
governing them. Integrated organization of these
distributed information resources is achieved using the
existing features of HTML and HTTP. The
corresponding integration of user authentication and
authorization, however, requires extending the feature
set of current HTML/HTTP implementations.

Specifically, provisions for these services in the
leading HTTP servers are designed around locally
maintained user name-space and access-control data
structures. While these solutions are not unduly
cumbersome within the existing Web environment,
(predominantly world-read, local-write), they are
insufficient to support the wide-area multi-server
authoring environment we are deploying for the
roughly three thousand potential Phoenix users in the
BSD. The model underlying our integrated wide-area
authentication and authorization support for NCSA
HTTP1.2 service is outlined below.

Authentication

Two authentication models are currently available:
host filtering, and user-authentication. In host
filtering, access is granted on the basis of the network
IP address of the client issuing the service request.
While this level of authentication is ideal for
distributing documents covered by site-licenses or
organization level subscriptions, it is insufficient to
provide the granularity and security required of a
distributed file-system. User-authentication better
satisfies such requirements, but proves unwieldy in
its current implementation; access to "protected"
documents requires client software (browser/editor) to
explicitly prompt the user to provide server-specific
authentication information (name, password) for
HTTP requests of every server queried in a particular
session. The model's reliance on local user name-
space precludes transparent HTTP service integration
across multiple servers, from the perspectives of both
users and system administrators.

We are addressing these shortcomings in our Phoenix
environment by implementing the HTTP-
specification's provision for Kerberos authentication:
Authorization:kerberoskerberosauthenticationparameters

This solution relieves the HTTP server of any
ancillary authentication responsibility and provides
the client software with appropriate hooks to a
dedicated Division-wide Kerberos authentication
server.

Upon launch, the Phoenix client (X-windows
browser/editor) prompts the user for a login and
password and obtains a ticket from the Kerberos
server. This ticket is used by the client to request
server-specific kerberos tickets from the kerberos
ticket granting server. These Kerberos service tickets
are then passed by the client to "Phoenicized" HTTP
servers in subsequent service requests.

Our HTTP servers are correspondingly "Kerberos
aware," maintaining a kerberos key with which to
decrypt Kerberos tickets issued by Phoenix clients.
Successful decryption of incoming Kerberos tickets,
passed in the HTTP service requests, authenticates the
identity of the requesting user. The HTTP request is
then passed, along with the decrypted username, to
the server's authorization service to determine whether
the particular request can be satisfied. Otherwise, an
error message is returned to the client. While this
scheme provides integration of HTTP service user
name-space and transparent authentication, it
preserves the "flavor" of the WWW by supporting
the integration of a single user name-name space
distributed across multiple Kerberos servers.

Authorization

Current HTTP authorization models are based upon a
directory based organization of served documents.
According to this scheme, access is granted to the
content of directories rather than to individual HTML
documents per se. Files in a given directory are thus
subject to identical access control, specified either in
the HTTP server's main configuration file or in a
subsidiary control file located in the directory itself.

This approach suffers from three principal
limitations. First, it imposes an awkward
document/directory structure upon the HTTP server's
file-system, whereby documents are organized on the
server according to access-permission rather than upon
a more "natural" basis such as content. Second, it
provides no effective means of modifying the access
permissions of individual documents without moving
them to a new location in the file-system, thereby
breaking any existing hyper-links for which the given
document is a target. Finally, it makes no provision
for client-side document access-control management.

The CTRL Markup element

Our answer to these limitations is to implement an
experimental HTML+ markup extension and
associated support services. We define the HEAD
HTML markup element, <CTRL SRC="URL">, to
specify the location of the access-control file
governing the access to the document:

<HEAD>
<TITLE>Demonstration of The CRT markup
element</TITLE>
<CTRL SRC="protocol://hostname/path/access-
controlfile ">
...
</HEAD>
<BODY>
...
</BODY>

The access control files are served both in
browser--->server and in server--->server requests.

This authorization scheme satisfies our requirements
for document level permission granularity and
unhindered file-system organization of served HTML
documents. Modification of document access
permissions is accomplished by simply updating the
URL of the CTRL markup element to point to the
new access-control specification file.

Document READ-WRITE

In our authorization model, our HTTP servers are
supported by a dedicated authorization service; it is to
this service that all authorization requests are referred.
Authorization requests, issued by the HTTP server,
comprise the following elements of the original
HTTP request: the METHOD, the CTRL-URL, and
the authenticated user-name. Authorization of the
request is performed by retrieving the access control
file (locally or via HTTP) and comparing it to the
user-name and METHOD provided in the service
request. A pass or fail message is then returned to the
HTTP server for further processing of the user's
original HTTP request.

Client-side document permission modification

Our model provides two client-side methods for
editing document-permissions: modifying the CTRL-
URL mark-up element in the underlying document,
and editing of the CTRL-URL document itself. These
correspond, respectively, to changing the access to the
current document, and to altering permissions of the
entire set of documents currently governed by a given
CTRL-URL.

The first is performed with the Save as... dialog in
the Phoenix client. The set permissions option,
available in this dialog, retrieves the CTRL-URL
(GET-CTRL) and parses it into a user and a group
list. The parsed entries are displayed to the user in the
document permissions dialog, along with those
maintained for the user by the client in the user's
local .users and .groups file. Following the user's
selection of appropriate entries from the user and
group lists, the client issues a POST-CTRL service

request for the revised list to the HTTP server
specified in the CTRL-URL. The HTTP server
authenticates and authorizes the request, and checks
for an existing permission specification matching that
defined in the request. If one is found, its URL is
returned to the requesting client; if not, a new access-
control document is generated and its URL returned.
In each case, the CTRL-URL is returned to the client
in the same POST-CTRL transaction.

The second method, performed independently of a
particular document-editing session, is accomplished
through the Web Permissions dialog. The client
retrieves a specified CTRL-URL from its server and
updates it as above, then issues a POST-CTRL
service request. The server authenticates and
authorizes the request, and overwrites the existing
control file with the newly submitted one.

APPLICATION OF PHOENIX IN THE
BIOLOGY CURRICULUM

It has long been a goal of instructional technology
efforts to develop a "virtual classroom" that provides
a forward looking, learner-directed exploratorium in
which students and teachers alike can explore,
discover, communicate, collaborate, and learn. With
the advent of the World Wide Web and sufficiently
powerful tools such as Phoenix, building such an
environment is now within reach. This section
describes our initial applications of Phoenix
technology to the Biological Sciences Division
curriculum.

In our efforts, we have sought:

•to develop utilities that dynamically generate
personalized "home pages" on logging into the
system. These home pages contain links to custom
built and existing information targets that range from
the individualized personal information source (a
student's independent research project, for example),
to shared group targets (a class home page), to local
and remote information servers (a library catalogue or
remote database);

•to provide default frameworks for presenting
common information constructs, such as a class
home page;

•to build these default frameworks in a way that
permits easy enhancement and modification by
individual faculty and students;

•to scale this framework to support the Division's
entire class offerings -- over 100 classes serving over
1700 students per term; and

•to provide a series of shared information utilities (an
Image Archive, for example) that users can contribute
to and draw from in support of the teaching and
learning process.

From these objectives, we have implemented a first
generation Class Information Architecture that
includes script-generated Class Home Pages and a set
of supporting information retrieval utilities that
operate within this framework.

At the beginning of each academic term, a series of
scripts uses a data feed from the University's Office of
the Registrar to build default Home Pages for each
class offered in the BSD during that term. These
Home Pages contain appropriate graphical banners
that are built up from a series of elemental graphic
constructs (subject headings, course numbers, etc.).
In addition, these banners are also links to the
corresponding target's home page (a high level
graphics for the BSD Office of Academic Computing
for example, points to the BSDAC home page).

The principal content of the Class Home Page,
however, is a set of standard headings and links
representing the following areas:

•Course Instructor
•Course Syllabus
•Class Announcements
•Class Notes

With the exception of the Course Instructor heading
(which points to the appropriate faculty biographical
HTML target page), the targets for each of these
headings/anchors is a blank page. It is up to the
course instructor(s) to create and add structure and
content to this sub-web. Of course, with the aid of
the WYSIWYG editing functions in Phoenix, this is
now an simple routine.

For example, an instructor may wish to use the
(initially blank) target page of the Class Notes anchor
to build a simple notes index based on lecture date.
Alternatively, an instructor could choose to organize
his/her class notes using a subject-based framework.
The ability for the instructor to decide how to
organize and present this information represents a
deliberate effort on our part to provide some level of
consistent structure (allowing automated generation
and maintenance of a framework) while at the same
time giving the users the ability to "personalize" the
structure.

An additional feature of the Class Home Page
construct is the inclusion of a searchable WAIS-index
of the class' sub-directories. With this, a user can
search for any text string within that Class' Notes,

Announcements, Syllabus, etc. After a search is
specified, Phoenix returns the results by appending
the hits, an anchor to the target destination, and the
content of the Head element, onto the Class Home
page. In this way, searching and navigating through
what can become a large amount of course
information becomes easy and intuitive.

From a user's perspective, Phoenix uses its security
features along with daily data feeds from the
Registrar's office to generate (using scripts) users'
home pages. These pages, which we call a user's
"Nest," contain a series of links that range from the
personal (a User's Personal home page) to the shared
(the list of classes in which the user is either a
student or instructor), to the general (the BSDAC and
University's Home page, general Internet sources,
etc.).

With this functionality, Phoenix provides a
personalized distributed computing environment to
the user. Because Phoenix "knows" the classes in
which a student is enrolled and provides links to those
classes' home pages, the system becomes a powerful
platform to support a secure, distributed hypermedia
authoring environment.

Currently, three pilot courses (an undergraduate
molecular biocomputing course, a upper level
genetics course, and a medical school immunology
course) either have used or are using Phoenix as a
Class Information Architecture. Anecdotal reports
from these users have been very positive. As
additional Phoenix features are added (WYSIWYG
image editing, for example), we will make them
available for testing by additional pilot courses. Our
plan is to have by Fall the Phoenix Class
Information Architecture configured and ready for
adoption by the roughly 100 classes offered during a
given term.

With these efforts, we are working to make Phoenix a
true "virtual classroom," able to support a
collaborative learning environment where students can
acquire and practice the skills needed to access and
manage information, formulate effective questions,
test hypotheses, solve problems, make judgments,
and express themselves logically and lucidly.

ACKNOWLEDGMENTS

The authors wish to thank the BSD Academic
Computing staff and student assistants who have
contributed, and continue to contribute, to the
development and implementation of the Phoenix

Project. Special appreciation is extended to Lee
Newberg and to Phillip Stylianos, without whose
contribution Phoenix would be but still a dream.

